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1 Overview of the Field
All living things, from the simplest bacteria to human beings, are made of cells. Fundamental understanding
of living systems, both in health and in disease, depends on understanding the complex interactions among
and within living cells. Multiple scientific disciplines have separately shed light on the problems of commu-
nication and organization in living systems. Biochemistry, bioinformatics and systems biology describe the
basic ingredients of cells: DNA, RNA, proteins, lipids, and their interactions. Information theory, founded by
Claude Shannon, provides a framework for quantifying the flow of information through any communications
system, whether living or engineered (or both, as in the rapidly growing field of synthetic biology). Statistical
thermodynamics, the branch of physics concerned with transformations among different forms of energy as
well as with the physics of information, sets fundamental limits on the energetic price cells must pay for the
information they sense (from each other, from the environment, and from their own DNA).

In the last five years, significant advances in statistical thermodynamics and the information theory of bi-
ological systems have set the stage for a deeper understanding of how cells process and organize information,
make decisions, predict the future, and learn from the past. An essential link between these traditionally dis-
parate fields is the language of mathematics, which provides a common framework within which researchers
can understand each other across disciplines. The workshop on Mathematical Models in Biology: from
Information Theory to Thermodynamics was planned to bring together leading experts and aspiring junior
researchers from systems biology, statistical physics, information theory, and applied mathematics to develop
the fundamental, linking ideas, to compare recent advances in their fields, and to establish new collaborations.

Stochastic Thermodynamics. The principles of classical thermodynamics have been established since the
19th century, including foundational notions such as the conservation of energy in its many forms (kinetic
energy; gravitational and electrical potential energy; enthalpy U of chemical reactions; work), absolute tem-
perature T , Boltzmann’s entropy S, and Gibb’s free energy G = U − TS. Boltzmann famously had his
entropy formula S = k logW engraved as his epitaph, where k is Boltzmann’s constant and W denotes
Wahrscheinlichkeit, or probability. Decades later, Claude Shannon put the theory of communication systems
on a firm mathematical basis by establishing the entropy H = −

∑
i pi log pi as the quantitative measure of

information of a source producing the ith symbol with probability pi. The formal similarity between the phys-
ical entropy S and Shannon’s information measure H has spurred volumes of research aiming to elucidate
their shared significance (if any). Particularly within theoretical biology, at the cellular or subcellular level,
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one confronts processes that are naturally described one the one hand by the laws of chemistry, physics, and
thermodynamics, and at the same time appear to function as teleological systems performing information-
processing functions, e.g. communication, sensing, learning, or decision-making. The goal of the workshop
was to advance interdisciplinary communication in this area.

2 Recent Developments and Open Problems
The last fifteen years have seen rapid advancement in the area of stochastic thermodynamics, led by the work
of U. Seifert, cf. [Seifert (2008), Seifert (2019)], which provides the most promising intellectual framework
yet for the analysis of information processing at cellular and subcellular scales within biology. Stochastic
thermodynamics provides two conceptual advantages that are particularly relevant to biology: (i) It allows for
a self-consistent thermodynamic description of arbitrarily small systems coupled to a thermal environment,
for example individual biomolecules in solution. This is in contrast to conventional thermodynamics, which
typically assumes both system and environment are macroscopic. (ii) It assigns thermodynamic quantities
like entropy, work, and energy to individual time trajectories of a system. These trajectory-based defini-
tions agree with the traditional ensemble-based definitions in the macroscopic limit, but they also reveal new
physics: a variety of so-called “fluctuation theorems” that have been discovered over the last two decades.
These theorems, which have been experimentally validated in biophysical systems, effectively generalize the
second law of thermodynamics. They represent the most significant addition to our understanding of classical
thermodynamics since the work of Boltzmann, Gibbs, and Maxwell in the 19th century. However the full
implications of this novel physics for biological function, particularly information processing, are still being
explored. The workshop provided a broad overview of the topic (through the opening talk of Udo Seifert),
and in the subsequent talks illustrated the diverse applications of these ideas in biological systems.

3 Presentation Highlights
The workshop schedule, abbreviated to accommodate the online format, comprised five scientific talks (fol-
lowed by ample time for discussion) and a virtual poster session.

