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The plane Radon Transform

The 2-dimensional Radon transform integrates a compactly supported
(continuous) function f over lines L

Rf(L) =

∫
L
f ds.

Here L is a line in the plane and ds is length measure on L.

Occasionally I shall use the familiar parametrization

Rf(ω, p) =

∫
x·ω=p

f ds, (ω, p) ∈ S1 × R,

where the line L is defined by x · ω = p. Clearly

Rf(ω, p) = Rf(−ω,−p).
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The Interior Radon Transform
Given two concentric disks D and D0 ⊂ D it is well known that there
exists a non-trivial function f with support equal to D such that

Rf(L) = 0 for all lines L that meet D0.

D

D0

L

In fact one can take f radial, that is,
f(x) = f(r) with r = |x|.

One can prescribe g(p) arbitrarily
and find f(r) so thatRf(p) = g(p),
for instance choose g(p) = 0 for
|p| ≤ p0 < 1.

More precisely

f(r) =
−1

π

∫ 1

r
(s2−r2)−1/2g′(s)ds.
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The Interior Radon Transform, cont.

Same for ellipses:

D0

D

There exist functions f supported in D such that Rf(L) = 0 for all
lines L that intersect D0.



The Interior Radon Transform, cont.

But how about arbitrary convex sets? We don’t know.

Conjecture. Let D and D0 be bounded convex domains in the plane
with D0 ⊂ D. Then there exists a smooth function f , not identically
zero, supp f ⊂ D, such that its Radon transform Rf(L) vanishes for
every line L that intersects D0.

D0

D
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For instance squares:

D0

D



We have seen that the set of tangents to the boundary curve of a
convex domain cannot contain the support of a Radon transform.

But what about a small neighborhood of such a set of lines?

This leads to the more general question, closely related to the
Conjecture:

How can the support of a Radon transform look?

Or more precisely:

Which subsets of the manifold of lines in the plane can be the support
of Rf for some compactly supported function or distribution f in R2?
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Identify the set of lines in the plane with the set of pairs

(ω, p) ∈ S1 × R, where (ω, p) ∼ (−ω,−p)

and write ω = (cosα, sinα).

We saw that the support of a Radon transform can look as below.
Left: concentric disks. Right: concentric ellipses.



If the conjecture is true, the support of a Radon transform can look
like this:



The supporting function ρD(ω) for the domain D in the plane is
defined by

ρD(ω) = sup{x · ω; x ∈ D}.

The curve we saw in the previous picture is the graph of the

supporting function for a centered square:
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A Radon transform supported on a curve (in the mfd of
lines)

Let f0 be the function in the plane defined by

f0(x) =
1

π

1√
1− |x|2

for |x| < 1

and f = 0 for all other x = (x1, x2).

An easy calculation shows that

Rf0(ω, p) =

∫
x·ω=p

f0(x) ds = 1 for |p| < 1,

and obviously Rf0(ω, p) = 0 for |p| ≥ 1.

Let f be the distribution f = ∆f0 = (∂2x1
+ ∂2x2

)f0.

Now use the well known formula R(∆h)(ω, p) = ∂2pRh(ω, p) with
h = f0.

Rf0(ω, p)

p
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It follows that

Rf(ω, p) = δ′(p+ 1)− δ′(p− 1),

if δ(p) denotes the Dirac measure at the origin.

This means that the distribution f = ∆f0 has the property that its
Radon transform, a distribution on the manifold of lines in the plane,
must be supported on the set of tangents to the unit circle.
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The Radon transform of a distribution f in Rn is defined by

〈Rf, ϕ〉 = 〈f,R∗ϕ〉, for all test functions ϕ, where

(R∗ϕ)(x) =

∫
Sn−1

ϕ(ω, x · ω)dω,

dω is surface measure on Sn−1, or

(R∗ϕ)(x) =

∫
L3x

ϕ(L)dµ(L).

By means of an affine transformation we can easily construct a similar
example where D is an ellipse.
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Proof idea for Conjecture (here shown for case of squares): find a
compactly supported distribution f whose Radon transform is
supported on the set of tangents to the blue curve.

