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@ (x,y) is an edge of the graph if and only if
d(x,y) < d(x,z)+d(z,y) for all z€ M\ {x,y}.
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e Given a metric space M = {ap, ..., an}, we will see that there is a
polytope in R” canonically associated to M.

e Consider functions f on M with f(ag) = 0.
o We identify f = (f(a1),...,f(an)) € R". We denote

Blipy(M) = {f : w <1 Vi;éj} - {f: (f, de("a:j_'y <1 w;q}

(€0 =0)

e,-—eJ-

Blipg(m) = COﬂV{d(ai’aj) : "751} =t Br(m)

o F(M) is called the Lipschitz-free space over M (also Arens-Eells,
Wasserstein 1, transportation cost, Kantorovich-Rubinstein, ...)
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Lipschitz-free spaces

€
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Theorem (Aliaga—Guirao, 2019)
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& 2
Bx(m) = conv { d(ar, aj) #J} ﬁ

M
Theorem (Aliaga—Guirao, 2019)

d(za,—zjj) is a vertex of Bx(y if and only if
d(x,y)<d(x,z)+d(z,y) fora// ay . a ' az
ze M\ {x,y}. M,

€i—

Indeed, we have shown that FIE 5 belongs to a face of Br(u) of dimension k

precisely if there are k different points z1,...,2k € M\ {x,y} such that
d(XaY) = d(Xa Zk) + d(zlﬁy)'

Theorem (Godard, 2010)

@ M is a tree if and only if Bx(y is a linear image of By

® M embeds into a tree if and only if Biip (m) is @ zonoid.
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Blaschke—Santalé inequality

P(K) < P(B;)

(Blaschke, 1923) for n < 3, (Santald, 1948) for n > 3.
(Saint-Raymond, 1981), (Petty, 1985) for the equality case.

@ Proofs using Steiner symmetrization: (Ball, 1986), (Meyer—Pajor, 1990).
@ Harmonic Analysis based proof (Bianchi—Kelly, 2015).
Stability Results: (Béréczky, 2010), (Barthe-Béréczky—Fradelizi, 2014).

@ Functional forms (for log-concave functions): (Ball, 1986), (Artstein-Avidan
—Klartag—Milman, 2004), (Fradelizi-Meyer, 2007), (Lehec, 2009).
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Shadow Systems
A shadow system in direction 0 € S"1 with base B is given by

K: = conv{x + a(x)t0, over all x € B}

where B C R" is bounded, o : B — R is bounded, and t € [a, b].
@ t+ |K¢| is a convex function (Rogers—Shephard, 1958).
o If K, is symmetric for all t € [a, b], then t > |K?|™1 is convex

(Campi—-Gronchi, 2006), non-symmetric case by (Meyer—Reisner
2006).

As a consequence, if t — |K¢| is affine, then

min P(K:) = min{P(K,), P(Kp)}

te(a,b]
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Theorem (Alexander—Fradelizi-G.—Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that
Br(m) is a simplicial polytope. Then M is a tree (and so P(M) = 4"/n!).

Proof. Fix an edge (a;, a;) of the graph of M and denote mj;; = d(a a) .For |¢]
small enough, consider the metric space M; with the same graph as M but weight
of (a;, a;) is replaced by d;(a;, a;) = (f;ff) Then,

Br(m,) = conv { (vertices(Br) \ {£mj}) U£(1+ t)m;}

@ t— Br(um,) is a shadow system based on the vertices of Br(y).
@ t+ |Brm, is affine.

@ A result by (Fradelizi-Meyer—Zvavitch, 2012) ensures that Br(y) is a double
cone with apex mj;.

Thus, Bx(u) is a double cone with respect to each one of its vertices. So it is a
linear image of BY.
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A symmetric convex body is called a Hanner polytope if it is one-dimensional, or
the ¢1 or £, sum of two (lower dimensional) Hanner polytopes.
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The #1-sum of two finite metric spaces M, N is the metric space M < N obtained
by identifying the distinguished points of M and N.

A\

M N Mo N

Note that B]:(MON) = B]:(M) D1 B]:(N)

Theorem (Alexander—Fradelizi-G.—Zvavitch, 2019)

Br(m) is a Hanner polytope if and only if M = My o ... o M, and each M; either
contains only two points or it is the complete bipartite graph K> ,, where all the
edges have the same weight.

R
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Assume that P(M) is maximal among the metric spaces with the same number of
elements. Then

@ d(x,y) < d(x,z)+d(z,y) for all different points x,y,z € M, and
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Thank you for your attention ]