3.1 Talk 1. Udo Seifert: From Stochastic Thermodynamics to Thermodynamic In-
ference

Udo Seifert (Univ. Stuttgart) set the stage by introducing stochastic thermodynamics, which apply to systems
in which non-equilibrium is caused by mechanical or chemical forces, ambient solution provides a thermal
bath of well-defined temperature T and chemical potential µi, and fluctuations are relevant due to small num-
bers of involved molecules [Collin et al (2005)]. He asked whether the same principles of thermodynamics
that apply to the heat engines of the 19th century apply to molecular motors such as the F1-ATPase rotor. The
main idea, Seifert urged, is to take energy conservation and entropy production seriously along the individual
trajectories [Seifert (2008)].

The setting for stochastic thermodynamics, reviewed in [Seifert (2012)], begins with a closed equilibrium
system in contact with a thermal reservoir at fixed temperature T ≡ β−1, nominally described by an ensemble
of microstates ξ with energy H(ξ). At equilibrium, state ξ occurs with probability peq(ξ) = e−βH(ξ)/Z,
normalized by the partition function Z =

∑
ξ e
−βH(ξ). The (mean) internal energy U =

∑
ξ peq(ξ)H(ξ), the

entropy S =
∑
ξ peq(ξ) ln(1/peq), and the free energy F = U − TS are given by the classic thermodynamic

relations F = −β−1 lnZ, U = ∂β(βF ), and S = β2∂βF. Thus peq(ξ) = exp(−β(H(ξ)− F )).
One typically does not observe the system in a way that resolves individual microstates, but rather makes

coarse-grained observations of an observable giving an ensemble of mesoscopic states {I}, with each mi-
crostate belonging to exactly one mesostate, ξ ∈ I . One can define the free energy F (I), internal energy
U(I) and entropy S(I) for mesoscopic states in terms of the conditional probabilities peq(ξ | I). By observ-
ing long trajectories I(t;β) at slightly different inverse temperatures β, one can estimate thermodynamic
quantities associated with particular mesoscopic observables from experimental data. If the equilibration of
the microstates within each mesostate is fast compared to the transition times between mesostates, then one
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can recover an effective thermodynamics (first and second law) at the mesoscopic level. Along a stochas-
tic mesoscopic trajectory I(t) one has (stochastically) fluctuating quantities e.g. U(I(t)). Starting from an
out-of-equilibrium initial probability distribution, p0(I) 6= peq(I), one can compute the total entropy pro-
duction, the heat dissipation, and the stochastic entropy production by comparing forward and (fictitious)
backward-in-time trajectories. In order to consider driven systems, such as chemically driven molecular
motors performing work against an applied load, one embeds the system of interest in a closed “super-
system” which is then partitioned into a core system and a connected reservoir. In this setting one may
describe a nonequilibrium steady-state (NESS) for which the probability distribution of total entropy pro-
duction obeys a detailed fluctuation theorem. One can further coarse grain the mesostates into functionally
distinct macrostates, equipped under certain conditions with a notion of nonequilibrium entropy production
[Seifert (2019)]. Thermodynamic inference then refers to extracting information about hidden states from
the observable trajectories that would otherwise remain inaccessible, without application of the stochastic
thermodynamic framework. Finally, thermodynamic uncertainty relations established within the stochastic
thermodynamic framework allow one to put bounds on the energetic cost necessary for accurate timekeeping
at the molecular level [Barato and Seifert (2016)].

3.2 Talk 2. Sarah Harvey: An Energy-Accuracy Tradeoff in Nonequilibrium Cellu-
lar Sensing

Building on the framework reviewed in Seifert’s talk, Sarah Harvey addressed the question of the relationship
between entropy production and measurement precision in chemical networks, when the network functions
to estimate the concentration of a chemical signal [Harvey et al (2020)]. This question goes back to classical
work of [Berg and Purcell (1977)] that was revisited in an ideal observer framework in [Endres and Wingreen (2009)],
and studied as an information theoretic problem in [Thomas and Eckford (2016)]. Exploiting the stochastic
thermodynamics framework and large deviation theory, Harvey derived two theoretical bounds on the un-
certainty of a sensor modeled as a continuous-time Markov process, in different limits of what is observ-
able about the process. The Cramèr-Rao bound for an ideal observer gives var(ĉ)/c2 ≥ 1/N , where N
is the expected number of binding events in a fixed observation time Tobs, c is the concentration that is to
be estimated, and ĉ is the estimate. In contrast, the “coarse-grained” bound for a simple observer gives
var(ĉ)/c2 ≥ 8/(TobsΣ

