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Tight embeddings of metric spaces in normed spaces

M = (M,d) a metric space. X = (X , ‖ · ‖) a normed space. We

say that M embeds into X with distortion C if there is a
f : M → X such that

d(x , y) ≤ ‖x − y‖ ≤ Cd(x , y), for all x , y ∈ M

The best C is denoted by CX (M).

We are interested in kC
n (X ) - The smallest k such that for all

S ⊂ X with |S| = n there is a subspace Y ⊂ X of dimension k
such that CY (S) ≤ C.

For most of this talk think of C = 2.
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Tight embeddings of metric spaces in normed spaces

There are very few results with some information on kC
n (X ). On

the positive side:

• X = `2: Johnson–Lindenstrauss (84): k2
n (`2) = O(log n).

(J–S and Larsen –Nelson (2017): k1+ε
n (`2) ≈ log n/ε2, as

ε→ 0.)

• Johnson–Naor (2009): There is another non-classical space
(2-convexified Tsirelson space) for which we have
k2

n (X ) = O(log n).
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Tight embeddings of metric spaces in normed spaces

On the negative side:

• Matoušek (96): For all n and C there is an n-point metric
space M such that if M embeds into a normed space Y with
distortion C, then dim Y ≥ nα/C . (α > 0 a universal constant).
So

kC
n (`∞) ≥ nα/C .

(Also, JLS (87): kC
n (`∞) ≤ nO(1/C).)

• Brinkman–Charikar (2003): For some universal α > 0,
k2

n (`1) ≥ nα.

(Best known bounds:

nα/C2 ≤ kC
n (`1) ≤ O(n/c).

The right hand side bound is due to Andoni,Naor,Neiman
(2017).)
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The trace class

The purpose of our result and this lecture is to add one more
such example: The trace class (AKA Schatten–von-Neumann
1, Nuclear norm).

Given a linear operator T : `2 → `2 define

‖T‖Sp = (trace(T ∗T )p/2)1/p = (
∑

(σi(T ))p)1/p

where σi(T ) are the singular values of T .

‖T‖S∞ = maxσi(T ) = operator norm,

‖T‖S2 = Hilbert–Schmidt norm,

‖T‖S1 = Trace class or Nuclear norm.
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The main result

Theorem
(Naor, Pisier, S. Just appeared online in DCG)

kC
n (S1) ≥ nα/C2

.

(α > 0 universal.)

Meaning: For all n there are n points in S1 such that if Y is a
subspace of S1 of dimension k into which these n points
embed with distortion C then k ≥ nα/C2

.
Note that `1 embeds with distortion 1 into S1 (as the set of
diagonal matrices). The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman–Charikar
result.)

Gideon Schechtman No good dimension reduction in the trace class norm



The main result

Theorem
(Naor, Pisier, S. Just appeared online in DCG)

kC
n (S1) ≥ nα/C2

.

(α > 0 universal.)

Meaning: For all n there are n points in S1 such that if Y is a
subspace of S1 of dimension k into which these n points
embed with distortion C then k ≥ nα/C2

.
Note that `1 embeds with distortion 1 into S1 (as the set of
diagonal matrices). The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman–Charikar
result.)

Gideon Schechtman No good dimension reduction in the trace class norm



The main result

Theorem
(Naor, Pisier, S. Just appeared online in DCG)

kC
n (S1) ≥ nα/C2

.

(α > 0 universal.)

Meaning: For all n there are n points in S1 such that if Y is a
subspace of S1 of dimension k into which these n points
embed with distortion C then k ≥ nα/C2

.
Note that `1 embeds with distortion 1 into S1 (as the set of
diagonal matrices). The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman–Charikar
result.)

Gideon Schechtman No good dimension reduction in the trace class norm



The main result

Theorem
(Naor, Pisier, S. Just appeared online in DCG)

kC
n (S1) ≥ nα/C2

.

(α > 0 universal.)

Meaning: For all n there are n points in S1 such that if Y is a
subspace of S1 of dimension k into which these n points
embed with distortion C then k ≥ nα/C2

.
Note that `1 embeds with distortion 1 into S1 (as the set of
diagonal matrices). The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman–Charikar
result.)

Gideon Schechtman No good dimension reduction in the trace class norm



The main result

Theorem
(Naor, Pisier, S. Just appeared online in DCG)

kC
n (S1) ≥ nα/C2

.

(α > 0 universal.)

Meaning: For all n there are n points in S1 such that if Y is a
subspace of S1 of dimension k into which these n points
embed with distortion C then k ≥ nα/C2

.
Note that `1 embeds with distortion 1 into S1 (as the set of
diagonal matrices). The bad sets we use are the same as
those used by Brinkman and Charikar - the diamond graphs.
(So our theorem is a strengthening of the Brinkman–Charikar
result.)

Gideon Schechtman No good dimension reduction in the trace class norm



Diamond

Figure: Diamonds D0,D1,D2
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Strategy of proof

The proof imitates a geometrical proof of the
Brinkman–Charikar theorem (due essentially to Lee and Naor
(2004)). It consists of two stages:

• Dn “doesn’t well embed" in Sp for p > 1. (With some precise
quantitative estimates).

• A k dimensional subspace of S1 is close to a natural
subspace of Sp and in particular "well embeds" in Sp. (Again
with a precise quantitative estimate).

The proof of the first • is very similar to a the one for `1 and
uses the estimates of the uniform convexity modulus of Sp,
1 < p < 2 (which are the same as for `p, 1 < p < 2).
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uniform convexity

The uniform convexity modulus of a normed space X is the
function

δX (ε) = inf{1− ‖x + y
2
‖ ; ‖x‖, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε}.

