Constraint convex bodies with maximal affine
surface area

(based on joint work with O. Giladi, H. Huang and C. Schiitt)
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Question:  Can we get continuous affine invariants?
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For 0 < p<ooor —oco < p< —n, we get for polytopes P,

isp(K) < P|21;< asp(P) = 0.

For —n < p <0,

isp(K) < inf (asp(eB5)) = n|B3| ir;fs”ﬁ =0

eBICK
° Similarly: the only interesting p-range is
ISp: [0,n] OSp: [n,00] osp: (—n,0]

. 1So(K) = oso(K) = n|K|,  ISp(K) = OSy(K) = n|Bj|
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° Affine Invariance
° Affine-isoperimetric inequalities
Lemma

» For0 < p <n, K— ISy(K) is continuous in the Hausdorff
metric

» Forn < p < oo, K— OS,(K) is continuous in the Hausdorff
metric

» For —n < p <0, K — osp(K) is continuous in the Hausdorff
metric
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For the relevant p-ranges

inner and outer maximal affine surface areas

ISp(K) = ggﬁ’( (asp(C)) = max (asp(C)) = asp(Ko)

0Sp(K) = ggﬁ’( (as5(C)) = Jax (asp(C)) = asp(Ko)

outer minimal affine surface areas

0sp(K) (asp(C)) = min (as,(C)) = asp(Ko)

= inf
COK COK

What can be said about K;?
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1. Ky related to parabolic arcs
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Theorem (Baranyi)
For every convex body K in R? and every ¢ > 0
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1
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2. Ky is the limit shape of lattice polygones
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Goal: Give estimates on the “size” of IS,(K), OSy(K), osp(K) in
all dimensions, for all relevant p

isotropy constant Lk

1
nL2 = min {W/ HXszX ac Rn, T c GL(”)}
n Jat+TK

Theorem (Giladi+Huang+Schiitt+W)

There is a constant ¢ > O such that forall ne N, all 0 < p<n
and all convex bodies K C R”",

1 <> ISp(BS) _ 1S5(K) _ 1S,(BS)
N A L =
Equality holds trivially in the right inequality if p = 0, n. If

p # 0, n, equality holds in the right inequality iff K is a centered
ellipsoid.
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Proof of RHS: L, affine isoperimetric inequality
(Lutwak, Hug, Deping Ye+W)

K] mie
asp(K) < asp(B7) =
B
with equality iff K is an ellipsoid
BY n—p
ISp(K) = maxasp(C) < infp) max |C|"+S

CCcK - ‘an|m CcK



2np

IN

1 (L \" 1S,(BE) _ ISy(K) _ ISp(BY)
n5/6 E n—p

”% B n+ ”%
|By | e |K|»te |By| e




2np
R <c> IS,(BS) _ 1S5(K) _ 1S(B5)
P8 Nk Bl T K| (Bg|

Proof of LHS: We use
Thin Shell Theorem (Paouris; Guédon+E.Milman)
There are constants 0 < ¢; < ¢ < 1 such that for all convex

bodies K in R" in isotropic position

1
‘{X € K: C1LKﬁ < HXH < CQLKﬁH > 5



