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R"” denotes the standard n—dimensional Euclidean space.
Given x = (x1,...,xn) €R", |x| = (xZ + ... +x,%)% is the norm of x.

By = {x € R": |x| < 1} is the unit ball in R".

§"1 = {x € R": |x| =1} is the unit sphere in R".

A convex body is a compact, convex set in Euclidean space with nonempty
interior.

Given a convex body K in R", |K| denotes the Lebesgue measure of K.
wn denotes | B3|

K is in John's position if the unique ellipsoid of maximal volume contained
within it is the unit ball.
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Introduction

The Busemann-Petty problem

If K, L are origin-symmetric convex bodies in R” with
|KN6L| < |LNot]|

for all @ € S"~ 1, does it follow that |K| < |L|?

@ Yes, if n <4 and no if n > 4 (Gardner, Koldobsky, Schlumprecht; Zhang;
Papadimitrakis).

o |K| < cLk|L| where Lk is the isotropic constant of K (Milman and Pajor).

@ Best currently known bound on Lk is cnt (Bourgain; Klartag;
Lee-Vempala).
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Introduction

The Shephard problem

If K,L are origin-symmetric convex bodies in R” with
|K|o*| <Ll

for all @ € S"~1, does it follow that |K| < |L|?

-

@ Yes, if n <2 and no if n> 2 (Petty; Schneider; Koldobsky, Ryabogin,
Zvavitch).

e |K| < (1+o0(1))y/n|L| and this bound is optimal (Ball).
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Introduction

V. Milman's variant of the Busemann-Petty and Shephard problem

If K,L are origin-symmetric convex bodies in R” with
|K|6*| < |Lno*]

for all 6 € S"~ 1, does it follow that |K| < |L|?

@ Hypotheses are stronger than those of the Busemann-Petty and Shephard
problems.

Yes! (Giannopoulos and Koldobsky)
- JchammesHosle |
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First question of the talk

Reversal of Milman's question

If K, L are origin-symmetric convex bodies in R” such that
|Knet| < Lo

for all € S"~!, how can we compare |K| and |L|?

@ Hypotheses are weaker than those of the Busemann-Petty and Shephard
problems.

@ We cannot conclude |K| < |L| for dimensions n > 2 by the solution of the
Shephard problem. But even if n =2 we can cannot conclude this
inequality, as can be shown by a perturbation argument.
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First question of the talk

Let K, L be origin-symmetric convex bodies in R" such that

IKN6*| < |L|o™|

for all # € S"~1. If K C RBY and rBj C L, then

R
K] < )L,

v

If K and L are in John's position, then |K| < +/n|L]|.
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Proof of the theorem: Preliminaries

o Let py: sl R4 denote the radial function of K defined by
pk(0) =max{t >0:t0 € K}.

@ Polar coordinates:
1 n
K== Pk (0)do.
n Sn—1
@ The (n— 1)—dimensional version of this formula is

Knet)= 1o o (6)do

for any £ € S"7L.

@ To relate these formulas we shall use the following formula valid for all
continuous f on the sphere:

Eail
L rede)anmun =151 [ reae
Gox \JSr—11H sn—1

where v, . denotes the Haar probability measure on the Grassmanian G, k.
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Proof of the theorem

e Using K C RBj and the formulas on the previous slide,

1
K =1 / o (6)d6
Sn—l

n

SB/ pic t(0)do
n Jen—1

R n—1
= —— 0)do ) d.
n|5”*2| gn—1 (/SnlméL Pk ) ) ¢

R
= / |KNeT|de.
nwp—1 Jgn—1
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Proof of the theorem

o Since [KNOH| <|L|6*] for all 6 € S"7L,

K| < R/ K n6L|do
Sn—l

nwp—1

< R/ L6+ |d6.
nwp—1 Jgn—1

e Cauchy's surface area formula tells us that |0L| = ﬁ fsnfl |L|6+|d6 and

therefore
R
|K| < —|OL].
n
e Since rBy C L, we have
|oL| = nminfw
e—0 re
< Iiminfi“_(l—i_a)‘ mil = M
~ =0 re r

@ Therefore |K| < §|L\ as desired.



