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Introduction Lower deviations

The problem

Let ‖ · ‖ be an arbitrary norm on Rn; let G be a Gaussian vector. To provide
(dimensional) upper bounds for

P(‖G‖ ≤ δE‖G‖), δ ∈ (0, 1).

Why?

In most applications all that we need is to estimate the lower deviation of a
random variable.

Alternatively, the degenerate situation is almost unlikely to happen.

Given that these estimates exhibit very different (in fact better) behavior
than their upper analogues, there is a need to better understand the reasons
behind this phenomenon.

Discover the probabilistic principles to be exploited for obtaining finer
estimates.
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Introduction Lower deviations

Two regimes

P(‖G‖ ≤ δE‖G‖), 0 < δ < 1.

Small deviation (SDR): 1/2 < δ < 1.

Small ball (SBR): 0 < δ < 1/2.
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Small ball estimates General bounds

Known results

E‖G‖ � med(‖G‖). (Latala)

(Volumetric). If X = (Rn, ‖ · ‖) and the unit ball BX satisfies a reverse
Hölder inequality, i.e. |BX |1/nE‖G‖ ≤ K , for some positive K > 0,

P(‖G‖ ≤ εE‖G‖) ≤ (CKε)n, 0 < ε < 1/2.

(Latala, Oleszkiewicz, ’04) If k := k(‖ · ‖) = E‖G‖2

Lip2(‖·‖) , then

P(‖G‖ ≤ εE‖G‖) ≤ (Cε)k , 0 < ε < 1/2.

(Klartag, Vershynin, ’04) Linked small ball estimates with the one-sided
randomized Dvoretzky theorem; emphasized the role of the parameter

0 < δ < 1, d(δ) = d(‖G‖, δ) := − logP(‖G‖ ≤ δmed(‖G‖)).

If 0 < δ < 1, then

P(‖G‖ ≤ εmed(‖G‖)) ≤ ε
d(δ)−1/2
log(1/δ) , 0 < ε < δ.
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Small ball estimates General bounds

Tools used:

(Cordéro-Erasquin, Fradelizi, Maurey, 04). B-inequality for the Gaussian
measure. The following map is concave

t 7→ logP(‖G‖ ≤ et), t ∈ R,

(Sudakov, Tsirel’son, ’74, Borell ’75) Gaussian isoperimetry. For any
L-Lipschitz function f we have

P(f (G ) ≤ Ef (G )− tL) ≤ e−ct
2

, t > 0.

In particular, d = d(‖G‖, 1/2) ≥ c(E‖G‖)2/L2.

A different type estimate:

(Paouris, V. ’18) For any convex function f ∈ L2(γn), one has

P(f (G ) ≤ Ef (G )− t
√

Var[f (G )]) ≤ e−ct
2

, t > 0.

Uses Gaussian convexity, namely Ehrhard’s inequality.

In particular, d = d(‖G‖, 1/2) ≥ c(E‖G‖)2/Var(‖G‖).
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(Cordéro-Erasquin, Fradelizi, Maurey, 04). B-inequality for the Gaussian
measure. The following map is concave

t 7→ logP(‖G‖ ≤ et), t ∈ R,

(Sudakov, Tsirel’son, ’74, Borell ’75) Gaussian isoperimetry. For any
L-Lipschitz function f we have

P(f (G ) ≤ Ef (G )− tL) ≤ e−ct
2

, t > 0.

In particular, d = d(‖G‖, 1/2) ≥ c(E‖G‖)2/L2.

A different type estimate:

(Paouris, V. ’18) For any convex function f ∈ L2(γn), one has

P(f (G ) ≤ Ef (G )− t
√

Var[f (G )]) ≤ e−ct
2

, t > 0.

Uses Gaussian convexity, namely Ehrhard’s inequality.

In particular, d = d(‖G‖, 1/2) ≥ c(E‖G‖)2/Var(‖G‖).

