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Abstract

Multi-omics hackathon studies illustrate standards and
computational challenges in cell biology

Single-cell multimodal omics has claimed the title of method of the year only six years after single-cell
sequencing [1], demonstrating the rapid pace of technological development in biology. Multi-omics
technologies provide a unique opportunity to characterize cellular systems at both the spatial and
molecular level. While each high-throughput measurement technology can resolve speci�c biological
scales, complementary data integration techniques can reveal multi-scale interactions between
modalities. While advances in multi-omics have coincided with the formation of tremendous new data
resources and atlas-based initiatives to characterize biological systems, computational techniques and
benchmarking strategies to integrate these datasets remains an active area of research.

To determine the optimal methods and new developments required to analyze multi-modal data
e�ectively, we selected hackathon studies focused on data integration for the Mathematical
Frameworks for Integrative Analysis of Emerging Biological Data Workshop. The �rst challenge
included spatial molecular pro�ling. While this technology is rapidly emerging, it often provides lower
molecular resolution than its non-spatial counterparts. Integration strategies that merge spatial and
omics datasets have the promise to enhance the molecular resolution of spatially resolved pro�ling.
Thus, we designed a hackathon using spatially resolved transcriptional data from seqFISH with
corresponding non-spatial single-cell pro�ling data from the mouse visual cortex [2]. The second
challenge dealt with the limited availability of tissue to obtain multiple measurements in samples
from identical conditions, raising the question as to whether information can be transferred from
datasets between distinct sample cohorts. Therefore, we designed the second hackathon to contain
two triple-negative breast cancer cohorts pro�led with single-cell proteomics pro�ling from mass
cytometry (CyTOF) [4] and spatial in-situ proteomics from Multiplexed Ion Beam Imaging (MIBI) [5]. In
contrast to the previous challenges, the third challenge presented data at di�erent molecular scales
but from the same cells to investigate how genetic and epigenetic alterations to DNA drive the
transcriptional regulation underlying cellular state transitions. Our third hackathon was designed with
scNMT-seq data to obtain concurrent DNA methylation, chromatin accessibility, and RNA expression
from the same cells to delineate the regulatory networks that underlie mouse gastrulation [6].

Altogether, the analysis approaches employed to address these hackathons provide a unique
opportunity to identify technology-speci�c challenges and unifying themes across disparate biological
contexts, which are essential to e�ectively leverage multi-omics datasets for new biological
knowledge. This article presents the study-speci�c and common challenges faced during this
workshop. We provide guidelines and articulate the needs of technologies, data, tools, and
computational methods to model the multi-scale regulatory processes of biological systems.

scRNA-seq + seqFISH as a case study for spatial transcriptomics

Overview and biological question

The �rst hackathon aimed to leverage the complementary strengths of sequencing and imaging-
based single-cell transcriptomic pro�ling by using computational techniques to integrate scRNA-seq
and seqFISH data in the mouse visual cortex. While single cells are considered the smallest units and
building blocks of each tissue, they still require proper spatial and structural three-dimensional
organization in order to assemble into a functional tissue that can exert its physiological function. In



the last decade, single-cell RNA-seq (scRNA-seq) has played a key role in capturing single-cell gene
expression pro�les, allowing us to map di�erent cell types and states in whole organisms. Despite this
remarkable achievement, this technology is based on cellular dissociation and hence does not
maintain spatial relationships between single cells. Emerging technologies can now pro�le the
transcriptome of single cells within their original environment, o�ering the possibility to examine how
gene expression is in�uenced by cell-to-cell interactions and how it is spatially organized. One such
approach is sequential single-molecule �uorescence in situ hybridization (seqFISH [7]), which can
identify single molecules at (sub)cellular resolution with high sensitivity.

In contrast with scRNA-seq, seqFISH and many other spatial transcriptomic technologies often pose
signi�cant technological challenges, resulting in a small number of pro�led genes per cell (10-100s).
The newer generation of seqFISH technology (called seqFISH+ [9]) has dramatically enhanced its
capacity to pro�le up to 10,000 genes, but this technology is more complex and costly than seqFISH.