π + 4N), where Σπ is the entropy production rate. In particular, Harvey showed
there is no advantage to endowing the signal transduction network with additional states beyond “bound” and
“unbound”.

3.3 Talk 3. Massimiliano Esposito: Thermodynamics of Biochemical Reaction Net-
works: Information, Accuracy and Speed

Massimiliano Esposito began by reviewing deterministic aspects of open chemical reaction networks (CRNs).
As in Seifert’s description of a “supersystem” in which a “core system” and a “reservoir” are embedded, an
open CRN allows for exchange of energy and matter with its surroundings. Objects used in network analysis
of chemical reaction systems such as the stoichiometry matrix naturally partition into components defined by
the core/reservoir distinction, leading to versions of the first and second law of thermodynamics adapted to
this setting [Rao and Esposito (2016)]. The topology of the CRN and any resulting conservation laws impact
the entropy production, thus even for models of deterministic chemical reaction systems, thermodynamics
and information are fundamentally related to one another. These observations lead to a relation between
the relative entropy and the minimum work needed to generate a nonequilibrium distribution, starting from
equilibrium (which equals the maximum work that could be extracted from that nonequilibrium distribution
as the system approaches equilibrium) [Falasco et al (2018)]. One can analyze open chemical systems as
thermodynamic machines and design systems for self-assembly [Penocchio et al (2019)]. This framework
allows one to assess the cost, accuracy and speed of various cellular operations, such as energy transduction
from molecular motors to metabolism, and the cost of cellular information processing and computation.

Bridging from the deterministic to the stochastic thermodynamic setting, Esposito observed that the un-
derlying structure of thermodynamics carries over unchanged, with thermodynamic entropy becoming the
Shannon entropy of the probability of species abundances, and with entropy production satisfying a fluc-
tuation relation [Rao and Esposito (2018)]. In some cases the stochastic and deterministic descriptions are



4

equivalent, for instance when the CRN is linear, or when a CRN with a network deficiency is at steady state.
In general, however, strict equivalence is not satisfied. Finally, in order to rigorously treat energetic and in-
formation processing constraints on biological systems beyond the subcellular level, detailed accounting of
energetic would be required, which remains a daunting challenge [Esposito (2020)].

3.4 Talk 4. Thomas Ouldridge: Non-Equilibrium Thermodynamics of Catalytic In-
formation Processing

A catalytic information processing system (as introduced in Seifert’s talk) is a communication system in
which the state of a receiver (e.g. a receptor protein) is “copied” to the state of a readout molecule, without
consuming or altering the receiver. Examples include cell surface receptors, but also DNA (the DNA molecule
is not consumed or altered in the process of transcription) and RNA (RNA’s involvedment in translation may
be considered catalytic). As a hallmark of catalytic information processing, the effect of the input persists
beyond the timescale of the substrate/catalyst interaction. This extended persistence effect can be exploited
for signal amplification, signal splitting, time integration, and modularity. [Ouldridge (2018)]

However, catalytic molecular systems are challenging to design and build. In thermodynamic terms, one
considers two distinct macrostates m and m′ (as in Seifert’s formulation) each containing several microstates
y ∈ m, y′ ∈ m′. The probability of the microstate p(m), which indicates how farm is removed from equilib-
rium, is the key quantity to consider, along with the generalized free energyG[p(m)] = U [p(m)]−TS[p(m)].
Information transfer from the input signal to the output signal requires occupation of macrostates far from
equilibrium. In contrast to recent feats of nanoengineering involving specification of equilibrium states
(e.g. self-assembly of molecular structures), producing specific non-equilibrium states remains remarkably
difficult. As Ouldridge explained: the reason there are very few examples of synthetically engineered cat-
alytic information processing systems (despite the nanoengineering field’s track record of success with self-
assembly) is that in principle they require strong, selectively-attractive interactions that can be disrupted
later, when no longer needed. To address these problems, Ouldridge and colleagues have investigated ways
to optimize enzymatic catalysts for rapid turnover of substrates, with low enzyme sequestration; results were
published in [Deshpande and Ouldridge (2020)].