Alternative estimate

Our above assumptions also imply

1 1
K| < cLin (5)2 "I

Proof.

o Define the parallel section function Ak ¢(t) = |KN {0+ +t6}].
e By Fubini,

R
K| = / A o(t)dt.
R

o Since K is origin-symmetric, Ak g(t) is maximized for t =0, and so
K| <2R min |KN6T|
gesost

<2R min |L|6}]
fesn—1

=il
< cRVnlL| 7.




Alternative estimate

@ Milman and Pajor proved that
K| < clk max |Kmel|
0eS
@ Therefore,
=1 1
|K| ™" <clLk max |L|6—|
fesn—1
< clk|OL]|
cLKn

L.

@ Multiplying the two bounds gives

NIw.

n—1 CLKRH
IKIIK|

which implies

1 by
K| < cLint (5)2 g
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Projection for Measures

Given p an absolutely continuous measure and K a convex body, we can define

@ 1
P“’K(Q)ZE/O w1 (tK,[—0,0])dt,

where (A, B) is the mixed p—measure of A and B,

p1(A,B) = “minfw_
e—0

&

o This is a natural generalization of the formula

|K +e[-6,6]| - |K]|
e

1
K|0F| = = liminf
K10%1 = 3 imig

for Lebesgue measure.

@ Livshyts introduced this notion and proved a version of the Shephard
problem for measures with a positive degree of concavity and homogeneity.
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Extension of Giannopoulos and Koldobsky's result

Theorem

Let i be a log-concave measure with continuous ray-decreasing g. Assume
that K, L are origin-symmetric convex bodies in R” such that

Po.k(0) < pn—1(LNOT)

forall 0 €S" ! Let r>0bea fixed-parameter.
(2) If 14(rBg) < u(K) < ju(rB3), then

w(rB3)

1 1 n—1
<rwn | g|lo, w(L) " .
R <t el u(L)

1(K)log

(b) If u(K) < Lu(B3), then

1

u(K) < (e’ o ;‘;;’)'w) "),
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Proof of the theorem: Preliminaries

@ Recall that a measure p is log-concave if for all measurable K, L and
A € [0,1] we have

(L= NK +AL) > p(K)P (L)

@ A function f is called log-concave if logf is concave. A measure with a
log-concave density is log-concave.

Definition

A density g : R" — [0, 00) is ray-decreasing if g(tx) > g(x) for all t € [0,1] and
x €R".
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Proof of the theorem: Preliminaries

Log-concave lemma

Let i be a log-concave measure and E, F be measurable sets. Then

w(F)
n(E)

//'I(Ev F) > ;ufl(EvE)+/'L(E)|0g

4

Ray-decreasing lemma

Let 1 be a measure with a ray-decreasing density g.
e If t €[0,1] and K is measurable, u(tK) > t"u(K).
@ Moreover, we have the limits

n n n n
Tire M:O’ lim m:
5—00 ,u(ng) s—0 M(SBS)
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Proof of the theorem: Preliminaries

Theorem (Dann, Paouris, Pivovarov)

Let 1 < k< n—1 and f be a nonnegative, bounded, integrable function on R".

Then
n . k
/ UefCod). dvak(E) < 2K ( / f(x)dx) :
G,k z

IFIE||7S* wp

o ||f|E|| is the L°®—norm of f restricted to the k—dimensional subspace
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Proof of the theorem, Part (a)

Proof of (a).

@ For t €[0,1] and s > 0 to be chosen later, the Log-concave lemma tells us
that

:u’l(tK7 Bg) > Ml(tK’SBg)

w(sB3)
p(tK)
1(sB3)

u(tK)

> p(tK, tK) + p(tK) log

d
= t—p(tK) + p(tK) log
dt
@ Integrate both sides in t from 0 to 1 to get

1 1
. ep(tK)
u(K) <'s /0 pa(tK, BE)dt + /0 H(tk)log  sppy ot
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Proof of the theorem, Part (a)

Proof of (a).

