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Introduction

Let K be an origin symmetric convex body in Rn.

Given θ ∈ Sn−1, the unit sphere in Rn, let θ⊥, be the hyperplane
orthogonal to θ,

θ⊥ = {x ∈ Rn : x · θ = 0}.

For θ ∈ Sn−1, we define the radial function of K ,

ρK (θ) = sup{t > 0 : tθ ∈ K}

and the support function of K ,

hK (θ) = sup{θ · y : y ∈ K}

We have hK = 1
ρK◦

, where K ◦ = {x ∈ Rn : x · y ≤ 1 ∀y ∈ K} is the polar
body of K .

8th Busemann-Petty 2 / 17



5th Busemann-Petty Petty Problem

Assume that there exists a constant cn such that for every θ ∈ Sn−1,

hK (θ)voln−1(K ∩ θ⊥) = cn.

Does it follow that K is an ellipsoid?

The answer is negative in dimension 2 (Radon): In this case,

voln−1(K ∩ θ⊥) = 2ρK (φπ/2(θ)),

and the equation becomes

ρK◦(θ) = cρK (φπ/2(θ))

Radon curves are the boundary of convex bodies K such that
K ◦ = φπ/2(K ).

The problem is open for n ≥ 3.
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5th Busemann-Petty Petty Problem

Assume that there exists a constant cn such that for every θ ∈ Sn−1,

hK (θ)voln−1(K ∩ θ⊥) = cn. (1)

Does it follow that K is an ellipsoid?

If K is the Euclidean ball, (1) holds.

Equation (1) is also invariant under linear transformations T (up to a
factor of | detT |), hence it is satisfied by ellipsoids.
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Analytic Reformulation

The Intersection Body of K is defined by

ρIK (θ) = voln−1(K ∩ θ⊥),

for θ ∈ Sn−1.

In polar coordinates,

ρIK (θ) =
1

n − 1

∫
Sn−1∩θ⊥

ρn−1K (u)dσ(u) = cnR(ρn−1K ),

where R is the spherical Radon transform, normalized so that R(1) = 1.
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Thus, the equation
hK (θ)voln−1(K ∩ θ⊥) = cn

in Problem 5 can be restated as

ρIK (θ) = cnρK◦ .

Busemann-Petty 5:

If (IK )◦ = K , is K an ellipsoid?

The proof of the affirmative local result consists on the following steps:

(i) The intersection body operator is a contraction in L2 in a
neighborhood of the Euclidean ball.
[Fish-Nazarov-Ryabogin-Zvavitch]

(ii) The polar intersection body operator defined by K → (IK )◦

is also a contraction.

This follows from (i) and a Maximal Function estimate for the polar
body.
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Maximal Function Estimate

Let M be the spherical Hardy-Littlewood maximal function,

Mf (θ) = sup
θ∈E

1

σ(E )

∫
Sn−1∩E

|f (u)|dσ(u).

Let ρK = 1 + χ, with ‖χ‖2 < ε and
∫
Sn−1 χ = 0. We write χ in spherical

harmonics,

χ =
∑̀
i=2

Yi +
∞∑

i=`+2

Yi = φ+ ψ.

Proposition:

Let K be close enough to the Euclidean ball in the Banach-Mazur distance.
If ρK = 1 + φ+ ψ, then hK ≈ 1 + φ+ Mψ, where M is the spherical
Hardy-Littlewood maximal function.
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A contraction in the neighborhood of the Euclidean ball

Assume that K is close to the Euclidean ball,

‖1− ρK‖2 < ε,

By [FNRZ], there exists 0 < λ < 1 such that

‖1− ρIK‖2 < λε

Then,
‖1− ρ(IK)◦‖2 = ‖1− 1/hIK‖2 ≈ ‖1− hIK‖2,

and by the maximal function estimate,

≤ ‖1− ρIK‖2 + ‖ρIK − hIK‖2 ≤ ‖1− ρIK‖2 + c‖Mψ‖2 < µε,

where λ < µ < 1.
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Iteration

Letting K2 := (IK )◦ and Km := (IKm−1)◦, we have

‖1− ρKm‖2 ≤ µ‖1− ρKm−1‖2,

where 0 < µ < 1.