New computational approaches are needed to integrate scRNA-seq and seqFISH data e�ectively. This
�rst hackathon provided seqFISH and scRNA-seq data corresponding to the mouse visual cortex ([3],
[2]) and our participants were challenged to accurately identify cell types. The scRNA-seq data
included transcriptional pro�les at a high molecular resolution whereas the seqFISH data provided
spatial characterization at a lower molecular resolution. Two key computational challenges were
identi�ed to enable high-resolution spatial molecular resolution. First, we explored several strategies
to identify the most likely cell types in the seqFISH dataset based on information obtained from the
scRNA-seq dataset. Second, we sought to transfer spatial information obtained from the seqFISH
dataset to that of the scRNA-seq dataset. Cell type labels were derived from scRNA-seq analysis [2]
and previous seqFISH/scRNA-seq integration [3] were also provided as reference. Data were
preprocessed by the organizers and consisted in 113 matching genes between the scRNA-seq dataset
and the seqFISH dataset, with 1723 cells for the scRNA-seq data and 1597 cells for the seqFISH data.

Figure 1:

Caption Figure: Overview of seqFISH and scRNA-seq integration analysis. A. Assessment of cell
type prediction using di�erent data normalizations and classi�ers. Normalization strategies included
none (raw), counts per million (cpm), ComBat batch correction applied to cpm (cpm_combat), scRNA-



seq and seqFISH scaled using the �rst eigenvalue (cpm_eigen), latent variables retained for both
datasets after applying Partial Least Squares regression to cpm_eigen normalized data (cpm_pls).
Classi�ers approaches included a supervised multinomial classi�er with elastic net penalty (enet), a
semi-supervised multinomial classi�er with elastic net penalty (ssenet) and Support Vector Machine
(SVM, supervised). Each classi�er was trained using the scRNA-seq data and the known (provided) cell
type labels, then predicted the cell type labels in the seqFISH data; for the SVM predictions from the
original study were used (Challenge 1). Gower distance between each method-normalization pair is
depicted on a multidimensional scaling plot. The �rst dimension (x-axis) separates methods that
normalize the scRNA-seq and seqFISH data together (dashed) and separately (solid), showing that
normalization had a stronger impact on cell type predictions than the classi�cation method used. B.
SVM classi�cation models with di�erent C parameters were trained with di�erent number of genes in
scRNA-seq data using Recursive Feature Elimination (RFE) to evaluate the minimal number of genes
required for data integration. The results show that a smaller gene list than what the original study
proposed was su�ceint to identify cell types in both data types (Challenge 1). C. LIGER was applied to
combine spatial and single cell transcriptomic datasets. From the separate and integrative analyses,
plots of identi�ed and known clusters were generated and metrics of integration performance were
compared, showing some loss of information as a result of the integration (Challenge 1). D.
Construction of a spatial network from cells’ positions using Voronoi tessellation, where cell types
were inferred from SVM trained on scRNA-seq data. Left: A neighbors aggregation method computes
aggregation statistics on the seqFISH gene expression data for each node and its �rst order neighbors
(Challenge 2). Right: Identi�cation of spatially coherent areas that can contain one or several cell types
and can be used to detect genes whose expression is modulated by spatial factors rather than cell
type.

Computational challenges

Challenge 1: overlay of scRNA-seq onto seqFISH for resolution enhancement

The mouse visual cortex consists of multiple complex cell types. However, the seqFISH dataset was
limited to 125 pro�led genes, which were not prioritized based on their ability to discriminate
between cell types. Assigning the correct cell identity presents an important challenge. In contrast, the
scRNA-seq dataset is transcriptome-wide and includes the 125 genes pro�led by seqFISH. This
challenge proposed to use all genes to identify the cell type labels for each cell in the scRNA-seq data
with high certainty. Next, we leveraged the cell type information to build a classi�er based on a subset
of the 125 genes shared between both datasets. The classi�er was then applied to the seqFISH
dataset to assign cell types.