D0

D



However: to my surprise I found the following:

Theorem 1 (JB 2018). Let D ⊂ Rn be a bounded, convex domain.
Assume that there exists a distribution f 6= 0, supported in D, such
that Rf is supported in the set of supporting planes to ∂D. Then the
boundary of D is an ellipsoid.

If ∂D is C1 smooth, the supporting planes for D are of course tangent
planes to ∂D.
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Newton’s lemma

A bounded domain in the plane is called algebraically integrable, if
the area of a segment cut off by a secant line is an algebraic function
of the parameters defining the line.

Lemma 28 in Newton’s Principia reads according to Arnold and
Vassiliev in Newton’s Principia read 300 years later (Notices of the
AMS 1989):

Lemma. There exists no algebraically integrable convex non-singular
algebraic curve.
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Newton’s lemma, cont.
P

AO

A segment is equal to a sector minus a triangle, and the area of the
triangle depends algebraically on the coordinates of the corners.

Let A be fixed, and let f(P ) be the area of the sector defined by the
lines OA and OP . This function is multivalued, and as P comes back
to A after a full cycle, its value will be the area of the region bounded
by the oval. After two full cycles f(P ) will be equal to twice the area.
And so on.

So the function f(P ) must have infinitely many values, which is
impossible if it is algebraic.
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Higher dimensions: the case of odd dimension

x3 = p

The volume of the part of the unit ball in R3 that lies above the plane
x3 = p is∫ 1

p
π(
√

1− t2)2dt =

∫ 1

p
π(1− t2)dt =

π

3
(p3 − 3p+ 2).

So the volume function V (p) is not only algebraic but polynomial.

Same for arbitrary odd dimension.

And same for ellipsoids.
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Arnold’s Conjecture

Problem 1987-14 in Arnold’s Problems reads:

Do there exist smooth hypersurfaces in Rn (other than the quadrics in
odd-dimensional spaces), for which the volume of the segment cut by
any hyperplane from the body bounded by them is an algebraic
function of the hyperplane?



The case of even dimension

Theorem 2 (Vassiliev 1988). There exist no smooth, convex
algebraically integrable bounded domains in even dimensions.

V. A. Vassiliev: Applied Picard - Lefschetz Theory, AMS 2002.
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The case of odd dimension
Since Arnold’s conjecture is still unsolved in this case, one has
considered a weaker statement, namely:

Denote by V (ω, p) the volume cut out from the domain D by the
hyperplane x · ω = p. Assume that p 7→ V (ω, p) is a polynomial for
every ω. Prove that the boundary of D must be an ellipsoid.

V (ω, p)

x · ω = p

Theorem 3 (Koldobsky, Merkurjev, and Yaskin 2017). Assume that
D is convex and has C∞ boundary and that p 7→ V (ω, p) is a
polynomial of degree ≤ N for every ω. Then the boundary of D must
be an ellipsoid.
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Recall:

Theorem 1 (JB 2018). Let D ⊂ Rn be a bounded, convex domain.
Assume that there exists a distribution f 6= 0, supported in D, such
that Rf is supported in the set of supporting planes to ∂D. Then the
boundary of D is an ellipsoid.



Theorem 1 implies Theorem 3

Let χD(x) be the characteristic function for the domain D and let
V (ω, p) be the volume function discussed earlier.

Applying the formula R(∆h)(ω, p) = ∂2pRh(ω, p) to h = χD and
iterating gives for every k

R(∆kχD)(ω, p) = ∂2kp RχD(ω, p).

Since p 7→ V (ω, p) is polynomial (for p such that the plane x · ω = p
intersects D) and ∂pV (ω, p) = (RχD)(ω, p), it follows that
p 7→ R(χD)(ω, p) is polynomial, so ∂2kp RχD(ω, p) = 0 if k is large
enough except at the jump points, which correspond to tangent planes.
So

f = ∆kχD

has the property that its Radon transform is supported on the set of
tangent planes to ∂D. By Theorem 1 it follows that ∂D is an
ellipsoid.
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Remark 1. Theorem 1 implies Theorem 3 without the smoothness
assumption on the boundary of D.

