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<& ). convex bodies containing the origin o.
& S {x € R": |x| =1} = OB", the unit sphere in R".
< For K € t%/(g):
4+ Support function hy : S"1 — R,

hx(u) = ma}%((x, u) for each ue S™ 1.
x€

4+ Radial function px : $"! — R,

pr(u) =max{\: Au€ K}, foreach ue S
4 Polar body:

K'={xeR": (x,y) <1 forall yeK}e7q.
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Convex bodies

Iy (u)

Figure: Support function, radial function and Gauss map
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Convex bodies
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Figure: Polar body
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Aleksandrov body

For f € CT(Q) (positive continuous function on ), the Aleksandrov body (Wulff
shape) associated with f is

[fl= () {x €R": (x,u) < F(u)} € 47, Qc S

ueQ
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Surface area measure

< The inverse Gauss map v, *(-) : S"* — 0K,
viet(n) == {x € 0K : vk(x) € n}

for any Borel set n C S"1L.

< "1 n— 1 dimensional Hausdorff measure.

Surface area measure

For a convex body K € Ji/(g) the surface area measure S(K, ) is
S(K,m) = 27w (),
for any Borel set n C S"1.

< Volume:  V(K) =1 [o, 1 hx(u)dS(K,u) =% [6, 1 pi(u)"du.
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Characterization of S(K, )

The classical Minkowski problem

For a given nonzero finite Borel measure ;2 on S"~!, what are the necessary and
sufficient conditions on p such that = S(K, ) for some K € Hoy?

Solution to the Minkowski problem

A Borel measure 1 on S"1is S(K,-) for some K € Koy iff i has centroid at the
origin and is not concentrated on a great hemisphere. Moreover, K is unique up to
translations.

<> Discrete measure: Minkowski, 1897, 1903.
<> General measure: Aleksandrov, 1938, 1939; Fenchel-Jessen, 1938.
<> Applications: to establish the Affine Sobolev inequality.
< Monge-Ampere type equation:
f =det (V2h+ hl).
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Necessary condition

<> A measure p is not concentrated on any closed hemisphere if

/ (u,v)y du(u) >0 for any v € S"1,
Sn—1

where a; = max{a, 0} for a € R.
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<> A measure p is not concentrated on any closed hemisphere if

/ (u,v)y du(u) >0 for any v € S"° 1,
Sn—1

where a; = max{a, 0} for a € R.

<> This condition for measure 4 is necessary to solve the classical Minkowski problem
and its extensions, since it guarantees convex sets to be bounded (and hence
compact).

Figure: Support of p on the plane
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there exist a K € ,%/(Z) such that for some constant 7 > 0,

B= T¢(hK)5(K7 )?

& ¢(t) = t17P: L, Minkowski problem (Lutwak, 1993).
< Extreme problem: inf < [s, 1 o(hq(u)) du(u): V(Q)= V(B"),Q € Koy (7

<> Orlicz surface area measure ¢ (hix) S(K, -) derives from a variation formula of
volume in terms of the Aleksandrov body of the Orlicz addition:

o(t) =1/¢/(t), feu) = ¢ (0 (hk(u)) + eg(u)).

<> Contributions: Haberl-Lutwak-Yang-Zhang, 2010; Huang-He, 2012; Li, 2014
Wu-Xi-Leng, 2018; Sun-Long, 2015; Sun-Zhang, 2018; Sun, 2018, etc.
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<& 11 (0,00) — (0,00) is continuous,
& G(t,u):(0,00) x S™1 — (0, 0) is continuous,
& G(t,u) = 0G(t,u)/0t : (0,00) x S"1 — R is integrable on S"~1.