P. Valettas (University of Missouri) Lower deviations Banff, February 11, 2020 5 / 11



Small ball estimates General bounds

Tools used:
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Small ball estimates Examples

Some examples

The `n2-norm. Note that k(‖G‖2) � n, hence

P(‖G‖2 ≤ 1
2E‖G‖2) ≤ e−cn.

In particular
d(‖G‖2, 1/2) � n.

The `n∞-norm. Note that k(‖G‖∞) � log n. If we use
Var[‖G‖∞] � (log n)−1 we obtain d(‖G‖∞, 1/2) � (log n)2. However, one
has (by direct calculations)

P(‖G‖∞ ≤ δE‖G‖∞) ≤ exp(−cn1−cδ2

), 0 < δ < 1/2.

In particular, d(‖G‖∞, δ) ≥ cn1−cδ2

.
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Small ball estimates Examples

The role of linear (local) structure

General norms.

Given any norm ‖ · ‖ in Rn how large can we make

β(‖G‖) :=
Var[‖G‖]
(E‖G‖)2

?

(Paouris, V. ’18) For any norm ‖ · ‖ in Rn there exists T ∈ GL(n) such that

β(‖TG‖) . (log n)−2 � β(‖G‖∞).

(Alon-Milman ’85). For any normed space (Rn, ‖ · ‖) there exists an

m-dimensional subspace F , where m ≥ ec
√

log n and

either d(F , `m2 ) ≤ 2 or d(F , `m∞) ≤ 2.

What does this say for Gaussian inequalities? There exists a T ∈ GL(n) such

that d(‖TG‖, 1/2) ≥ ec
√

log n.
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Small ball estimates Questions

Q1: Why do we get sub-optimal bounds?

Sub-optimal tools? No.

All aforementioned approaches share a common weakness: Use the SDR to obtain
estimates in the SBR.

Q2: How do we get better dimension-dependent bounds? The general approach
is as follows:

Prove a general distributional inequality in terms of geometric and
probabilistic parameters of the variable, e.g., Lipschitz constant, variance,
expectation,...

Select a good linear structure to optimize the parameters that dictate the
bound.

Exploit further the local structure.
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bound.

Exploit further the local structure.
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Small ball estimates New results

Dimension dependent bounds for general norms

Theorem (Paouris, Tikhomirov, V.)

Let ‖ · ‖ be any norm in Rn. We have the following:

If E|∂i‖G‖| = E|∂j‖G‖| for all i , j = 1, . . . , n, then

d(‖G‖, δ) ≥ c(n/r2)1−cδ2

, 0 < δ < 1/2,

where r is the unconditional constant of (Rn, ‖ · ‖).

An obstacle. It follows by works of Gordon-Lewis, Figiel-Kwapien-Pelczynski, and
Figiel-Johnson that there exist normed spaces with r ≥ c

√
n.

Theorem (cont’d)

In the general case, there exists T ∈ GL(n) such that

d(‖TG‖, δ) ≥ cn1/4−cδ2

, 0 < δ < 1/2.
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Small ball estimates New results

Ingredients of the proof

A new distributional inequality.

Let f be a norm, let ai := E|∂i f (G )| and set

L :=
∑n

i=1 a
2
i

(Ef (G))2 . Then,

P(f (G ) ≤ δEf (G )) ≤ exp(−cδ2(1/L)1−τ(δ)), δ ∈ (0, 1/2),

where τ(δ) � δ2.

Analytic and Probabilistic Tools.

Smoothening via the Ornstein-Uhlenbeck semigroup. If f ∈ L1, then

Pt f (x) := Ef (e−tx +
√

1− e−2tG ), x ∈ Rn, t ≥ 0.

Pt f is convex, if f is convex.
Var(Pt f ) decays exponentially fast along the flow.
The decay depends on the superconcentration phenomenon
(Chatterjee).
Apply the variance-sensitive concentration inequality.
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The end

Thank you for your attention!
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