During the hackathon, participants aimed to test various machine learning and data integration
models (see Vignettes). Preliminary analyses highlighted that normalization strategies had a
signi�cant impact on the �nal results (Figure 1A). In addition, although unique molecular identi�er
(UMI) based scRNA-seq and seqFISH can both be considered as count data, we observed dataset
speci�c biases that could be attributed to either platform (imaging vs. sequencing batch e�ects) or
sample speci�c sources of variation. We opted to apply a quantile normalization approach that forces
a similar expression distribution for each shared gene.

Two classi�cation approaches were considered: supervised and semi-supervised generalized linear
model regularized with elastic net penalty (enet and ssenet) and supervised support vector machines
(SVM). The ssenet approach builds a model iteratively: it combines both datasets and initially only
retains the highest con�dence labels, then gradually adds more cell type labels until all cells are
classi�ed (Figure 1A). This type of self-training approach might be promising to generalize information
to other datasets. To improve the SVM model, several combinations of kernels and optimal
hyperparameters were assessed using a combination of randomized and zoomed search. In addition,
di�erent �avors of gene selection using recursive feature elimination were considered to identify the



optimal or minimal number of genes needed to correctly classify the majority of the cells (Figure 1A).
Finally, di�erent classi�cation accuracy metrics were considered to alleviate the major class imbalance
in the dataset. More than 90% of cells were excitatory or inhibitory neurons, using balanced
classi�cation error rates. We applied LIGER, an approach based on integrative non-negative matrix
factorization (NMF) to integrate both datasets in a subspace based on shared factors. This enabled the
transfer of cell type labels using a nearest neighbor approach (Figure 1D).

Challenge 2: Identifying spatial expression patterns at the tissue level
through the integration of gene expression and spatial cellular coordinates

While most tools originally developed for scRNA-seq data can be adapted for spatial transcriptomic
datasets (see common challenges section), methods to extract sources of variation from spatial
factors are still lacking. Novel methods that can integrate the information obtained from gene
expression with that of the spatial coordinates from each cell or transcript (for sub-cellular resolution)
within a tissue of interest are needed.

To identify spatial expression patterns in the seqFISH dataset, the participants �rst formed a spatial
network based on Voronoi tessellation ([10]). The gene expression of each cell was spatially smoothed
by calculating the average gene expression of all neighboring cells. UMAP was applied to the
smoothed and aggregated data matrix to identify cell clusters with a density-based clustering
approach (Figure 1D). Interestingly, these results showed that the obtained clusters themselves are
spatially separated and do not necessarily overlap with speci�c cell types, suggesting that the spatial
dimension cannot be captured from the expression data only.

An unanswered question is whether the identi�ed combinatorial spatial patterns can be extracted
directly from scRNA-seq data, as previous studies have shown cellular mapping between gene
expression pro�les and known spatial locations [11,12]. However, this still constitutes both a
technological and analytical challenge that will require careful benchmarking in the near future (see
benchmarking section).

Spatial proteomics as a case for cross-study and cross-platform
analysis

Overview and biological question

Whereas the �rst hackathon with seqFISH and scRNA-seq data included samples from the same
biological conditions, our second hackathon challenged participants to analyze two datasets obtained
from di�erent single cell targeted proteomics (antibody-based) technologies, applied to breast cancer
tissue of di�erent patient cohorts, from di�erent laboratories. Both studies examined the tumor-
immune microenvironment in primary breast cancer: Wagner, et al. used Mass Cytometry (CyTOF) to
assay 73 proteins across two panels (tumor and immune) in 194 tissue samples from 143 subjects, of
which 6 patients had triple-negative negative breast cancer [4], while Keren, et al. applied Multiplexed
Ion Beam Imaging (MIBI) to quantify spatial in-situ expression of 36 proteins in 41 triple-negative
breast cancer patients [5] (Figure 2A).

