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Notation

Rn denotes the standard n−dimensional Euclidean space.
Given x = (x1, ...,xn) ∈ Rn, |x |= (x2

1 + ...+ x2
n )

1
2 is the norm of x .

Bn
2 = {x ∈ Rn : |x | ≤ 1} is the unit ball in Rn.

Sn−1 = {x ∈ Rn : |x |= 1} is the unit sphere in Rn.
A convex body is a compact, convex set in Euclidean space with nonempty
interior.
Given a convex body K in Rn, |K | denotes the Lebesgue measure of K .
ωn denotes |Bn

2 |.
K is in John’s position if the unique ellipsoid of maximal volume contained
within it is the unit ball.
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Introduction

The Busemann-Petty problem
If K ,L are origin-symmetric convex bodies in Rn with

|K ∩θ⊥| ≤ |L∩θ⊥|

for all θ ∈ Sn−1, does it follow that |K | ≤ |L|?
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Answer
Yes, if n ≤ 4 and no if n > 4 (Gardner, Koldobsky, Schlumprecht; Zhang;
Papadimitrakis).
|K | ≤ cLK |L| where LK is the isotropic constant of K (Milman and Pajor).

Best currently known bound on LK is cn
1
4 (Bourgain; Klartag;

Lee-Vempala).
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Introduction

The Shephard problem
If K ,L are origin-symmetric convex bodies in Rn with

|K |θ⊥| ≤ |L|θ⊥|

for all θ ∈ Sn−1, does it follow that |K | ≤ |L|?

Answer
Yes, if n ≤ 2 and no if n > 2 (Petty; Schneider; Koldobsky, Ryabogin,
Zvavitch).
|K | ≤ (1+ o(1))

√
n|L| and this bound is optimal (Ball).
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Introduction

V. Milman’s variant of the Busemann-Petty and Shephard problem
If K ,L are origin-symmetric convex bodies in Rn with

|K |θ⊥| ≤ |L∩θ⊥|

for all θ ∈ Sn−1, does it follow that |K | ≤ |L|?

Hypotheses are stronger than those of the Busemann-Petty and Shephard
problems.

Answer
Yes! (Giannopoulos and Koldobsky)
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First question of the talk

Reversal of Milman’s question
If K ,L are origin-symmetric convex bodies in Rn such that

|K ∩θ⊥| ≤ |L|θ⊥|

for all θ ∈ Sn−1, how can we compare |K | and |L|?

Hypotheses are weaker than those of the Busemann-Petty and Shephard
problems.
We cannot conclude |K | ≤ |L| for dimensions n > 2 by the solution of the
Shephard problem. But even if n = 2 we can cannot conclude this
inequality, as can be shown by a perturbation argument.
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First question of the talk

Theorem
Let K ,L be origin-symmetric convex bodies in Rn such that

|K ∩θ⊥| ≤ |L|θ⊥|

for all θ ∈ Sn−1. If K ⊂ RBn
2 and rBn

2 ⊂ L, then

|K | ≤ R
r |L|.

Corollary
If K and L are in John’s position, then |K | ≤

√
n|L|.
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Proof of the theorem: Preliminaries

Let ρK : Sn−1→ R+ denote the radial function of K defined by
ρK (θ) = max{t ≥ 0 : tθ ∈ K}.
Polar coordinates:

|K |= 1
n

∫
Sn−1

ρn
K (θ)dθ.

The (n−1)−dimensional version of this formula is

|K ∩ ξ⊥|= 1
n−1

∫
Sn−1∩ξ⊥

ρn−1
K (θ)dθ

for any ξ ∈ Sn−1.
To relate these formulas we shall use the following formula valid for all
continuous f on the sphere:∫

Gn,k

(∫
Sn−1∩H

f (ξ)dξ
)

dνn,k(H) = |S
k−1|
|Sn−1|

∫
Sn−1

f (ξ)dξ,

where νn,k denotes the Haar probability measure on the Grassmanian Gn,k .
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Proof of the theorem

Proof.
Using K ⊂ RBn

2 and the formulas on the previous slide,

|K |= 1
n

∫
Sn−1

ρn
K (θ)dθ

≤ R
n

∫
Sn−1

ρn−1
K (θ)dθ

= R
n|Sn−2|

∫
Sn−1

(∫
Sn−1∩ξ⊥

ρn−1
K (θ)dθ

)
dξ

= R
nωn−1

∫
Sn−1
|K ∩ ξ⊥|dξ.
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Proof of the theorem

Proof.

