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Finite metric spaces and graphs

Let M = {a0, . . . , an} be a finite metric space with metric d .

We can represent M by a weighted graph:

(x , y) is an edge of the graph if and only if
d(x , y) < d(x , z) + d(z , y) for all z ∈ M \ {x , y}.
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Lipschitz-free spaces

Given a metric space M = {a0, . . . , an}, we will see that there is a
polytope in Rn canonically associated to M.

Consider functions f on M with f (a0) = 0.

We identify f ≡ (f (a1), . . . , f (an)) ∈ Rn. We denote

BLip0(M) :=

{
f :

f (ai )− f (aj)

d(ai , aj)
≤ 1 ∀i 6= j

}
=

{
f : 〈f ,

ei − ej
d(ai , aj)

〉 ≤ 1 ∀i 6= j

}
(e0 = 0)

(e0 = 0)

B◦Lip0(M) = conv

{
ei − ej
d(ai , aj)

: i 6= j

}
=: BF(M)

F(M) is called the Lipschitz-free space over M (also Arens-Eells,
Wasserstein 1, transportation cost, Kantorovich-Rubinstein, ...)
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Lipschitz-free spaces

BF(M) = conv

{
ei − ej
d(ai , aj)

: i 6= j

}

Theorem (Aliaga–Guirao, 2019)
ei−ej
d(ai ,aj )

is a vertex of BF(M) if and only if

d(x , y) < d(x , z) + d(z , y) for all
z ∈ M \ {x , y}.

Indeed, we have shown that
ei−ej
d(ai ,aj )

belongs to a face of BF(M) of dimension k

precisely if there are k different points z1, . . . , zk ∈ M \ {x , y} such that
d(x , y) = d(x , zk) + d(zk , y).

Theorem (Godard, 2010)

M is a tree if and only if BF(M) is a linear image of Bn
1 .

M embeds into a tree if and only if BLip0(M) is a zonoid.
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Volume product

Given a centrally symmetric convex body K ⊂ Rn, its volume product is defined as

P(K ) = |K | · |K◦|

Blaschke–Santaló inequality

P(K ) ≤ P(Bn
2 )

(Blaschke, 1923) for n ≤ 3, (Santaló, 1948) for n > 3.

(Saint-Raymond, 1981), (Petty, 1985) for the equality case.

Proofs using Steiner symmetrization: (Ball, 1986), (Meyer–Pajor, 1990).

Harmonic Analysis based proof (Bianchi–Kelly, 2015).

Stability Results: (Böröczky, 2010), (Barthe–Böröczky–Fradelizi, 2014).

Functional forms (for log-concave functions): (Ball, 1986), (Artstein-Avidan
–Klartag–Milman, 2004), (Fradelizi–Meyer, 2007), (Lehec, 2009).
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Volume product

Mahler’s conjecture, symmetric case

P(K) ≥ P(Bn
1 ) =

4n

n!

True if n = 2 (Mahler, 1939) and if n = 3 (Iriyeh–Shibata, 2019), short proof
Fradelizi–Hubard–Meyer–Roldán-Pensado–Zvavitch, 2019.

Unconditional bodies (Saint-Raymond, 1981), equality case (Meyer, 1986), (Reisner,
1987).

Around Hanner polytopes/Unconditional bodies (Nazarov–Petrov–Ryabogin–Zvavitch,
2010), (Kim, 2013), (Kim–Zvavitch, 2013).

Body has a point of positive curvature then it is not a minimizer. (Stancu, 2009),
(Reisner–Schütt–Werner, 2010), (Gordon–Meyer, 2011).

Zonoids (Reisner, 1986), (Gordon–Meyer–Reisner, 1988).

Hyperplane sections of `p-balls and Hanner polytopes, (Karasev, 2019).

Convex bodies with ‘many’ symmetries (Barthe–Fradelizi, 2010).

Polytopes with a few vertices (Lopez–Reisner 1998), (Meyer–Reisner, 2006).