This hackathon focused on integrative data analysis across studies and platforms, given limited
overlap in features (Section @ref{sec:common}). Three main challenges emerged. The �rst challenge
was whether analytical methods could integrate partially-overlapping proteomic data collected on
di�erent patients with similar phenotypes, and whether measurements from one technology (MIBI
spatial location and expression of proteins) could be transferred and used to predict information in
the second technology (e.g., spatial expression patterns of proteins measured on CyTOF). The second



challenge pertained to the added value of spatial technologies and whether integrated analyses of
spatial single cell data could uncover additional information about immune cell populations in breast
cancer beyond cell composition. The third challenge was whether data from patients with
heterogeneous phenotypes could still be integrated, given few common features and no overlap in
biological samples.

Figure 2:

Caption �gure: A The datasets selected for this hackathon had limited overlap in features (MIBI-TOF,
CyTOF immune-centric panel, and CyTOF tumor-centric panel; illustrating Challenge 1) B Spatial
analysis with Moran’s index computed on Gabriel graph shown in boxplot according to
tumor/immune status showing a signi�cant di�erence between groups (Red asterisks indicate
signi�cance of an ANOVA of each group with all others with p-value from an overall ANOVA across the
three groups reported; exploring Challenge 2). C Cells can be studied through either spatial or gene
expression relationships, and correspondences between both representations can be highlighted
through linked brushing, an interactive visualization technique (exploring Challenge 2).

Computational challenges

Challenge 1: Limited overlap between protein features across studies

There were only 20 proteins that were assayed in both the CyTOF [4] and MIBI-TOF [5] studies (Figure
2A), which precluded integration of features at the level of gene set or pathways and required the use
of surrogate measures for cross-study association. The majority of proteins were cell-type markers or
biomarkers targets of breast cancer therapeutic intervention, providing the opportunity to perform
cross-study integration of cell type proportions in tumor tissue samples.

Several semi-supervised and supervised algorithms were applied to transfer cell labels and cell
compositions from one dataset to the second (see Vignettes). Random forest was considered to
capture the hierarchical structure of cell lineage and perform feature transfer learning of cell type
labels, using an adaptation of the prediction strength approach [13] to assess model robustness: �rst,
a model was trained on the labeled dataset, then used to predict labels in the unlabeled dataset; next,
a second model was trained based on the second dataset with the newly predicted labels; �nally, the
ability of the second model to recover the correct original labels when making predictions on the
labeled dataset was assessed. Mapping cells from CyTOF to imaging with spatial information was
handled by solving an entropic regularization optimal transport problem [14] [15], using the cosine
distance of the common proteins between the two datasets as transport cost. The constructed
optimal transport plan can be considered as likelihood of cells from one modality mapped to cells
from the other modality, which allows the prediction of protein expression measured only in CyTOF
on imaging data. After cluster analysis of the resulting imputed expression matrix, sub tumour cell
type could be identi�ed that was not revealed in the original matrix.

Another issue encountered with this challenge was that the di�erent scales of protein expression
across technologies meant that cell compositions could not be integrated using correlation of the



expression of protein markers, as some cell markers were expected on a range of cell types
(e.g. CD45), while others were more specialized and appeared in only a subset of those cells (e.g. CD4).
Other challenges associated with cell composition analysis of proteomics data included uncertainty
about antibody speci�city and consistency between studies; speci�c sensitivity and speci�city of
protein markers for cell types and tissues; and disease heterogeneity. Cell type assignment was also a
signi�cant challenge, as it relied on manually curated protein annotation, and was therefore
dependent on domain-speci�c knowledge (e.g. CD4 is expressed by T-cells). To date, methods for cell
type assignment, classi�cation or extraction of di�erentially expressed proteins cannot easily be
applied to targeted proteomics. There is thus an urgent need for a unifying map between cells
present in di�erent datasets, and for annotation resources to provide quality metric or priors of
protein cell type markers. The construction of protein expression atlases would support cell type
classi�cation, even if antibodies used and their performances might vary between labs.