Since |K ∩θ⊥| ≤ |L|θ⊥| for all θ ∈ Sn−1,

|K | ≤ R
nωn−1

∫
Sn−1
|K ∩θ⊥|dθ

≤ R
nωn−1

∫
Sn−1
|L|θ⊥|dθ.

Cauchy’s surface area formula tells us that |∂L|= 1
ωn−1

∫
Sn−1 |L|θ⊥|dθ and

therefore

|K | ≤ R
n |∂L|.

Since rBn
2 ⊂ L, we have

|∂L|= liminf
ε→0

|L +εrBn
2 |− |L|

rε

≤ liminf
ε→0

|L(1+ε)|− |L|
rε = n|L|

r .

Therefore |K | ≤ R
r |L| as desired.
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Alternative estimate

Proposition
Our above assumptions also imply

|K | ≤ cL
1
2
K n

3
4

(R
r

) n
2n−1
|L|.

Proof.

Define the parallel section function AK ,θ(t) = |K ∩{θ⊥+ tθ}|.
By Fubini,

|K |=
∫ R

−R
AK ,θ(t)dt.

Since K is origin-symmetric, AK ,θ(t) is maximized for t = 0, and so

|K | ≤ 2R min
θ∈Sn−1

|K ∩θ⊥|

≤ 2R min
θ∈Sn−1

|L|θ⊥|

≤ cR
√

n|L|
n−1

n .
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Alternative estimate

Proof.
Milman and Pajor proved that

|K |
n−1

n ≤ cLK max
θ∈Sn−1

|K ∩θ⊥|.

Therefore,

|K |
n−1

n ≤ cLK max
θ∈Sn−1

|L|θ⊥|

≤ cLK |∂L|

≤ cLK n
r |L|.

Multiplying the two bounds gives

|K ||K |
n−1

n ≤ cLK Rn
3
2

r |L|
n−1

n |L|,

which implies

|K | ≤ cL
1
2
K n

3
4

(R
r

) n
2n−1
|L|.
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Projection for Measures

Definition
Given µ an absolutely continuous measure and K a convex body, we can define

Pµ,K (θ) = n
2

∫ 1

0
µ1(tK , [−θ,θ])dt,

where µ1(A,B) is the mixed µ−measure of A and B,

µ1(A,B) = liminf
ε→0

µ(A +εB)−µ(A)
ε

.

This is a natural generalization of the formula

|K |θ⊥|= 1
2 liminf

ε→0

|K +ε[−θ,θ]|− |K |
ε

for Lebesgue measure.
Livshyts introduced this notion and proved a version of the Shephard
problem for measures with a positive degree of concavity and homogeneity.
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Extension of Giannopoulos and Koldobsky’s result

Theorem
Let µ be a log-concave measure with continuous ray-decreasing g . Assume
that K ,L are origin-symmetric convex bodies in Rn such that

Pµ,K (θ)≤ µn−1(L∩θ⊥)

for all θ ∈ Sn−1. Let r > 0 be a fixed-parameter.
(a) If 1

eµ(rBn
2 )≤ µ(K)≤ µ(rBn

2 ), then

µ(K) log µ(rBn
2 )

µ(K) ≤ rω
1
n ‖g‖

1
n∞µ(L)

n−1
n .

(b) If µ(K)≤ 1
eµ(rBn

2 ), then

µ(K)≤
(

ernωn ‖g‖∞
µ(rBn

2 )

) 1
n−1

µ(L).
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Proof of the theorem: Preliminaries

Recall that a measure µ is log-concave if for all measurable K ,L and
λ ∈ [0,1] we have

µ((1−λ)K +λL)≥ µ(K)1−λµ(L)λ.

A function f is called log-concave if log f is concave. A measure with a
log-concave density is log-concave.

Definition
A density g : Rn→ [0,∞) is ray-decreasing if g(tx)≥ g(x) for all t ∈ [0,1] and
x ∈ Rn.
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Proof of the theorem: Preliminaries

Log-concave lemma
Let µ be a log-concave measure and E ,F be measurable sets. Then

µ1(E ,F )≥ µ1(E ,E) +µ(E) log µ(F )
µ(E) .

Ray-decreasing lemma
Let µ be a measure with a ray-decreasing density g .