@ Using Parseval's formula on the sphere, an analog of the Cauchy surface
area formula for measures can be proven:

1
1
tK,B3)dt = P u)du.
/0 pa( 2) o1 /SH 1,k (1)

@ Thus,

1
u(K) < — / P ()l / (1K) log S gy
nwp—1 fen—1 0 /J'(SBQ)
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Proof of the theorem, Part (a)

Proof of (a).

o Using our assumption P, k() < n—1(LNOL) along with Jensen’s
inequality, we have

1 1 N
P u)du < _1(LNn6~)do
nwy—1 /5"_1 k() < nwy_1 /Sn_lu" 1 )

= / pin—1(LNO")do(6)
Sn—l

Wn—1

1
< wn ( / unl(meﬂ"daw)) ,
Wn—1 gn—1

where o(6) = d% is the normalized probability measure on the sphere.
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Proof of the theorem, Part (a)

Proof of (a).

@ By the theorem of Dann, Paouris, and Pivovarov, we write

(/Sn_lun1(Lm9L)ndo—(0)> " (/Sn_l (/9L g(X)XL(X)dx> dg(@)) z
(||g| w:_l)"u(L)ml

1
4 /0 wu(tK)log ep(tK)dt

1
F </0 p(tK)dt) log ———~ e B”)

@ Therefore,

1 1
w(K) < swjp llglla, w
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Proof of the theorem, Part (a)

Proof of (a).

@ We now choose s to optimize the previous inequality, namely

1 1 n—1
p1(sB3,B3) _ wi llgllg m(L) =

1(sB3) [y n(tK)dt

o This s is guaranteed to exist by the Ray-decreasing lemma.

@ With this choice of s and with r as in the statement of the theorem, we

may bound
] L (O
log < “n gl So (r—s)—logu(rB3)
1(sB3) fO u(tK)dt
using the Log-concave lemma.
o Thus,
1
1 1 n=1 ep(tK)
< rwj n " tK)| dt.
() < s Uelho(0)'F + [ ek iog LD

Johannes Hosle



Proof of the theorem, Part (a)

Proof of (a).

@ From Jensen's inequality, we derive the bound

n 4 n—1 K w(K)
M(K)Srw,é HgH&M(L) nl+|ogmaX (1, (e,u()) ;

m(rB3)

o Recall that the assumption of Part (a) is that u(K) > Lu(rB5).

@ Therefore,

plrB) A b et
< n n L) n

finishing the proof of Part (a).
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Proof of the theorem, Part (b)
Restatement of the theorem

Let i be a log-concave measure with continuous ray-decreasing g. Assume
that K, L are origin-symmetric convex bodies in R" such that

Pk (8) < pn—1(LNOY)

for all @ € S"~1. Let r > 0 be a fixed-parameter.
(b) IF u(K) < Lyu(rB5). then

u(K) < (er:("r;;f)'w> ")

Proof of (b).

@ Since u(K) < %u(rBé’), for every t € [0,1] there exists f(t) € [0,1] such
that u(rf(t)By) = ep(tK).

@ Following the same setup as part (a), we have

1
u(K) < r/o f(t)m(tK,Bg)w(tK)log%dt.

Johannes Hosle




Proof of the theorem, Part (b)

Proof of (b).

@ By the choice of f, this inequality becomes

1
WKy < r / F(t)un (K, B)dt.
0
@ Moreover, by the Ray-decreasing lemma,
F(£)"u(rBE) < u(rf (£)BY) = en(tK) < en(K),

and so

% 1 e % 1 1 n—1
)< ()" [ o apran< o (4D ) el

which rearranges to

1

u(K) < (;;;gj;oo) "L,
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Loomis-Whitney inequality

@ The Loomis-Whitney inequality states that if uy,...,us form an
orthonormal basis of R” and K is a convex body in R", then

n
-1 1
k"™t < TTIKIu
i=1

with equality if and only if K is a box with faces parallel to the
hyperplanes u,-J‘.

@ This was extended by Ball, who showed that uy,...,um € R™ and cy,...,cm
are positive constants such that

m

ZC,‘U,‘@ up = /n,

i=1

then

m
K" < T IKuit |
i=1
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Positively concave and positively homogeneous measures

A function f : R" — [0,00] is p—concave if fP is concave on the support of
f.

@ A function f : R" — [0,00] is r—homogeneous if f(ax) = a’ f(x) for all
a>0and xeR".