Challenge 2: spatial analysis of protein expression

CyTOF mass spectrometry data provided protein expression and counts/composition of cells in breast
tumor-immune environment, while the MIBI-TOF data provided spatial information that quanti�ed cell
attributes (shape, size, spatial coordinates) in addition to expression levels. These two data sets thus
provide the opportunity to examine protein expression, cell microenvironment, and predict cell-cell
interactions and the cellular community ecosystem.

Spatial information can be encoded as a set of XY coordinates (cell centroid), a line (e.g. tumor-
immune boundary), or a polygon, which is a closed plane de�ned by a number of lines and can de�ne
complex shapes such as a cell or a community of cells. Spatial protein expression can be summarized
using spatial descriptive statistics, such as the autocorrelation of the expression of a protein within a
neighborhood of polygons, using techniques developed in geographical information science or
ecology to assess whether a spatially measured variable has a random, dispersed or clustered pattern
[16].

We investigated whether expression data could be used to predict spatial properties of tissue samples
using a variety of approaches (see Vignettes). A K-nearest neighbor graph was used to build spatial
response variables and random forest model trained from expression data to predict spatial features.
A topic model was trained on protein expression of CyTOF and MIBI-TOF data to predict cell co-
locations of CyTOF immune cells where 10% of MIBI-TOF considered test data. Among the �ve topics
identi�ed, the �rst topic was dominated in most of the immune cells from CyTOF data and the other
four dominated in all other cells. Prognostic performance of di�erent higher level spatial metrics was
also examined using Moran’s Index with a sphere distance, cell type localisation using nearest
neighbour correlation, or cell type interaction composition with Ripley’s L-function. Cox models with
fused lasso penalty and random forest survival models were then �tted based on clinical features
such as tumor stage, tumor grade, age and tumor size, as well as cell type composition. The spatial
metrics were found to be predictive, especially in triple negative breast cancer where clinical features
such as grade are often poor prognostics. Further investigation of Moran’s Index using a graph-based
neighborhood measure (Gabriel graph, based on Delaunay triangulation; as opposed to sphere
distance) found the values of this metric di�ered signi�cantly between the three prognostic tumor
scores described by [5](Figure 2B). This challenge demonstrated the prognostic potential of spatial
single cell proteomics data and underscores the need to develop new spatial measures speci�cally for
these data.

Challenge 3: Fourth corner Integration of data at the level of phenotype

Cross-study integration also raises the challenge of non-overlapping biological samples but with
similar phenotypes. Here the aim was to identify biomarkers from the di�erent data types to predict
phenotype, and, more importantly, to explore concordance among markers selected across multiple



studies and datasets. Depending upon how well these markers can be transferred across datasets, as
well as the amount of distinctive information encoded by di�erent markers, integrating datasets with
only some overlap in markers could potentially provide more biological insight than from individual
‘omics studies. To consider this third challenge, phenotypic data (such as the cell attributes) were the
critical factors that should be used to link the two datasets (Figure 4D).

Integrating patient phenotype measures such as grade, stage and overall survival is one �rst step that
we were able to achieve. However, integrating proteins from data sets that used di�erent approaches
to cell type annotation and had limited proteins in common was extremely challenging. Borrowing
from ecology and the French school of ordination, this problem can be described as a case of the
fourth corner problem (or RLQ, Figure 4D). Brie�y, given two ’omics data where both features and
samples are non overlapping, and phenotypical data are available for each omics data, multiplying the
two phenotypical factors should derive a bridging matrix that links the features of two omics data.
This requires the two phenotypical matrices to be multiplicable, i.e. describing the same phenotypical
factors. The fourth corner RLQ can be solved using matrix decomposition [17;
doi:10.1111/ecog.02302]. However, this approach was not attempted in this hackathon.