Remark 2. Theorem 3 shows that the Radon transform of the
characteristic function χD cannot be polynomial unless ∂D is an
ellipsoid. Theorem 1 shows that no function supported in D can have
a polynomial Radon transform unless ∂D is an ellipsoid.
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The range of the Radon transform

Which functions g(ω, p) on S1 × R are equal to Rf(ω, p) for some
compactly supported function f?

An even function g(ω, p) is equal to Rf(ω, p) for some compactly
supported function f if and only if the function

S1 3 ω 7→
∫
R
g(ω, p)pkdp

is equal to the restriction to S1 of a homogeneous polynomial in
(ω1, ω2) of degree k for every natural number k.
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The range characterization implies that an arbitrary even function
g(ω, p) = g(p) that is independent of ω must belong to the range of
the Radon transform R.

Because then∫
R
g(p)pkdp = 0 for all odd k, and∫

R
g(p)pkdp = ck for all even k.

And since 1 = ω2
1 + ω2

2 for ω ∈ S1, the constant function is the
restriction to S1 of a homogeneous polynomial of an arbitrary even
degree.
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Distributions supported on the set of supporting planes
Assume for simplicity that D = −D. Let ρ(ω) be the supporting
function for D

ρ(ω) = sup{x · ω; x ∈ D}.

The hyperplane x · ω = p is a supporting plane to ∂D if and only if

p = ρ(ω) or p = −ρ(ω).

If q(ω) is an even function on Sn−1, then

g(ω, p) = q(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
defines a distribution (of order zero) on the manifold of hyperplanes.
More generally, if g = Rf , f compactly supported, and g is
supported on p = ±ρ(ω), then g(ω, p) can be written

g(ω, p) =

m−1∑
j=0

qj(ω)
(
δ(j)(p− ρ(ω)) + (−1)jδ(j)(p+ ρ(ω))

)
,

for some even distributions qj , qj(ω) = qj(−ω), on the sphere Sn−1.
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Plan of proof of Theorem 1

1. Write down the condition that
∫
R g(ω, p)pkdp is a polynomial of

degree k in ω for each k.

2. Prove that those conditions imply that ρ(ω)2 must be a quadratic
polynomial.



To compute ∫
R
g(ω, p)pkdp

we use for instance the fact that∫
R
δ′(p− ρ(ω))pkdp = −

∫
R
δ(p− ρ(ω)) k pk−1dp

= −k ρ(ω)k−1.

Recall that

g(ω, p) =

m−1∑
j=0

qj(ω)
(
δ(j)(p− ρ(ω)) + (−1)jδ(j)(p+ ρ(ω))

)
.
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The range conditions therefore mean that there must exist
polynomials p0, p2, p4 etc., where pk(ω) is homogeneous of degree k,
such that (for instance if m = 3)

q0 = p0

q0ρ
2 + 2 q1ρ+ 2 q2 = p2

q0ρ
4 + 4 q1ρ

3 + 4 · 3 q2ρ2 = p4

q0ρ
6 + 6 q1ρ

5 + 6 · 5 q2ρ4 = p6

q0ρ
8 + 8 q1ρ

7 + 8 · 7 q2ρ6 = p8

. . . .

Let us write this in matrix form.

1 0 0
ρ2 2ρ 2
ρ4 4ρ3 4 · 3ρ2
ρ6 6ρ5 6 · 5ρ4
ρ8 7ρ7 8 · 7ρ6
ρ10 10ρ9 10 · 9ρ8
. . . . . . . . .


q0q1
q2

 =



p0
p2
p4
p6
p8
. . .

 .
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Recall that ρ(ω) is the supporting function of the set D. We want to
prove that ρ(ω)2 must be a quadratic polynomial, because that is
equivalent to ∂D being a quadric.

Forming suitable linear combinations of four of those equations we
can eliminate the q-functions. This gives infinitely many equations of
the form

ρ6p0 − 3ρ4p2 + 3ρ2p4 = p6

ρ6p2 − 3ρ4p4 + 3ρ2p6 = p8

ρ6p4 − 3ρ4p6 + 3ρ2p8 = p10

ρ6p6 − 3ρ4p8 + 3ρ2p10 = p12

. . .