The general dual Orlicz curvature measure (Gardner-Hug-Weil-Xing-Ye, CVPDE,

2019)

For K € Jf(g) and Borel set n C S"7 1, the general dual Orlicz curvature measure
Cow(K,-) is defined as

= _1 pr(u) Ge(pk(u),u)
CG,Q[)(Ka’r]) ) fa;‘(('r]) Kw(hK(aK’Eu))) du'

+ C~'G’¢ is a finite signed Borel measure;
4 Cg,y is weakly convergent in terms of the Hausdorff metric;
4 Cg .y is not concentrated on any closed hemisphere;

+ Cg,y is absolutely continuous to S(K|, ), etc. 10/26



Uniqueness under certain conditions

Let G : (0,00) x $"1 — (0,00) and ¥ : (0,00) — (0, 00) be continuous. Suppose
that G; > 0 (or G; < 0) on (0,00) x S"~! and that if

Ge(t, u) < AGy(At, u) Ge(t, u) < AGi(\t, u)
P(s) — P(hs) P(s) = P(ds)

for some \,s,t >0and u € S then A\> 1. If K,K' € e%/(g) are both polytopes or

both have support functions in C? and

, respectively) (1)

(or

E:./G,’l/)(l{a ) - EG,’IZJ(Kla ')7

then
K=K
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The general dual Orlicz-Minkowski problem (Gardner-Hug-Weil-Xing-Ye, CVPDE,

2019)

For which nonzero finite Borel measures 1. on S"~! and continuous functions
G :(0,00) x S"1 — (0,00) and 1 : (0,00) — (0,00), do there exist 7 € R and
K e (Z) such that

w=r EG7w(K, )?
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2019)

For which nonzero finite Borel measures 1. on S"~! and continuous functions
G :(0,00) x S"1 — (0,00) and 1 : (0,00) — (0,00), do there exist 7 € R and
K e ,%/(”) such that

=T EG,l/J(Kv )?

& u) = [ p(ru)r"™tdr: p=1Cyy(K.)? (Xing-Ye, IUMJ, 2019)

S tGe(t,) = p(t), () =1 p= Tap(K, -)? (Zhu-Xing-Ye, JGA, 2018; Liu-Lu,
2020)

> tG(t,-) = t9, Y(t) = tP: Cpq( -)? (Lutwak-Yang-Zhang, ADV, 2019)

<>

tG(t,-) =t"(t) = w(t): (hk)pw = S(K,-)? (Orlicz-Minkowski problem)
& tGe(t,)) = 1,9(t) = tP: dp = pldJ(K,v)? (L, Aleksandrov problem)
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Monge-Ampere type equation

Vh: gradient vector of h, w.r.t. an orthonormal frame on S"1;

V2h: Hessian matrix of h w.r.t. an orthonormal frame on S"1;

t: the identity map on S"1;

I: the identity matrix.
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Vh: gradient vector of h, w.r.t. an orthonormal frame on sn—L.

V2h: Hessian matrix of h w.r.t. an orthonormal frame on S"1;

v: the identity map on S"1;

I: the identity matrix.

The corresponding equivalent Monge-Ampére type equation for this general dual
Orlicz-Minkowski problem states that for given G, 1, and f : S"~1 — [0, 00), an
h:S"1 - (0,00) and T € R,

Th
yoh

where P(x) = |x|'7"G:(|x|, %), X = x/|x|.

f= P(Vh+ hi) det(V2h + hi), 2)
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Variation formula to derive Cg 4(K, )
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Variation formula to derive Ctg_,,‘(K, )
< Orlicz addition: For t¢/(t) = ¢(t), K € Koy 8€C (§"1) and € > 0,
f.(u) = ¢ 1 (o (h(u)) + eg(u)) forall ue St

< The general dual volume:

Ve(K) = /5'1_1 G(pk(u),u) du.

+ G(t,u)= [~ gi)(ru~)r"*1dr: Ve (K) = Vy(K).
+ G(t,u) = p(t) - Ve(K) = Vio(K).

+ G(t,u)=L1t9: V5(K) = V,(K).