scNMT-seq as a case-study for epigenetic regulation

Overview and biological question

scRNA-seq technologies have enabled the identi�cation of transcriptional pro�les associated with
lineage diversi�cation and cell fate commitment [18], but the role of epigenetic layers still remains
poorly understood [19]. In contrast to the �rst two hackathons, which leveraged datasets from
complementary technologies to enable high molecular and spatial resolution of biological systems,
the third hackathon used datasets spanning disparate molecular scales (e.g. DNA and RNA
measurements) to improve our understanding of cell fate decisions using scNMT-seq.

scNMT-seq is one of the �rst experimental protocols that enable simultaneous quanti�cation of RNA
expression and epigenetic information from individual cells [20]. Brie�y, cells are incubated with a
GpC methyltransferase enzyme that labels accessible GpC sites via DNA methylation. Thus, GpC
methylation marks can be interpreted as direct read-outs for chromatin accessibility, whereas CpG
methylation marks can be interpreted as endogenous DNA methylation. By physically separating the
genomic DNA from the mRNA, scNMT-seq can pro�le RNA expression, DNA methylation and
chromatin accessibility read-outs from the same cell. This third hackathon focused on data integration
strategies to detect global covariation between RNA expression and DNA methylation variation from
scNMT-seq data in a mouse gastrulation study [21].

Gastrulation is a major lineage speci�cation event in mammalian embryos that is accompanied by
profound transcriptional rewiring and epigenetic remodeling [6]. In this study, four developmental
stages were pro�led, spanning exit from pluripotency to germ layer commitment (E4.5 to E7.5). For
simplicity in this hackathon, we focused on the integration of RNA expression and DNA methylation,
quanti�ed over the following genomic contexts: gene bodies, promoters, CpG islands, and DHS open
sites. A total of 799 cells passed quality control (Figure 3A). Preliminary analyses using dimensionality
reduction methods con�rmed that all four embryonic stages could be separated on the basis of RNA
expression (Figure 3B). The main challenge was to leverage the multi-faceted nature of
measurements to better resolve the single-cell subpopulations from distinct embyonic stages.

Computational challenges

Our participants considered 3 computational strategies (see Vignettes): MOSAIC (Multi-Omics
Supervised Integrative Clustering algorithm inspired by survClust [22]) classi�es samples by



creating weighted distance matrices across data modalities, where the weights are de�ned as the
maximum of the ratio of cluster specifc vs. population log likelihoods (Figure 3C). LIGER is an
unsupervised non-negative matrix factorization model for manifold alignment that assumes a
common feature space by aggregating DNA methylation over gene-centric elements (promoters or
gene bodies) but allows cells to vary between data modalities [12] (Figure 3D). Multi-block sparse
Projection to Latent Structures (multiblock sPLS), is a sparse generalization of canonical correlation
analysis that maximizes paired covariances between the RNA data set and each of the other genomic
context data sets [23 [24] (Figure 3E).

Figure 3:

Caption Figure: Overview of hackathon analyses for the scNMT-seq challenge. A Summary of the
data modalities analyzed, including di�erent putative regulatory regions. B UMAP of RNA
measurements using 671 highly variable genes shows separation of the four embryonic stages. 
C Supervised analysis using view-speci�c and integrative distance measures with MOSAIC: The
integration identi�es �ve clusters of cell populations based on Adjusted Mutual Information and
Standardized Pooled Within Sum of Squares that outperforms individual (single omics) analyses. 
D LIGER joint alignment using gene body methylation and RNA expression: cells are colored by stage
(left) or original data modality (right). E Unsupervised integration using multiblock sPLS: cells are



projected into the space spanned by each data view components that are maximally correlated. For
performance assessment, two types of analyses were considered, either by omitting the missing DNA
methylation values or incorporating imputed values. K-means clustering analysis based on the
multiblock sPLS components was used to calculate balanced accuracy measures.