Thus, the sequence {Km} converges to the Euclidean ball in the L2 norm.

Since (IK )◦ = K by hypothesis,
we have Km = K for all m, which proves the result.
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The 8th Busemann-Petty Problem

Busemann-Petty, 1956

“Are the ellipsoids characterized by the fact that the Gauss curvature at a
point of contact with a tangent plane parallel to θ⊥ is proportional to
voln−1(K ∩ θ⊥)−(n+1)?”

The answer is affirmative in dimension 2 (Petty, 1955).

The problem is open for n ≥ 3.
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For θ ∈ Sn−1, let fK (θ) denote the curvature function of K , i.e., the
reciprocal of the Gaussian curvature viewed as a function of the unit
normal vector.

8th Busemann-Petty Petty Problem

Assume that there exists a constant cn such that for every θ ∈ Sn−1,

fK (θ) = cnvoln−1(K ∩ θ⊥)n+1. (2)

Does it follow that K is an ellipsoid?

If K is the Euclidean ball, both the Gauss curvature and the central
sections are constant, hence (2) holds.

Equation (2) is invariant under linear transformations T (up to a factor of
| detT |n−1), hence it is satisfied by ellipsoids.
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Analytic Reformulation of Busemann-Petty 8

If hK ∈ C 2(Sn−1) and fK is continuous and strictly positive, then

fK = A(hK ),

where the operator A is defined as a sum of determinants of minors of the
Hessian matrix of hK .

Thus, equation fK (θ) = cnvoln−1(K ∩ θ⊥)n+1 can be rewritten as

A(hK ) = cn
(
R(ρn−1K

)n+1
.
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A Local Solution to Busemann-Petty 8:

Assume that K is close enough to the Euclidean ball in the Banach-Mazur
distance, and satisfies

A(hK ) = cn
(
Rρn−1K

)n+1
,

Then K is an ellipsoid.

Formally,

hK = A−1
(
R(ρn−1K )

)n+1 ≈ R(ρn−1K ).

But for K close to the Euclidean ball,

hK ≈
1

hK
,

and we have reduced Problem 8 to 5.
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Linearizing the operator A

Lemma:

DA(1) = ∆Sn−1 + (n − 1)I ,

where ∆Sn−1 is the spherical Laplacian.

Spherical harmonics of degree m are eigenfunctions for ∆Sn−1 , with
eigenvalue −m(m + n − 2).

8th Busemann-Petty 14 / 17



Linearizing the operator A

Lemma:

DA(1) = ∆Sn−1 + (n − 1)I ,

where ∆Sn−1 is the spherical Laplacian.

Spherical harmonics of degree m are eigenfunctions for ∆Sn−1 , with
eigenvalue −m(m + n − 2).

8th Busemann-Petty 14 / 17



Lemma:

Let ψ ∈ L2(Sn−1) be an even function such that
∫
Sn−1 ψ = 0. Then

(n + 1)‖(∆Sn−1 + (n − 1)I )−1ψ‖2 ≤ ‖ψ‖2.

Proof: Let

ψ =
∞∑

m≥2,even
amYm

be the decomposition of ψ in spherical harmonics. By Parseval,

‖(∆Sn−1 + (n − 1)I )−1ψ‖2 =

 ∞∑
m≥2,even

a2m
(−m(m + n − 2) + n − 1)2

1/2

≤

 ∞∑
m≥2,even

a2m
(n + 1)2

1/2

=
1

n + 1
‖ψ‖2.
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To finish the proof, it remains to estimate

‖A− DA(1)‖L2(Sn−1),

which is done using the theory of singular integrals.
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Thank you!
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