If t ∈ [0,1] and K is measurable, µ(tK)≥ tnµ(K).
Moreover, we have the limits

lim
s→∞

µ1(sBn
1 ,Bn

2 )
µ(sBn

2 ) = 0, lim
s→0

µ1(sBn
2 ,Bn

2 )
µ(sBn

2 ) =∞.
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Proof of the theorem: Preliminaries

Theorem (Dann, Paouris, Pivovarov)

Let 1≤ k ≤ n−1 and f be a nonnegative, bounded, integrable function on Rn.
Then ∫

Gn,k

(∫
E f (x)dx

)n

‖f |E‖n−k
∞

dνn,k(E)≤
ωn

k
ωkn

(∫
Rn

f (x)dx
)k

.

‖f |E‖∞ is the L∞−norm of f restricted to the k−dimensional subspace
E .
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Proof of the theorem, Part (a)

Proof of (a).
For t ∈ [0,1] and s > 0 to be chosen later, the Log-concave lemma tells us
that

µ1(tK ,Bn
2 )≥ µ1(tK ,sBn

2 )

≥ µ1(tK , tK) +µ(tK) log µ(sBn
2 )

µ(tK)

= t d
dt µ(tK) +µ(tK) log µ(sBn

2 )
µ(tK) .

Integrate both sides in t from 0 to 1 to get

µ(K)≤ s
∫ 1

0
µ1(tK ,Bn

2 )dt +
∫ 1

0
µ(tK) log eµ(tK)

µ(sBn
2 ) dt.
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Proof of the theorem, Part (a)

Proof of (a).
Using Parseval’s formula on the sphere, an analog of the Cauchy surface
area formula for measures can be proven:∫ 1

0
µ1(tK ,Bn

2 )dt = 1
nωn−1

∫
Sn−1

Pµ,K (u)du.

Thus,

µ(K)≤ s
nωn−1

∫
Sn−1

Pµ,K (u)du +
∫ 1

0
µ(tK) log eµ(tK)

µ(sBn
2 ) dt
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Proof of the theorem, Part (a)

Proof of (a).

Using our assumption Pµ,K (θ)≤ µn−1(L∩θ⊥) along with Jensen’s
inequality, we have

1
nωn−1

∫
Sn−1

Pµ,K (u)du ≤ 1
nωn−1

∫
Sn−1

µn−1(L∩θ⊥)dθ

= ωn
ωn−1

∫
Sn−1

µn−1(L∩θ⊥)dσ(θ)

≤ ωn
ωn−1

(∫
Sn−1

µn−1(L∩θ⊥)ndσ(θ)
) 1

n

,

where σ(θ) = d θ
|Sn−1| is the normalized probability measure on the sphere.
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Proof of the theorem, Part (a)

Proof of (a).
By the theorem of Dann, Paouris, and Pivovarov, we write(∫

Sn−1
µn−1(L∩θ⊥)ndσ(θ)

) 1
n

=
(∫

Sn−1

(∫
θ⊥

g(x)χL(x)dx
)n

dσ(θ)
) 1

n

≤
(
‖g‖∞

ωn
n−1

ωn−1
n

) 1
n

µ(L)
n−1

n .

Therefore,

µ(K)≤ sω
1
nn ‖g‖

1
n∞µ(L)

n−1
n +

∫ 1

0
µ(tK) logeµ(tK)dt

+
(∫ 1

0
µ(tK)dt

)
log 1

µ(sBn
2 ) .
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Proof of the theorem, Part (a)

Proof of (a).
We now choose s to optimize the previous inequality, namely

µ1(sBn
2 ,Bn

2 )
µ(sBn

2 ) =
ω

1
nn ‖g‖

1
n∞µ(L)

n−1
n∫ 1

0 µ(tK)dt
.

This s is guaranteed to exist by the Ray-decreasing lemma.
With this choice of s and with r as in the statement of the theorem, we
may bound

log 1
µ(sBn

2 ) ≤
ω

1
nn ‖g‖

1
n∞µ(L)

n−1
n∫ 1

0 µ(tK)dt
(r − s)− logµ(rBn

2 )

using the Log-concave lemma.
Thus,

µ(K)≤ rω
1
nn ‖g‖

1
n∞µ(L)

n−1
n +

∫ 1

0
µ(tK) log eµ(tK)

µ(rBn
2 ) dt.
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Proof of the theorem, Part (a)

Proof of (a).
From Jensen’s inequality, we derive the bound

µ(K)≤ rω
1
nn ‖g‖

1
n∞µ(L)

n−1
n + logmax

(
1,
(

eµ(K)
µ(rBn

2 )

)µ(K)
)
.