@ We will be interested in functions g that are both s—concave for some
s>0and %fhomogeneous for some p > 0. Such functions will necessarily
be p—concave. Moreover, with the exception of the constant functions, all

such g will be supported on convex cones. E.g. g(x) = 1<X79>>0<x,9)%.

e g(x)=g(x)+g(—x).
@ Measures with such densities were studied by Milman and Rotem.
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Positively concave and positively homogeneous measures

Lemma (Borell)

Let 1 be a measure with a p—concave density g. Then, for g = n_‘_% L is
P

g—concave, that is for measurable E, F and A € [0,1] we have

POE + (1= A\)F) > (A(E)T + (1= \)p(F)7)s.

@ Moreover, by a change of variables, if u has %fhomogeneous density, then

W is %—homogeneous, that is

u(tE) = t7u(E)

for t > 0.
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Extension of the Loomis-Whitney inequality

Theorem

Let 1 be a measure with a p—concave, lfhomogeneous density g for some

p > 0. Then, for any convex body K and an orthonormal basis (u;)i_; with
[—uj, uilNsupp(g) # @ for each 1 < i< n,

% n 1+ &P (u;)

n n ——_—
1_ 1 1 =
/,L(K),H_é 1 S 2"+!1’ <1+Pn> (ng(uk)> HP ,K(ui) szzlg"( k).
k=1 i=1

o Recall that Py, x(6) = 3 [ ua(tK,[~6,6])d.
@ We remark that a similar extension can also be proven for Ball's inequality.
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Extension of the Loomis-Whitney inequality

Outline of the proof

o Take the box Z = 27:1 aj[—uj, ui] with aj =

1
Pk (ui)
@ We use Minkowski's first inequality (for g—concave measures) to write
= — —
w(K) ™7 < qu(Z2)" (K, Z) =2u(Z)" 7.

o Without loss of generality, uj € supp(g) and g(—u;) =0 for all 1 <i < n.
Let us define F; to be the face of Z orthogonal to and touching «;u;.

@ By homogeneity,
n
m2Z)=q) aipn1(F),
i=1
where p,—1(F;) denotes the integral of g over the (n— 1)—dimensional set

Fi.

@ It remains to find an appropriate lower bound for p,_1(F;).
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Extension of the Loomis-Whitney inequality

Let g,u, (u;)7_q, F; be as above. Then,

pn ! &P (ui)
/J'nfl(Fi) > (pn+1> (1+pzk 1gp(uk ) (ng(ul )

&P (u))

1
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Extension of the Loomis-Whitney inequality
Proof of lemma.

o Without of loss of generality, we consider j = 1.

@ We begin by writing p,—1(F1) as an integral of g over Fi, subdividing the
domain of integration, and using homogeneity:

,Un—l(Fl) ::ﬁ:alul+z;’:2/8juj g(v)dv

1Bj] < oy

o=(41,.. ﬂ)/ / <a1“1+26mo )dBQ dBn
U—(ilz / / (“1+ZBJ>

n

— = B A
g<a +Z 2ﬁ_] Za _|_Z 2BJ (J)UJ> dps...dBn.
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Extension of the Loomis-Whitney inequality

Proof of lemma.

@ Since u;j € supp(g) for 1 < i< n, we can only use concavity to estimate
from below the integral where o is the identity permutation. This
accounts for the factor of 2" in the Theorem.

@ We have the inequality

Mn—l(Fl)Z/ / <O‘1+Zﬂj>
0 0 =

n

a1 B
Xg| ————u + —————uj | df>...dBn.
(al +2 2B JZ:;O‘IJFZ;:zﬂj J) ’
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Extension of the Loomis-Whitney inequality
Proof of lemma.

@ By p-concavity of g,
un71(F1)2/ / <061+Z/3j>
0 0 =

e L )| dBo..dBn
><<a ‘*‘ZJ 2@ (U1)+Z "‘ZJ 251 (Uj)> Bo...dB
=/ / <a1gp(ul)+Zﬁjgp(Uj)> dfs...dBn

0 -

= (llgl’ u,) / / a1 ’ g P(u, Zﬁjz 1gp )

dBs..dBn.

Johannes Hosle



Extension of the Loomis-Whitney inequality

Proof of lemma.

@ From the arithmetic-mean geometric-mean inequality,

gP &P ()

) "1g u;) Do, EPw)
aliz b ZBJZ > =1 57 Hﬁ P(

@ Substituting this product under the integral, evaluating, and applying one
more arithmetic-mean geometric-mean inequality, we conclude the proof of
the lemma and the theorem.
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Thanks for your attention!
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