Figure: δX (ε)
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uniform convexity

Lemma
f : D1 :→ X,

d(x , y) ≤ ‖f (x)− f (y)‖ ≤ Md(x , y).

Then,

2 ≤ ‖f (top)− f (bottom)‖ ≤ 2M(1− δ(2/M)).
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uniform convexity

Proof:
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uniform convexity

Proof:

‖x − y‖ ≥ 2/M so ‖x+y
2 ‖ ≤ 1− δ(2/M).

Similarly, ‖ x+y
2 − f (top)/M‖ ≤ 1− δ(2/M)

so ‖f (bottom)/M − f (top)/M‖ ≤ 2(1− δ(2/M)).
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non embedding of Dn in Sp

Corollary
Let Mn be the least M such that there is f : Dn → X with

d(x , y) ≤ ‖f (x)− f (y)‖ ≤ Md(x , y).

Then
Mn−1 ≤ Mn(1− δX (2/Mn)).

From this one gets a lower bound on Mn in terms of δX .

δ`p (ε), δSp (ε) ≥ c(p − 1)ε2, 1 < p ≤ 2.

From this one gets, for X = `p, Sp

Mn ≥ (c(p − 1)n)1/2.

Which is what we meant by “Dn doesn’t well embed in Sp".
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diamonds and uniform convexity

A side issue:

It follows from the discussion above that the sequence {Di} do
not embed with a uniform distortion in any uniformly convex
normed space (and also not in any space isomorphic to a
uniform convex space)

Johnson and I (2009): This characterize spaces isomorphic to
uniformly convex spaces.
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embedding subspaces of S1 in Sp

We now deal with the second •:
• A k -dimensional subspace of S1 (resp. `1) "well embeds" in
Sp (resp. `p).

Here there is a difference between the cases of `p and Sp. For
`p a k-dimensional subspace of `1 embeds in `k̄1 with k̄ almost
linear in k (polynomial dependence is enough for us), and thus
embeds with distortion k̄1− 1

p in `k̄p.
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embedding subspaces of S1 in Sp

Problem:
Given k what is the order of the smallest m such that every
k -dimensional subspace of S1 2-embeds into Sm

1 ?

No polynomial bound is known. I conjecture that there is no
such bound. Some weak indication is in a recent result of
Regev and Vidick:

[RV]:
For some universal constant c > 0 and for all k there are
A1, . . . ,Ak in Sm

1 (with m = 2k/2) such that if {A1, . . . ,Ak}
embed in Sd

1 with distortion 1 + 1
kc then d ≥ m/2.
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embedding subspaces of S1 in Sp

Theorem
For each k and 1 < p ≤ 2, a k-dimensional subspace X of S1

embeds with distortion k1− 1
p into Sp. i.e., CSp (X ) ≤ k1− 1

p .

The main tool is a

Non-commutative Lewis’ lemma:
Let X be a k -dimensional subspace of S1. Then it admits a
basis T1, . . . ,Tk satisfying

trace
[

1
2

(T ∗i Tj + T ∗j Ti)M−1/2
]

= δi,j , for all i , j ∈ {1, . . . , k}.

M =
∑

s T ∗s Ts.
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Non-commutative Lewis’ lemma:
Let X be a k -dimensional subspace of S1. Then it admits a
basis T1, . . . ,Tk satisfying

trace
[

1
2

(T ∗i Tj + T ∗j Ti)M−1/2
]

= δi,j , for all i , j ∈ {1, . . . , k}.

M =
∑

s T ∗s Ts.
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Lewis’ Lemma

The (commutative) Lemma of Dan Lewis (70-s) says that

Lewis:
If X is a k -dimensional subspace of Lp(0,1) (or `p), then it
admits a basis f1, . . . , fk satisfying∫

fi fj(
∑

s

f 2
s )−1/2 = δi,j , for all i , j ∈ {1, . . . , k}.

This means that X is isometric to a subspace X̄ of an L1(µ) for
some probabiity µ, and X̄ admits an orthonormal basis {gi} with∑

i g2
i ≡ k . Then the identity map between X̄ with the L1(µ)

norm and X̄ with the Lp(µ) norm shows that CLp (X ) ≤ k1−1/p.
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Lewis’ Lemma

∫
fi fj(
∑

s

f 2
s )−1/2 =

∫
fi

(
∑

s f 2
s )1/2

fj
(
∑

s f 2
s )1/2

(
∑

s

f 2
s )1/2 = δi,j

The new measure and the isometry are given by “change of
density": dµ = 1

k (
∑

i f 2
i )1/2dx .

The isometry between X and X̄ is given by f → kf
(
∑

f 2
i )1/2 ,

and gi = k1/2fi
(
∑

f 2
l )1/2 . (So

∑
g2

i ≡ k .)

In S1 the situation is a bit different. The problem is that there is
no proper “change of density": trace(TM1/2) is not a norm
isometric to the S1 norm.

It turns out however that the map T → TM
p−1
2p gives a good

embedding of X into Sp.
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Stronger theorem

One can also use the less intuitive notion of “Markov convexity"
instead of uniform convexity and get a bit more:

“Improved Theorem"
For each n there is a set of n points in S1 (even `1) which are
“quotient of a subset" of a subspace X of S1 with distortion C
only if dim(X ) = nα/C2

. (α > 0 universal.)
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THE END
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