Recall that the assumption of Part (a) is that µ(K)≥ 1
eµ(rBn

2 ).
Therefore,

µ(K) log µ(rBn
2 )

µ(K) ≤ rω
1
nn ‖g‖

1
n∞µ(L)

n−1
n ,

finishing the proof of Part (a).
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Proof of the theorem, Part (b)

Restatement of the theorem
Let µ be a log-concave measure with continuous ray-decreasing g . Assume
that K ,L are origin-symmetric convex bodies in Rn such that

Pµ,K (θ)≤ µn−1(L∩θ⊥)

for all θ ∈ Sn−1. Let r > 0 be a fixed-parameter.
(b) If µ(K)≤ 1

eµ(rBn
2 ), then

µ(K)≤
(

ernωn ‖g‖∞
µ(rBn

2 )

) 1
n−1

µ(L).

Proof of (b).

Since µ(K)≤ 1
eµ(rBn

2 ), for every t ∈ [0,1] there exists f (t) ∈ [0,1] such
that µ(rf (t)Bn

2 ) = eµ(tK).
Following the same setup as part (a), we have

µ(K)≤ r
∫ 1

0
f (t)µ1(tK ,Bn

2 ) +µ(tK) log eµ(tK)
µ(rf (t)Bn

2 )dt.
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Proof of the theorem, Part (b)

Proof of (b).
By the choice of f , this inequality becomes

µ(K)≤ r
∫ 1

0
f (t)µ1(tK ,Bn

2 )dt.

Moreover, by the Ray-decreasing lemma,

f (t)nµ(rBn
2 )≤ µ(rf (t)Bn

2 ) = eµ(tK)≤ eµ(K),

and so

µ(K)≤ r
(

eµ(K)
µ(rBn

2 )

) 1
n
∫ 1

0
µ1(tK ,Bn

2 )dt ≤ r
(

eµ(K)
µ(rBn

2 )

) 1
n

ω
1
nn ‖g‖

1
n∞µ(L)

n−1
n ,

which rearranges to

µ(K)≤
(

ernωn ‖g‖∞
µ(rBn

2 )

) 1
n−1

µ(L).
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Loomis-Whitney inequality

The Loomis-Whitney inequality states that if u1, ...,un form an
orthonormal basis of Rn and K is a convex body in Rn, then

|K |n−1 ≤
n∏

i=1
|K |u⊥i |,

with equality if and only if K is a box with faces parallel to the
hyperplanes u⊥i .
This was extended by Ball, who showed that u1, ...,um ∈ Rm and c1, ...,cm
are positive constants such that

m∑
i=1

ci ui ⊗ui = In,

then

|K |n−1 ≤
m∏

i=1
|K |u⊥i |ci .
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Positively concave and positively homogeneous measures

A function f : Rn→ [0,∞] is p−concave if f p is concave on the support of
f .
A function f : Rn→ [0,∞] is r−homogeneous if f (ax) = ar f (x) for all
a > 0 and x ∈ Rn.
We will be interested in functions g that are both s−concave for some
s > 0 and 1

p−homogeneous for some p > 0. Such functions will necessarily
be p−concave. Moreover, with the exception of the constant functions, all
such g will be supported on convex cones. E.g. g(x) = 1〈x ,θ〉>0〈x ,θ〉

1
p .

g̃(x) = g(x) + g(−x).
Measures with such densities were studied by Milman and Rotem.
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Positively concave and positively homogeneous measures

Lemma (Borell)

Let µ be a measure with a p−concave density g . Then, for q = 1
n+ 1

p
, µ is

q−concave, that is for measurable E ,F and λ ∈ [0,1] we have

µ(λE + (1−λ)F )≥ (λµ(E)q + (1−λ)µ(F )q)
1
q .

Moreover, by a change of variables, if µ has 1
p−homogeneous density, then

µ is 1
q−homogeneous, that is

µ(tE) = t
1
q µ(E)

for t > 0.

Johannes Hosle
On the Comparison of Measures of Convex Bodies via Projections and Sections



Extension of the Loomis-Whitney inequality

Theorem

Let µ be a measure with a p−concave, 1
p−homogeneous density g for some

p > 0. Then, for any convex body K and an orthonormal basis (ui )n
i=1 with

[−ui ,ui ]∩ supp(g) 6= ∅ for each 1≤ i ≤ n,

µ(K)n+ 1
p−1 ≤ 2n+ 1

p

(
1+ 1

pn

)n
( n∑

k=1

g̃p(uk)

)− 1
p n∏

i=1
Pµ,K (ui )

1+ g̃p (ui )

p
∑n

k=1
g̃p (uk )

.