+ G(t,u)=Lt": Vg(K) = V(K).
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Variation formula to derive C; (K, -)
< Orlicz addition: For t¢/(t) = ¢(t), K € Koy 8€C (§"1) and € > 0,
f.(u) = ¢ 1 (o (h(u)) + eg(u)) forall ue St
< The general dual volume:

Va(k) = [ Glow(u). ) da

S d(ru)rtdr : Vo(K) = Viy(K).
o(t) : Vo(K) = Vy(K).
Ju) = 17 Vo(K) = Vy(K).
+ G(t,u)=1t": Vg(K) = V(K).

Variation formula

i Ve UED) = Vo(K)
e—0 €

<

i

4+ G(t,u) =
+ G(t,u) =
+ G(t,u) =

= n/ g(u)d(.fgw(K, u).
Q
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Solution to the case for G(t,-) decreasing
<> p: not concentrated on any closed hemisphere as ;1 = TEG’l/,(K, )< 7S(K, ).
< G

4+ G and G; are continuous and G; < 0 on (0,00) x S"~1.
4 For0<ep<1l,veS" 1 0<e<epand L. (v)={ueS"1:(uv)>ce}

t—04 t— 00

Iim/ G(t,u)du =00 and Iim/ G(t,u)du=0.
Yo (v) gn—1

< 1 (0,00) — (0,00) is continuous and satisfies foo 7#55) ds =

Under the conditions above, there exists a convex body K € Jif(g) such that

p__CeulK)
u(S"Y) Cou(K,S5m1)
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<> p: not concentrated on any closed hemisphere as ;1 = TEG’l/,(K, )< 7S(K, ).
< G

4+ G and G; are continuous and G; < 0 on (0,00) x S"~1.
4 For0<ep<1l,veS" 1 0<e<epand L. (v)={ueS"1:(uv)>ce}

t—04 t— 00

Iim/ G(t,u)du =00 and Iim/ G(t,u)du=0.
Yo (v) gn—1

< 1 (0,00) — (0,00) is continuous and satisfies foo 7#55) ds =

Under the conditions above, there exists a convex body K € Jif(g) such that

p__CeulK)
u(S"Y) Cou(K,S5m1)

S p=tP, G=1t% p=0,q9 <0, our results recover Zhao's result.
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<> Step 1: (Condition for G)
For {Ki}:2; C H o) satisfying \7(;(K,-) = ||, there exists a constant R > 0 such
that K* C RB".
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<> Step 1: (Condition for G)

For {Ki}:2; C Ji/(g) satisfying \7G(K,~) = |u|, there exists a constant R > 0 such
that K C RB".

<> Step 2: (Condition for 1 and ¢ (¢))
Based on Blaschke selection theorem, there exists a convex body Ky € t%/(g) such

that Vg (Ko) = |u| and

[ ottanante) =sun { [ olbeo)dn(o): Velk) = lnl K € 53 }.

<> Step 3: (Variation formula)

The convex body Ky found in Step 2 is a solution of the dual Orlicz- Minkowski
problem, i.e.,

peoo Co(Ko,-)

,U«(Sn_l) 5@71/, (Ko,S”fl)'
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E c S" ! is defined by
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Cou(KE) = 3 Jag(B\n(k.0) “Shlart@) 9Y:
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The general dual Orlicz curvature measure Cg

< 1 1 [0,00) — [0, 00) is continuous with (t) > 0 for t > 0,
& G(t,u) :[0,00) x S™1 — [0,00) is continuous,
& Ge(t,u) = 0G(t,u)/0t : [0,00) x S""1 — R is integrable on S"~ 1.

The general dual Orlicz curvature measure (Gardner-Hug-Xing-Ye, CVPDE, 2020)

The general Orlicz curvature measure 5G7¢(K, -) for K € %" and any Borel set
E c S" ! is defined by

~ 1 Pk (u) Gr(pk(u),u)
Cou(KE) = 3 Jag(B\n(k.0) “Shlart@) 9Y:

+ (.~"G7¢(K, -) for K € J# satisfies similar properties as K € Ji/(g)
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Normal cone

