
Singularity of random 0/1 matrices

Alexander Litvak

University of Alberta

based on a joint work with

K. Tikhomirov

BIRS, Banff, 2020

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 1 / 15



Random ±1 matrices

An old problem: Let B be an n× n random matrix with i.i.d. ±1 entries. What is

Pn := P {B is singular}?

Equivalently: Let X1,X2, . . . ,Xn be independent random vectors uniformly
distributed on the vertices of the n-dimensional cube [−1, 1]n.
What is the probability that the vectors are linearly dependent?

The trivial lower bound:

Pn ≥ P {Two rows/columns of B are equal up to a sign} ≥ (1− o(1)) 2n2 2−n.

A natural conjecture: This is the main reason for singularity.

Conjecture 1: Pn ≤ (1/2 + o(1))n
= 2−(1+o(1))n.

Conjecture 2: Pn ≤ (1+o(1)) 2n2 2−n.
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Known results

Komlós (67): Pn → 0.

Kahn, Komlós and Szemerédi (95): Pn ≤ 0.999n.

Tao–Vu (07): Pn ≤ (3/4 + o(1))n.

Bourgain–Vu–P.M. Wood (10): Pn ≤ (1/
√

2 + o(1))n.

K. Tikhomirov (20+): Pn ≤ (1/2 + o(1))n, solving Conjecture 1.
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Bernoulli random matrices

One can ask a similar question about Bernoulli 0/1 random matrices:

Let p ∈ (0, 1/2) and let Bp be an n× n random matrix with i.i.d. 0/1 random
variables taking value 1 with probability p. Note that Bp can be viewed as the
adjacency matrix of directed Erdős–Rényi graph — a random graph on n vertices
whose edges appear independently of others with probability p.
Question: What is

Pn := P {Bp is singular}?

Conjecture:

Pn = (1 + o(1))P {∃ a zero row or a zero column} = (1 + o(1)) 2n(1− p)n.

Geometrically the condition means that either ∃ a zero column or ∃ a coordinate
hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries):
Götze–A. Tikhomirov, Costello–Vu, Basak–Rudelson, Rudelson–K. Tikhomirov,
Tao–Vu,...
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Bernoulli random matrices

Theorem (Basak–Rudelson, 17)
Let p = p(n) ≥ (C ln n)/n. Then Pn ≤ exp(−cnp).

Moreover
P
{

sn(Bp) ≤ c t Cp,n

√
p/n
}
≤ t + exp(−cnp),

where Cp,n = exp(−C ln(1/p)/ ln(np)) and sn(M) = inf
|x|=1
|Mx|.

Remark. Note, if p ≤ (ln n)/n then P {∃ zero row} ≥ 1/2.

Problem. Prove the BR theorem with Cp,n = 1 (possibly with worse probability).

Theorem (K. Tikhomirov, 20+)
K. T. (20+): Let p ∈ (0, 1/2] (independent of n). Then Pn ≤ (1− p + o(1))n.

Moreover,

∀ε > 0 ∀n ≥ n(p, ε) : P
{

sn(Bp) ≤ t
√

p/n
}
≤ C(p, ε)t + (1− p + ε)n.
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Main result

Theorem (Basak–Rudelson, 20+)
Let p = p(n) ≤ (ln n)/n + o(ln ln n). Then Pn ≤ (1 + o(1)) 2n(1− p)n.

Moreover, if (ln n)/n ≤ p = p(n) ≤ (ln n)/n + o(ln ln n) then

P
{

sn(Bp) ≤ c t Cp,n

√
p/n
}
≤ t1/5 + (1 + o(1)) 2n(1− p)n.

Theorem (L–K.T.)
Let C(ln n)/n ≤ p ≤ c. Then Pn ≤ (1 + o(1)) 2n(1− p)n.

Moreover, P
{

sn(Bp) ≤ c t exp(−C ln2 n)
}
≤ t+(1+o(1)) 2n(1−p)n.

Remark. In the case p ≥ c0 we can can get sn(Bp) ≥ c1n−3 (with the “right” prob.)
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A related model: adjacency matrices of random d-regular
directed graphs on n vertices

Consider the set of n× n matrices with 0/1-entries and such that every row and every
column has exactly d ones and with uniform probability on this set.

In the case of
undirected graphs, matrices are additionally symmetric. We assume 3 ≤ d ≤ n/2.

Conjecture (Costello–Vu and Vu 08; Frieze and Vu, ICM talks 14)
Such a random matrix is non-singular with high probability (that is, P → 1 with n).

The conjecture was formulated in the symmetric setting, however it is natural to ask
the same question in the general setting as well (N.A. Cook, 14).

Remark 1. If d = 1 the matrix is a permutation matrix, hence invertible.
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d-regular model: singularity

In the Bernoulli setting the average number of 1 in every row and every column is pn.
Intuitively, two models (with d = pn) should be similar for d > C ln n (recall, if
d < ln n then random Bernoulli matrix has a zero row with probability at least 1/2).

Many works on this conjecture in the non-symmetric case (without quantitative
bounds on the smallest singular number):

N.A. Cook (14/17): for d ≥ C ln2 n.

Lytova–L–K. T.–Tomczak-Jaegermann–Youssef (15/16): for C < d ≤ C ln2 n.

Jiaoyang Huang (18/20+): solved the conjecture.

Mészaros (18/20+): solved the symmetric case for even n .