Bourgain–Milman Inequality: P(K) ≥ cnP(Bn
∞) (Bourgain–Milman, 1987), (Kuperberg,

2008), (Nazarov, 2009), (Giannopoulos–Paouris–Vritsiou, 2012).

It follows from Viterbo’s conjecture in symplectic geometry,
(Artstein-Avidan–Karasev–Ostrover, 2014).

Functional forms (for log-concave functions): (Klartag–Milman, 2005), (Fradelizi–Meyer,
2010), (Gordon–Fradelizi–Meyer–Reisner, 2010).
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Shadow Systems
A shadow system in direction ~θ ∈ Sn−1 with base B is given by

Kt = conv{x + α(x)t~θ, over all x ∈ B}
where B ⊂ Rn is bounded, α : B → R is bounded, and t ∈ [a, b].

t 7→ |Kt | is a convex function (Rogers–Shephard, 1958).
If Kt is symmetric for all t ∈ [a, b], then t 7→ |K o

t |−1 is convex
(Campi–Gronchi, 2006), non-symmetric case by (Meyer–Reisner
2006).

As a consequence, if t 7→ |Kt | is affine, then

min
t∈[a,b]

P(Kt) = min{P(Ka),P(Kb)}
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The volume product of a metric space

P(M) := |BF(M)| · |BLip0(M)|

≥ 4n

n! ?

Theorem (Alexander–Fradelizi–G.–Zvavitch, 2019)

Let M be a finite metric space with minimal volume product such that
BF(M) is a simplicial polytope. Then M is a tree (and so P(M) = 4n/n!).

Proof. Fix an edge (ai , aj) of the graph of M and denote mij =
ei−ej
d(ai ,aj )

.For |t|
small enough, consider the metric space Mt with the same graph as M but weight

of (ai , aj) is replaced by dt(ai , aj) =
d(ai ,aj )

1+t . Then,

BF(Mt) = conv
{(

vertices(BF(M)) \ {±mij}
)
∪ ±(1 + t)mij

}
t 7→ BF(Mt) is a shadow system based on the vertices of BF(M).

t 7→ |BF(Mt)| is affine.

A result by (Fradelizi–Meyer–Zvavitch, 2012) ensures that BF(M) is a double
cone with apex mij .

Thus, BF(M) is a double cone with respect to each one of its vertices. So it is a
linear image of Bn

1 .
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Hanner polytopes

Consider convex symmetric bodies K ⊂ Rn1 and L ⊂ Rn2 denote by:

K ⊕∞ L = K + L their `∞-sum: ‖(x1, x2)‖K⊕∞L = max{‖x1‖K , ‖x2‖L}

K ⊕1 L = conv(K ∪ L) their `1-sum: ‖(x1, x2)‖K⊕1L = ‖x1‖K + ‖x2‖L

e1

e2

e3

e1

e2

e3

(I ⊕1 I )⊕∞ I (I ⊕∞ I )⊕1 I

A symmetric convex body is called a Hanner polytope if it is one-dimensional, or
the `1 or `∞ sum of two (lower dimensional) Hanner polytopes.
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When is BF(M) a Hanner polytope?

The `1-sum of two finite metric spaces M, N is the metric space M � N obtained
by identifying the distinguished points of M and N.

Note that BF(M�N) = BF(M) ⊕1 BF(N).

Theorem (Alexander–Fradelizi–G.–Zvavitch, 2019)

BF(M) is a Hanner polytope if and only if M = M1 � . . . �Mr and each Mi either
contains only two points or it is the complete bipartite graph K2,n, where all the
edges have the same weight.

...
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Maximal volume product

For n = 2, the metric space with maximum volume
product is a complete graph with equal weights.

Theorem (Alexander–Fradelizi–G.–Zvavitch, 2019)

Assume that P(M) is maximal among the metric spaces with the same number of
elements. Then

d(x , y) < d(x , z) + d(z , y) for all different points x , y , z ∈ M, and

BF(M) is a simplicial polytope.

If n ≥ 3 and M is the complete graph with equal
weights, then BF(M) is not simplicial!

Thank you for your attention
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