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Introduction Lower deviations

The problem

Let || - || be an arbitrary norm on R"; let G be a Gaussian vector. To provide
(dimensional) upper bounds for

P([G]| < OE[G]]), 4 € (0,1).
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Introduction Lower deviations

The problem

Let || - || be an arbitrary norm on R"; let G be a Gaussian vector. To provide
(dimensional) upper bounds for

P([G]| < OE[G]]), 4 € (0,1).
Why?

@ In most applications all that we need is to estimate the lower deviation of a
random variable.

@ Alternatively, the degenerate situation is almost unlikely to happen.

@ Given that these estimates exhibit very different (in fact better) behavior
than their upper analogues, there is a need to better understand the reasons
behind this phenomenon.

@ Discover the probabilistic principles to be exploited for obtaining finer
estimates.
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@ Small deviation (SDR): 1/2 < ¢ < 1.
@ Small ball (SBR): 0 < § < 1/2.
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Small ball estimates General bounds

Known results

o E|| G| < med(]|GJ|). (Latala)

o (Volumetric). If X = (R",|| - ||) and the unit ball Bx satisfies a reverse
Holder inequality, i.e. |Bx|'/"E||G| < K, for some positive K > 0,

P(||G|| < <E||G|)) < (CKe)", 0<e<1/2.
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Holder inequality, i.e. |Bx|'/"E||G| < K, for some positive K > 0,

P(||G|| < <E||G|)) < (CKe)", 0<e<1/2.

@ (Latala, Oleszkiewicz, '04) If k :== k(]| - ||) = L?QL(&“‘Z”)' then

P(|IGIl < €E[G)) < (Ce), 0<e<1/2.

@ (Klartag, Vershynin, '04) Linked small ball estimates with the one-sided
randomized Dvoretzky theorem; emphasized the role of the parameter

0<d<1, d(6)=d(G],d):=—logP(]|G] < dmed(]|G][)).
If0 <9 <1, then

d(8)—1/2
P(||G|| < emed(||G]|)) < ™79, 0<e <.
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Small ball estimates General bounds

Tools used:

@ (Cordéro-Erasquin, Fradelizi, Maurey, 04). B-inequality for the Gaussian
measure. The following map is concave

t—logP(]|G]| <€), teR,

@ (Sudakov, Tsirel'son, '74, Borell '75) Gaussian isoperimetry. For any
L-Lipschitz function f we have

P(f(G) <Ef(G)—tL) < e < t>0.

In particular, d = d(||G||,1/2) > c(E||G||)?/L>3.
A different type estimate:

@ (Paouris, V. '18) For any convex function f € Ly(,), one has

P(f(G) < Ef(G) — t/Var[f(G)]) < e, t>0.

Uses Gaussian convexity, namely Ehrhard's inequality.
In particular, d = d(||G||,1/2) > c(E||G||)?/Var(||G||).
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@ The (5-norm. Note that k(||G||2) =< n, hence

P(|Gll2 < 3E[G]2) < e™".

In particular
d(||G|l2,1/2) =< n.



Small ball estimates Examples

Some examples

@ The ¢5-norm. Note that k(||G||2) < n, hence

P(|IGll2 < 3E[IGll2) < ™"

In particular
d([|Gll2,1/2) < n.

® The (7 -norm. Note that k(|| G||o) < log n. If we use
Var[||G||so] < (log n)~* we obtain d(||G||ss,1/2) < (log n)?. However, one
has (by direct calculations)

P(||Gllso < OE|Gllo) < exp(—cn™<%), 0< 4§ <1/2.

In particular, d(||G||,d) > cnl—¢8®
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@ General norms.
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The role of linear (local) structure

@ General norms.

Given any norm || - || in R” how large can we make
_ Var[|G]]
palGl) = W?
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@ General norms.

Given any norm || - || in R” how large can we make

B(IGI) = W?

(Paouris, V. '18) For any norm || - || in R” there exists T € GL(n) such that
BUITG) < (log n) ™2 < B(]|Gll).

@ (Alon-Milman '85). For any normed space (R”, || - ||) there exists an
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The role of linear (local) structure

@ General norms.

Given any norm || - || in R” how large can we make
Var[[|G]]
palGl) = W?
(Paouris, V. '18) For any norm || - || in R” there exists T € GL(n) such that

BUITGI) < (log )2 < B([| G )-

@ (Alon-Milman '85). For any normed space (R”, || - ||) there exists an
m-dimensional subspace F, where m > e<V'°8" and

either d(F,¢5)<2 or d(F,(7)<2.

What does this say for Gaussian inequalities? There exists a T € GL(n) such
that d(|| TG|,1/2) > eVioen,
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Small ball estimates Questions

Q1: Why do we get sub-optimal bounds? Sub-optimal tools? No.

All aforementioned approaches share a common weakness: Use the SDR to obtain
estimates in the SBR.

Q2: How do we get better dimension-dependent bounds? The general approach
is as follows:

@ Prove a general distributional inequality in terms of geometric and
probabilistic parameters of the variable, e.g., Lipschitz constant, variance,
expectation,...

@ Select a good linear structure to optimize the parameters that dictate the
bound.

@ Exploit further the local structure.
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Small ball estimates New results

Dimension dependent bounds for general norms

Theorem (Paouris, Tikhomirov, V.)

Let || - || be any norm in R". We have the following:

o IfE|;||Gl| = E|0;||GIl| for all i,j = 1,...,n, then
d(G]l,8) > c(n/r?)1=<%", 0< 5 <1/2

where r is the unconditional constant of (R",|| - ).
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Small ball estimates New results

Dimension dependent bounds for general norms

Theorem (Paouris, Tikhomirov, V.)

Let || - || be any norm in R". We have the following:

o IfE|0i||G||| =E|9;||G||| for all i,j=1,...,n, then

d(G]l,8) > c(n/r?)1=<%", 0< 5 <1/2

where r is the unconditional constant of (R",|| - ).

An obstacle. It follows by works of Gordon-Lewis, Figiel-Kwapien-Pelczynski, and
Figiel-Johnson that there exist normed spaces with r > c+/n.

Theorem (cont'd)
@ In the general case, there exists T € GL(n) such that

d(| TG|,6) > en'/*=<", 0< 4 <1/2.
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@ A new distributional inequality.
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Ingredients of the proof

@ A new distributional inequality. Let f be a norm, let a; := E|0;f(G)| and set

n 2

L= ey
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Small ball estimates New results

Ingredients of the proof

@ A new distributional inequality. Let f be a norm, let a; := E|0;f(G)| and set
L:= (%f"n(:é;;. Then,
P(f(G) < 6Ef(G)) < exp(—cd*(1/L)' "), §€(0,1/2),
where 7(8) < 62.

@ Analytic and Probabilistic Tools.

e Smoothening via the Ornstein-Uhlenbeck semigroup. If f € Ly, then

P:f(x) =Ef(e 'x+V1—-e2G), xeR", t>0.

e P:f is convex, if f is convex.

e Var(P;f) decays exponentially fast along the flow.

e The decay depends on the superconcentration phenomenon
(Chatterjee).

e Apply the variance-sensitive concentration inequality.
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Thank you for your attention!
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