We now have only two kinds of functions of ω: the supporting
function ρ(ω) and the polynomials pk(ω). The only known fact is that
pk(ω) is a homogeneous polynomial in ω of degree k for every k.
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Considering the first three equations as a linear system in the three
“unknowns” ρ2, ρ4, and ρ6, we can write those equations

(1)

p0 p2 p4
p2 p4 p6
p4 p6 p8

 ρ6

−3ρ4

3ρ2

 =

 p6
p8
p10

 .

Provided the determinant of the matrix is different from zero, we can
solve for instance ρ2 from this system and obtain ρ2 as a rational
function

ρ(ω)2 =
F (ω)

G(ω)
,

where F (ω) and G(ω) are polynomials, and

G(ω) = det

p0 p2 p4
p2 p4 p6
p4 p6 p8

 .

However, with very little additional effort we can do much better.
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The following identities are trivial.p0 p2 p4
p2 p4 p6
p4 p6 p8

0
1
0

 =

p2p4
p6

 and

p0 p2 p4
p2 p4 p6
p4 p6 p8

0
0
1

 =

p4p6
p8

 .



Combining the linear system (1) with those two trivial equations we
obtain the matrix equationp0 p2 p4

p2 p4 p6
p4 p6 p8

0 0 ρ6

1 0 −3ρ4

0 1 3ρ2

 =

p2 p4 p6
p4 p6 p8
p6 p8 p10

 .

The advantage with this equation is that it can be iterated. Setting

A =

0 0 ρ6

1 0 −3ρ4

0 1 3ρ2


we have p0 p2 p4

p2 p4 p6
p4 p6 p8

A2 =

p4 p6 p8
p6 p8 p10
p8 p10 p12

 .
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And more generallyp0 p2 p4
p2 p4 p6
p4 p6 p8

Ak =

 p2k p2k+2 p2k+4

p2k+2 p2k+4 p2k+6

p2k+4 p2k+6 p2k+8


for every k.

The determinant of A is ρ(ω)6. It follows that

G(ω)ρ(ω)6k is a polynomial for every k.

Since we already knew that ρ(ω)2 is a rational function, we can now
conclude that ρ(ω)2 must be a polynomial (still assuming that G(ω) is
not identically zero).



And more generallyp0 p2 p4
p2 p4 p6
p4 p6 p8

Ak =

 p2k p2k+2 p2k+4

p2k+2 p2k+4 p2k+6

p2k+4 p2k+6 p2k+8


for every k. The determinant of A is ρ(ω)6. It follows that

G(ω)ρ(ω)6k is a polynomial for every k.

Since we already knew that ρ(ω)2 is a rational function, we can now
conclude that ρ(ω)2 must be a polynomial (still assuming that G(ω) is
not identically zero).



And more generallyp0 p2 p4
p2 p4 p6
p4 p6 p8

Ak =

 p2k p2k+2 p2k+4

p2k+2 p2k+4 p2k+6

p2k+4 p2k+6 p2k+8


for every k. The determinant of A is ρ(ω)6. It follows that

G(ω)ρ(ω)6k is a polynomial for every k.

Since we already knew that ρ(ω)2 is a rational function, we can now
conclude that ρ(ω)2 must be a polynomial (still assuming that G(ω) is
not identically zero).



Therefore it remains only to prove

Lemma. If qm−1 6= 0, then the m×m matrix
p0 p2 p4 . . . pm−2
p2 p4 p6 . . . pm
p4 p6 p8 . . . pm+2

. . . . . . . . . . . . . . .
pm−2 pm pm+2 . . . p2m−4


is non-singular.

This fact depends on the spectral properties of the matrix A.
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A semi-local result

Theorem 4. Let D be open, convex, bounded, let x0 ∈ ∂D, and let
ω0 be one of the unit normals of a supporting plane L0 to D at x0. If
there exists a distribution f with support in D and a translation
invariant open neighborhood W of L0, such that the restriction of the
distribution Rf to W is supported on the set of supporting planes to
D in W, then ∂D must be equal to the restriction of an ellipsoid in
some neighborhood of ±x0.



A recent, somewhat related, result:

Theorem (Ilmavirta and Paternain, 2018). Let D ⊂ Rn be a bounded
and strictly convex domain with smooth boundary. If there exists a
function f ∈ L1(D) such that the integral of f over almost every line
meeting D is equal to 1, then D is a ball.
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