4 Normal cone:
N(K,o)={y e R": (y,x) <0 forall x € K}.
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Normal cone

4 Normal cone:
N(K,o) ={y e R": (y,x) <0 forall x € K}.
4 Support cone:
N(K,o0)* = {xeR":(x,y) <0 forally € N(K,o0)}
c{Ix:x € K and A > 0}.
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Normal cone

4 Normal cone:
N(K,o)={y e R": (y,x) <0 forall x € K}.

4 Support cone:
N(K,0)" = {xeR":(x,y) <0 forally e N(K,o0)}
= c{Ax:x € K and A > 0}.

Figure: Normal cone and support cone of a convex body
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Reverse radial Gauss image
® Radial function for K (o € 0K):

() [F0 fuesTIN(K o),
u
PR >0 ifue ST nintN(K, o).
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Reverse radial Gauss image
¢ Radial function for K (o € 0K):

=0 ifue S\ N(K,o),
pk(u) . bl .
>0 ifueS" NintN(K,o)*.
® Reverse radial Gauss image:

ai (E\N(K,0)) = ak(E)nN(K,o)".
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Reverse radial Gauss image
® Radial function for K (o € 0K):

=0 ifue S\ N(K,o),
pr(u) . o .
>0 ifueS" NintN(K,o)*.

® Reverse radial Gauss image:
ay (E\N(K,0)) = ax(E)NN(K,o)"

e st
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Main methods

<> Steps 1 — 3 fail in the case when both G and ) are increasing, since it is difficult
to show K € ,}if(g)
<> The proof is based on the approximation:

i (general) «— K € 2" (convex body)

i) fr
pj (discrete) <— Pj € () (convex polytope)

<> Multivariable optimization problem: finding z° = (z{), . ,2,91) € M with

M = {(21,..., € [0,00) ZA,@ z;) Z)\,wp(l)}
i=1

such that Vg (P (29)) = max{VG(P(z)) Lz € I\/I} , where
P(z) ={x e R": (x,uj) <z, fori=1,...,m}.

20/26



Contradiction

Py =Mcics{z € R?: (wi,w;) < =i}
Py

{z1=22=0,23,24,25 > 0.}

‘7@(P2) > 17@(P0)A A contradiction!

Based on condition of G and ¢, we have P, € M and

Ve(P) = \ZG(Pz\P1)+\ZG(P1)
> VG(Po\P1)+VG(P1)

= Ve(Py) (assumed maximum).

Main point: Perturbation of height.
® P\ Py : with height o~ 1(p(z) — Ap(t));
® Py\P; : with height t.
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Discrete solution with o in the interior

S =3T3 N0y Ai>0,i=1...,m and {uv1,...,um} C S$"=1 not contained in
a closed hemisphere.
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Discrete solution with o in the interior

S ou=3"T Ny A\ >0,i=1,...,m, and {u1,...,um} C S not contained in
a closed hemisphere.
& G :[0,00) x "1 — [0, 00) is continuous satisfying
4 G;>0o0n[0,00) x S"71,

4 tGy(t,u) is continuous on [0,00) x S"! where tG,(t,u) =0 at t = 0 for u € S"71.

<& 1 :]0,00) — [0, 00) is continuous satisfying

/OO ¥ls) ds=o00 and lim ¥(t)/t =0.
1

S t—0+
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Then there exist a convex polytope P € Ji/(g) and 7 < 0 such that

p=1Cey(P,) and |hel

pe = L.
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Discrete solution with o in the interior

S =3T3 N0y Ai>0,i=1...,m and {uv1,...,um} C S$"=1 not contained in
a closed hemisphere.
& G :[0,00) x "1 — [0, 00) is continuous satisfying
4 G;>0o0n[0,00) x S"71,
4+ tG(t,u) is continuous on [0,0) x S"1 where tG,(t,u) =0 at t = 0 for u € S"~ 1.
<& 1 :]0,00) — [0, 00) is continuous satisfying

/loo Y05) 4 — o6 and Jim (t)/t=0.

S

Then there exist a convex polytope P € Ji/(g) and 7 < 0 such that

p=1Cey(P,) and |hel

pe = L.