Challenge 1: de�ning genomic features

The �rst challenge presented in this hackathon concerns the de�nition of the input data. The output
of single-cell bisul�te sequencing are binary DNA methylation measurements for individual CpG sites.
Integrative analysis at the CpG level is extremely challenging due to the sparsity levels, the binary
nature of the read-outs, and the intricacy in interpretation of individual dinucleotides. To address
these problems, DNA methylation measurements are typically aggregated over pre-de�ned sets of
genomic elements (i.e. promoters, enhancers, etc.). This preprocessing step reduces sparsity, permits
the calculation of binomial rates that are approximately continuous and can also improve
interpretability of the model output.

We observed remarkable di�erences between genomic contexts on the integration performance. In
MOSAIC, stages are better separated when using DNA methylation measurements on promoter
regions and at least four clusters (AMI=0.45). Interestingly, this setting performed better than using
RNA expression alone (AMI=0.40). Notably, when using an integrated solution across data modalities,
stages were better classi�ed (AMI = 0.68) (Figure 3C). LIGER, that was also applied in the �rst
hackathon requires a common feature space to perform alignment of cells when pro�led for di�erent
data modalities. This hackathon provides unambiguous cell matching between the data modalities
and thus represents a gold standard for testing this approach. LIGER was applied to gene expression
and gene body methylation: the poor alignment suggested a complex coupling of gene expression
and gene body methylation during gastrulation (Figure 3D). Finally, multiblock sPLS identi�ed
covarying components between RNA expression and DNA methylation that separated cell stages in all
putative regulatory contexts considered (Figure 3E). Taken altogether, these results con�rmed that
the appropriate selection of the feature space is critical for a successful integration with RNA
expression.

Challenge 2: Missing values in DNA methylation

Single-cell bisul�te sequencing protocols are limited by incomplete CpG coverage because of the low
amounts of starting material. Nonetheless, in contrast to scRNA-seq, missing data can be
distinguished from dropouts. Integrative methods can be divided into approaches that can handle
missing values (e.g. MOSAIC, multiblock sPLS which omit the missing values during inference), or
approaches that require a priori imputation (e.g. LIGER). In this hackathon, missing values were
imputed using nearest neighbor averaging (as implemented in the impute  package [25]) in the
methylation data.

We compared the integration performance of multiblock sPLS either with original or with imputed
data. The missing values were inferred using nearest neighbor averaging (as implemented in the 
impute  package [25]) in the methylation data. The components associated to each data set showed

varying degree of separation of the embryonic stages, depending on the genomic contexts (Figure
3E). Accuracy measures based on k-means clustering analysis on the multiblock sPLS components
showed that gene body methylation components were better at characterizing embryonic stage after
imputation (from 70% with original data to 86% after imputation).

Missing values in regulatory context data represent a topical challenge in data analysis, and further
methodological developments are needed to either handle and accurately estimate missing values.



Challenge 3: Linking epigenetic features to gene expression

One of the main advantages of scNMT-seq is the ability to unbiasedly link epigenetic variation with
gene expression. Transcriptional activation is associated with speci�c chromatin states near the gene
of interest. This includes deposition of activatory histone marks such as H3K27ac, H3K4me3 and
H3K36me3, binding of transcription factors, promoter and/or enhancer demethylation and chromatin
remodeling. All these events are closely interconnected and leave a footprint across multiple
molecular layers that can only be (partially) recovered by performing an association analysis between
a speci�c chromatin read-out and mRNA expression. However, given the large amount of genes and
regulatory regions, this task can become prohibitively large, with the associated multiple testing
burden. In addition, some of our analyses have shown that the correlations between epigenetic layers
and RNA expression calculated from individual genomic features can be generally weak or spurious.

A practical and straightforward approach from a computational perspective involves considering only
putative regulatory elements within each gene’s genomic neighborhood. Nonetheless, this might miss
important links with regulatory elements located far away from the neighborhood.