Nguyen–M.M.Wood (18/20+): another proof of 2 previous results.
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d-regular model: quantitative results.

None of previous works provides estimates on the smallest singular value.

Theorem (N.A. Cook, 17/19)
Let d > C ln11 n. Then the smallest singular number of M satisfies

P
(

sn > n−C(ln n)/ ln d
)
> 1− C ln5.5 n/

√
d.

Theorem (LLTTP, 17/19)
Let C < d < n/ ln2 n. Then

P
(

sn > n−6
)
> 1− C ln2 d/

√
d.

Problem. Show better bounds on sn, we expect the bound sn ≥ c
√

p/n = c
√

d/n.
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Some ideas of the proof.

It is well-understood by now that to deal with the smallest singular number one needs
to split Sn−1 into several parts and to work separately on each part.

This idea goes back to Kashin 77, where, in order obtain an orthogonal decomposition
of `n

1, he split the sphere into two classes according to the ratio of `n
1 and `n

2 norms. In
a similar context it was used by Schehtman 04.

Since we want to provide a lower bound on the smallest singular value of a random
matrix M, we need to show that |Mx| is not very small for all x ∈ Sn−1. Usually it is
done using the union bound — to prove a good probability bound for an individual
vector x and then to find a good net in order to apply approximation. The main point
is to have a good balance between the probability and the cardinality of a net.
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Some ideas of the proof.

But vectors behave differently. Consider the following example, let X = {εi}i be a
Bernoulli random vector with ±1 independent entries.

Then

〈X, e1 + e2〉 = ε1 + ε2 = 0 with probability 1/2.

On the other hand,

〈X,
∑

i

ei〉 =
∑

i

εi = 0 with probability at most 1/
√

n

by the Erdős–Littlewood–Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support,
so-called sparse vectors. However, the set of such vectors is essentially of lower
dimension, hence admit a very good net. This leads to splitting the sphere into
compressible vectors – those closed to sparse, and incompressible vectors – the rest.
For compressible vectors we have a net of small cardinality, therefore relatively poor
individual probability bounds work, while incompressible vectors are well spread and
therefore have very good anti-concentration properties. This approach was used in
L–Pajor–Rudelson–Tomczak-Jaegermann (05) for rectangular matrices and was later
developed in series of works by Rudelson–Vershynin.
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dimension, hence admit a very good net. This leads to splitting the sphere into
compressible vectors – those closed to sparse, and incompressible vectors – the rest.

For compressible vectors we have a net of small cardinality, therefore relatively poor
individual probability bounds work, while incompressible vectors are well spread and
therefore have very good anti-concentration properties. This approach was used in
L–Pajor–Rudelson–Tomczak-Jaegermann (05) for rectangular matrices and was later
developed in series of works by Rudelson–Vershynin.
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Some ideas of the proof.

For 0/1 matrices an additional problem is caused by constant vectors. Indeed, while
properly normalized centered random matrices (say with entries ±1) have norm of
order

√
n, the norm ‖Bp‖ ≈ pn.

Fortunately, this large norm is only in the direction of
1 = (1, 1, ..., 1). On the subspace orthogonal to 1 the norm is of the order

√
pn.

This leads to our splitting. The first class will be sparse vectors shifted by constants
vectors. The second class will be the remaining vectors.

For the first class standard anti-concentration technique together with methods
developed in LLTTY works, since the set is essentially of lower dimension (although
there are many cases).
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Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.

First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.

This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.

Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).

Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).

To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ ϕ(n/i) for a certain function ϕ
(we consider two functions ϕ(x) = (2x)3/2 and ϕ(x) = exp(ln2 n)).
3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.

Alexander Litvak (Univ. of Alberta) Singularity of random 0/1 matrices. BIRS, Banff, 2020 13 / 15



Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong
enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros,
to a random 0/1 vector with prescribed number of ones, say, with m ones, where
m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call
unstructuredness degree of a vector, and which is more directly related to the Esseen
lemma, used to prove an anti-concentration.

Next we have to prove a Littlewood–Offord type anti-concentration property for this
new parameter.

In particular, we extend the Littlewood–Offord theory to the case of dependent r.v.
(in our case — the coordinates of a vector with fixed number of ones).
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Unstructuredness degree

Recall the definition of Lévy concentration function:

L (ξ, t) = maxλ P (|ξ − λ| < t) .

Esseen Lemma (66):

L
( m∑

i=1
ξi, τ

)
≤ C′

1∫
−1

m∏
i=1
|E exp(2πiξis/τ)| ds.

For a finite integer subset S, let η[S] denotes a r.v. uniformly distributed on S. Then

UD(v,m,K) := sup
{

t > 0 :
1
N

∑
(S1,...,Sm)

t∫
−t

m∏
i=1

∣∣E exp
(
2πi vη[Si] m−1/2s

)∣∣ ds ≤ K
}
,

where the sum is taken over all sequences (Si)
m
i=1 of disjoint subsets S1, . . . , Sm ⊂ [n],

each of cardinality bn/mc, N is the number of such sequences, K ≥ 1 is a parameter.
We prove that for i.i.d. vectors Xi uniformly distributed on the set of vectors with
n− m zero coordinates and m coordinates equal to 1, for every t > 0

L
( n∑

i=1
viXi,
√

m t
)
≤ C

(
t + 1/UD(v,m,K)

)
.
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