Ak ll g := inf {A >0: m[sn_l © (hKT(”)> du(u) < 1} .
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4 : a nonzero finite Borel measure on S"~! not concentrated on any closed
hemisphere.
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Solution to the case for G(t,-) increasing

4 : a nonzero finite Borel measure on S"~! not concentrated on any closed
hemisphere.
& G :]0,00) x "1 — [0, 00) is continuous satisfying
4 G, >0on0,00) x S"°1,
4 tG,(t,u) is continuous on [0,00) x S"~! where tG,(t,u) =0at t =0 for u € S"° 1.
<& 1) :]0,00) — [0, 00) is continuous satisfying

/w@dSZoo and lim ¥(t)/t=0.
1

S t—0+

Under the conditions above, there exists a K € 7. with intK # () such that

6:G(K7 )

= ([ vl dute) s
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<> Considering u to be discrete has the following advantages: to transfer the
optimization problem on functions into a multivariate optimization problem; and
can obtain more information on the solutions must be polytopes, such as the
origin lie in the interiors; etc.
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<> Considering u to be discrete has the following advantages: to transfer the
optimization problem on functions into a multivariate optimization problem; and
can obtain more information on the solutions must be polytopes, such as the
origin lie in the interiors; etc.

S Y=tP,G=1t9% p>1,4g<0, our results recover the solution of Béroczky and
Fodor's result.
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Solution to the even case for G(t,-) increasing
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Solution to the even case for G(t,-) increasing

4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed
hemisphere.

25 /26



Solution to the even case for G(t,-) increasing
4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed

hemisphere.
¢ G :[0,00) x S"71 — [0,00) is continuous satisfying

25 /26



Solution to the even case for G(t,-) increasing

4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed

hemisphere.
& G :[0,00) x S"71 — [0,00) is continuous satisfying
4 G, >0on [0,00) x "1,

25 /26



Solution to the even case for G(t,-) increasing

4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed
hemisphere.
& G :[0,00) x S"71 — [0,00) is continuous satisfying
4 G;>0o0n[0,00) x S"71,
+ Gi(t,u) = Gi(t, —u) for (t,u) € (0,00) x S"1

25 /26



Solution to the even case for G(t,-) increasing

4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed
hemisphere.
& G :[0,00) x S"71 — [0,00) is continuous satisfying
4 G;>0o0n[0,00) x S"71,
+ Gi(t,u) = Gi(t, —u) for (t,u) € (0,00) x S"1
4+ tG(t,u) is continuous on [0,00) x S"1 where tG,(t,u) =0 at t =0 for u € S" 1.

25 /26



Solution to the even case for G(t,-) increasing

4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed
hemisphere.
& G :[0,00) x "1 — [0, 00) is continuous satisfying
4 G;>0o0n[0,00) x S"71,
+ Gi(t,u) = Gi(t, —u) for (t,u) € (0,00) x S"1
4+ tG(t,u) is continuous on [0,00) x S"1 where tG,(t,u) =0 at t =0 for u € S" 1.
< 1 [0,00) — [0, 00) is continuous satisfying

/loo Y(s) ds = oo and tir& ¥(t)/t=0.

S

25 /26



Solution to the even case for G(t,-) increasing

4 : a nonzero finite even Borel measure on S"~! not concentrated on any closed

hemisphere.
& G :[0,00) x "1 — [0, 00) is continuous satisfying
4 G;>0o0n[0,00) x S"71,
+ Gi(t,u) = Gi(t, —u) for (t,u) € (0,00) x S"1
4+ tG(t,u) is continuous on [0,00) x S"1 where tG,(t,u) =0 at t =0 for u € S" 1.
< 1 [0,00) — [0, 00) is continuous satisfying

/loo Y(s) ds = oo and tir61+ ¥(t)/t=0.

S

Under the conditions above, there exists a K & Jif(g)s (symmetric convex bodies) with
intK = ) such that

EG(K7 )

i = ([ viamoante)) =80
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Thank you very much!!!