Recall that Pµ,K (θ) = n
2
∫ 1

0 µ1(tK , [−θ,θ])dt.
We remark that a similar extension can also be proven for Ball’s inequality.
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Extension of the Loomis-Whitney inequality

Outline of the proof

Take the box Z =
∑n

i=1αi [−ui ,ui ] with αi = 1
Pµ,K (ui ) .

We use Minkowski’s first inequality (for q−concave measures) to write

µ(K)1−q ≤ qµ(Z)−qµ1(K ,Z) = 2µ(Z)−q.

Without loss of generality, ui ∈ supp(g) and g(−ui ) = 0 for all 1≤ i ≤ n.
Let us define Fi to be the face of Z orthogonal to and touching αi ui .
By homogeneity,

µ(Z) = q
n∑

i=1
αiµn−1(Fi ),

where µn−1(Fi ) denotes the integral of g over the (n−1)−dimensional set
Fi .
It remains to find an appropriate lower bound for µn−1(Fi ).
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Extension of the Loomis-Whitney inequality

Lemma
Let g ,µ,(ui )n

i=1,Fi be as above. Then,

µn−1(Fi )≥
(

pn
pn +1

)n(
1+ g̃p(ui )

p
∑n

k=1 g̃p(uk)

)( n∑
i=1

g̃p(ui )

) 1
p

×α−1
i

n∏
j=1

α

1+
g̃p (uj )

p
∑n

i=1
g̃p (ui )

j .
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Extension of the Loomis-Whitney inequality

Proof of lemma.
Without of loss of generality, we consider i = 1.
We begin by writing µn−1(F1) as an integral of g over F1, subdividing the
domain of integration, and using homogeneity:

µn−1(F1) :=
∫

v = α1u1 +
∑n

j=2
βj uj

|βj | ≤ αj

g(v)dv

=
∑

σ=(±1,...,±1)

∫ αn

0
...

∫ α2

0
g

(
α1u1 +

n∑
j=2

βjσ(j)uj

)
dβ2...dβn

=
∑

σ=(±1,...,±1)

∫ αn

0
...

∫ α2

0

(
α1 +

n∑
j=2

βj

) 1
p

×g

(
α1

α1 +
∑n

j=2βj
u1 +

n∑
j=2

βj
α1 +

∑n
j=2βj

σ(j)uj

)
dβ2...dβn.
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Extension of the Loomis-Whitney inequality

Proof of lemma.
Since ui ∈ supp(g) for 1≤ i ≤ n, we can only use concavity to estimate
from below the integral where σ is the identity permutation. This
accounts for the factor of 2n in the Theorem.
We have the inequality

µn−1(F1)≥
∫ αn

0
...

∫ α2

0

(
α1 +

n∑
j=2

βj

) 1
p

×g

(
α1

α1 +
∑n

j=2βj
u1 +

n∑
j=2

βj
α1 +

∑n
j=2βj

uj

)
dβ2...dβn.
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Extension of the Loomis-Whitney inequality

Proof of lemma.
By p-concavity of g ,

µn−1(F1)≥
∫ αn

0
...

∫ α2

0

(
α1 +

n∑
j=2

βj

) 1
p

×

(
α1

α1 +
∑n

j=2βj
gp(u1) +

n∑
j=2

βj
α1 +

∑n
j=2βj

gp(uj)

) 1
p

dβ2...dβn

=
∫ αn

0
...

∫ α2

0

(
α1gp(u1) +

n∑
j=2

βjgp(uj)

) 1
p

dβ2...dβn

=

( n∑
i=1

gp(ui )

) 1
p ∫ αn

0
..

∫ α2

0

(
α1

gp(u1)∑n
i=1 gp(ui )

+
n∑

j=2
βj

gp(uj)∑n
i=1 gp(ui )

) 1
p

dβ2..dβn.
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Extension of the Loomis-Whitney inequality

Proof of lemma.
From the arithmetic-mean geometric-mean inequality,

α1
gp(u1)∑n
i=1 gp(ui )

+
n∑

j=2
βj

gp(uj)∑n
i=1 gp(ui )

≥ α

gp (u1)∑n
i=1

gp (ui )

1

n∏
j=2

β

gp (uj )∑n
i=1

gp (ui )

j .

Substituting this product under the integral, evaluating, and applying one
more arithmetic-mean geometric-mean inequality, we conclude the proof of
the lemma and the theorem.
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Thanks for your attention!
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