3.5 Talk 5. Ilka Bischofs: Information Processing by Bacterial Quorum Sensing
Systems

Signal transduction in bacteria provides important examples of communications systems at the level of sin-
gle cells and, in the case of quorum sensing, populations of cells. Quorum sensing allows the bacteria
in a colony to communicate, via secretion and detection of autoinducer molecules, in order to undertake
collective actions that individual bacteria could not accomplish alone. Examples include production of bi-
oluminescence that provides a symbiotic advantage to a multicellular host organism such as the angler fish
[Nealson and Hastings (1979)], formation of biofilms, induction of virulence factors, initiation of sporula-
tion, production of antibiotics to suppress competing, and many other actions [Miller and Bassler (2001),
Mukherjee and Bassler (2019)].

Bischoffs described the commonly observed one-component signaling systems, of which the lac operon
is a canonical example, and the less common two-component system, of which histidine kinase signaling
or cheA signaling in chemotaxis are well studied examples, provide instances of “catalytic information pro-
cessing” in the sense discussed by Ouldridge earlier in the workshop. Auto-inducer systems involved in
quorum sensing provide another class of examples. Auto-inducer systems are commonly thought to be de-
tecting population density, triggering a population-level response when the density exceeds some thresh-
old. Specific examples of have been reported as early as 1964 in gram-positive pneumococcus bacteria (an
activator-inhibitor system regulating competence for genetic transfer [Tomasz and Hotchkiss (1964)]) and
1970 in gram-negative bacteria [Nealson et al. (1970)].

Quorum sensing systems exhibit a variety of network architectures, often (but not always) involving posi-
tive feedback loops. Recent work has emphasized the importance of adopting a modular view of quorum sens-
ing systems, representing encoding and decoding as two distinct aspects [Drees et al (2014)]. In the majority
of previous work in quorum sensing, bacterial populations are conceived as homogeneous, and synchronized
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in their response to changes in population density. In contrast, Bischof’s recent work has emphasized hetero-
geneous and heterochronous aspects of quorum-sensing populations and responses [Bettenworth et al (2019)]
as well as a novel pump-probe model of ratiometric population sensing [Babel et al (2020)].

4 Scientific Progress Made
Given the reduced scope of the workshop, and the lack of opportunities for informal face-to-face conver-
sations (on the trail up Tunnel Mountain, for example) the organizers did not expect to report immediate
significant scientific advances. However, as one of the few conferences devoted solely to exploring the im-
plications of stochastic thermodynamics in biological systems, the workshop served as a meeting ground for
researchers in this area, and started new conversations. Several participants reported following up with new
contacts initiated through the workshop. As one participant (V. Klika) wrote “taking part in the workshop
has finally pushed me to carry out an idea I had for many years now – the effect of kinetic energy density on
reaction-diffusion model when derived via non-equilibrium thermodynamics.”

5 Outcome of the Meeting
The original organizers of 20w5074 planned to coordinate a special issue of the journal Biological Cyber-
netics on the topic of “Information Theory and Thermodynamics in Biology” in conjunction with the BIRS
workshop.

Following the onset of the coronavirus pandemic, two of the original three co-organizers resigned from
organization of the conference, and were replaced with new co-organizers. The workshop was reorganized on
a smaller scale with five talks and a poster session spread over three days. The planned special issue attracted
only four submissions; as of the submission of this report one paper was published as part of a regular issue
of the journal [Deshpande and Ouldridge (2020)], one paper was rejected, one is being revised by its authors,
and one remains under review.

On the positive side, the online format allowed for greater participation in the workshop than the in-person
format would have allowed. Over 60 participants attended each session of the online workshop. One of the
speakers (Seifert, a leading figure in the field) had previously declined to participate because of being unable
to travel, but was able to give the keynote talk remotely.
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