(Non-)optimal point sets for numerical integration

based on joint work with D. Krieg and F. Pillichshammer

Mathias Sonnleitner

2020-10-02

The problem setting

 $D\dots$ some bounded domain in \mathbb{R}^d , a manifold, etc.

 $\mu\dots$ (absolutely continuous to) the uniform measure on D

 $\mathcal{F}(D)$... a set of bounded functions on D

Given $P = \{x_1, \dots, x_n\} \subset D$ approximate $\int_D f(x) \mathrm{d}\mu(x)$ for every $f \in \mathcal{F}(D)$ by a linear algorithm using $f(x_1), \dots, f(x_n)$.

Worst-case error of algorithm with weights $w = (w_1, \dots, w_n)$:

$$e(P, w, \mathcal{F}(D)) := \sup_{f \in \mathcal{F}(D)} \left| \sum_{i=1}^{n} w_i f(x_i) - \int_D f(x) d\mu(x) \right|.$$

Quality of P can be e.g. $e(P, \mathbf{1/n}, \mathcal{F}(D))$ or

$$e(P, \mathcal{F}(D)) := \inf_{w \in \mathbb{R}^n} e(P, w, \mathcal{F}(D)).$$

Example: Discrepancy on \mathbb{S}^d

 $D \dots \mathbb{S}^d$, unit sphere of \mathbb{R}^{d+1}

 $\mu \dots \sigma$, normalized surface measure on \mathbb{S}^d

$$\mathcal{F}(D)\dots \{\mathbf{1}_C: C\in \mathcal{C}_d\}$$
, where $\mathbf{1}_C$ are indicators of caps

$$\mathcal{C}_d = \left\{ C(z,t) = \left\{ x \in \mathbb{S}^d : x \cdot z \ge t \right\} : z \in \mathbb{S}^d, t \in [-1,1] \right\}$$

Worst-case error of a linear algorithm is weighted discrepancy:

$$e(P, w, \mathcal{F}(D)) = \sup_{C \in \mathcal{C}_d} \left| \sum_{i=1}^n w_i \mathbf{1}_C(x_i) - \int_{\mathbb{S}^d} \mathbf{1}_C(x) d\sigma(x) \right|$$

Spherical cap discrepancy is $D(P, C_d) := e(P, 1/n, \mathcal{F}(D))$.

Questions and Motivation

- ▶ How good is optimal? That is find g(n) such that $\inf_{\#P=n} D(P, \mathcal{C}_d) \approx g(n)$ or $\inf_{\#P=n} e(P, \mathcal{F}(D)) \approx g(n)$.
- How to find (near-)optimal (weighted) points?
- How to find optimal weights?

Describe the quality of rather general P in terms of "easy to analyze" geometric quantities.

A sum of distances

$$\mathcal{F}(D) \dots B(W_2^{(d+1)/2}(\mathbb{S}^d))$$
, the unit ball of $W_2^{(d+1)/2}(\mathbb{S}^d)$ (Sobolev space of smoothness $(d+1)/2$)

J. S. Brauchart, J. Dick, 2013

For every finite $P \subset \mathbb{S}^d$ we have

$$\sup_{f \in B(W_2^{(d+1)/2}(\mathbb{S}^d)))} \left| \frac{1}{n} \sum_{i=1}^n f(x_i) - \int_{\mathbb{S}^d} f(x) d\sigma(x) \right|$$

$$=$$

$$c_d \left(\int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|x - y\|_2 d\sigma(x) d\sigma(y) - \frac{1}{n^2} \sum_{i,j=1}^n \|x_i - x_j\|_2 \right)^{1/2}$$

Integration of Sobolev functions

 $D\dots$ a bounded convex domain in \mathbb{R}^d and $\mu\dots$ Lebesgue measure $\mathcal{F}(D)\dots B\big(W_p^s(D)\big)$, the unit ball of $W_p^s(D)$

If $P = \{x_1, \dots, x_n\} \subset D$, the distance function returns for $x \in \mathbb{R}^d$

$$dist(x, P) = \min_{1 \le i \le n} ||x - x_i||_2.$$

Theorem (D. Krieg, MS, 2020)

Let $1 \le p \le \infty$, $1/p + 1/p^* = 1$ and s > d/p. For any finite $P \subset D$

$$e(P, B(W_p^s(D))) \approx \begin{cases} \|\operatorname{dist}(\cdot, P)\|_{L_{\infty}(D)}^s & \text{if } p = 1, \\ \|\operatorname{dist}(\cdot, P)\|_{L_{sn^*}(D)}^s & \text{if } p > 1. \end{cases}$$

The quantization problem

Let X be a random vector in \mathbb{R}^d with distribution μ and $r \geq 1$.

Minimize among $f:\mathbb{R}^d \to \mathbb{R}^d$ measurable with $\#f(\mathbb{R}^d) \leq n$

$$\mathbb{E} \|X - f(X)\|_2^r$$

Minimize among point sets with $\#P \leq n$

$$\int_{\mathbb{R}^d} \operatorname{dist}(x, P)^r d\mu(x) = \|\operatorname{dist}(\cdot, P)\|_{L_r(\mu)}^r.$$

Theorem 2: " sp^* -Quantization error of $P \simeq e(P, B(W_p^s(D)))$ "

Application: random points

Let X_1, X_2, \ldots be i.i.d. uniform on D and $P_n = \{X_1, \ldots, X_n\}$.

$$\mathbb{E} \| \operatorname{dist}(\cdot, P_n) \|_{L_{\gamma}(D)} \approx \begin{cases} n^{-1/d} & \text{if } 0 < \gamma < \infty, \\ n^{-1/d} (\log n)^{1/d} & \text{if } \gamma = \infty. \end{cases}$$

Corollary 1

Random points are asymptotically optimal for weighted numerical integration in $W_p^s(D)$ iff p>1.

Open questions

Say D = [0,1] and $0 < x_0 < x_1 < \cdots < x_n < x_{n+1} = 1$. Then we have a discretization of the form

$$\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}([0,1])}^{\gamma} \asymp \sum_{i=0}^{n} |x_{i+1} - x_i|^{\gamma+1}.$$

- Discrete version in higher dimensions?
- ► Characterization for $e(P, \mathbf{1/n}, B(W_p^s(D)))$?
- ▶ Relation of $\|\operatorname{dist}(\cdot, P)\|_{L_{\gamma}(D)}$ to (weighted) discrepancy?