In recent years, chromosome conformation capture experiments, have uncovered a complex network
of chromatin interactions inside the nucleus connecting regions separated by multiple megabases
along the genome and potentially involved in gene regulation. Early genome-wide contact maps
generated by HiC uncovered domains spanning on the order of 1 Mb (in humans) within which genes
would be coordinately regulated. Thus, a second strategy to associate putative regulatory elements
and genes is to build on existing promoter-centered chromatin contact networks to restrict the
association analysis to putative regulatory elements that are in 3D contact with genes. Although this is
a promising strategy to reduce the complexity of the association analysis, most of our 3D interaction
datasets are produced in bulk samples and it is so far unclear how much of these structures are
preserved across individual cells. While single-cell conformation capture experiments remain limited
by data sparsity and high levels of technical noise, we envision that technological advances in this area
will deepen our understanding of the regulatory roles of chromatin states.

Commonalities between analytical multi-omics approaches for
hackathons

Each hackathon study highlighted disparate challenges to multi-omics from di�erent measurement
technologies. Yet, these studies were uni�ed by the underlying problem of data integration. We
summarize the common problems faced across all hackathons and shared approaches adopted by
participants. These commonalities highlight the critical computational issues in multi-omics single-cell
data analysis.

The choice of methods mostly relied on the biological question to address: data integration was
conducted using projection approaches, cell prediction required machine or statistical learning
methods (SVM, Enet), and spatial analysis was conducted using Hidden Markov random �eld or
Moran’s Index. As computational methodologies span technologies, so do the central challenges
highlighted in each hackathon. For example, the accuracy of the analysis critically depended on data
pre-processing (e.g. normalization, upstream feature selection), di�erences in scale across data sets,
and overlap (or lack thereof) of features (Figure 4). In many cases, preprocessing can yield data
mapping to common molecular features, such as genes, that can be the focus of the integration task.
However, the spatial proteomics challenge showed that many multi-omics datasets have limited
shared features between studies. In cross-study and cross-platform analyses, methods that
investigate hierarchical structure and apply measures of higher order concordance among the omics,
cell, and phenotype layers are critical. Even in cases with matching molecular features, such analyses
can reveal novel aspects of biology.



The Table summarizes the main methods that were applied across all hackathons. A large number of
computational analysis methods that were applied derive from bulk RNA-seq literature, with the
exception of projection methods developed for single-cell such as tSNE, UMAP, and LIGER. In this
section, we brie�y highlight the three common challenges faced across all hackathons, whose
reproducible vignettes are in this article.

Common challenge 1: Dependence on pre-processing method and/or
variable selection

Pre-processing steps strongly a�ect downstream analyses. Our participants thoroughly assessed the
e�ect of normalization and data transformation (e.g. spatial transcriptomics, Figure 1A), as well as
preliminary feature selection (mostly on based on highly variable genes) or feature summarization
(scNMT-seq study). Ease of comparisons between analyses was facilitated by providing processed
input data (see software section), which still encountered reproducibility issues between the original
published study and the new analyses. For example, in the spatial transcriptomics study, 19 genes
were selected in the seqFISH data on one analysis, whereas the original paper selected 43 genes
based on the same feature selection process [3]. No consensus was reached across participants’
analyses regarding the best way to process such emerging data, as those would require extensive
benchmark, ground truth, or established biological results are yet available, which we discuss in
benchmarking.

Common challenge 2: Managing di�erences in scale and size across
datasets

Various techniques were used to address the di�erences in scale or resolution across data sets. For
spatial transcriptomics and proteomics, participants focused on a common set of genes (via feature
selection in spatial transcriptomics) or proteins. The scNMT-seq study that included overlap between
cells raised the issue of di�erences in data set size with a varying number of features per dataset
ranging from 6,673 to 18,345 (Figure 3A). Some projection-based methods, such as MOFA [26],
require a similar number of features in each data set, while others such as PLS / sGCCA [23] do not
have this limitation and enable more �exible analysis. Di�erences in data scale may result in one data
set contributing to either too much variation or noise during data integration. Techniques such as re-
scaling, batch e�ect removal approaches, such as Combat [27] or weighting speci�c data sets, were
considered and each o�ered further improvement in the analyses.

Common challenge 3: Addressing partial overlap of information across
cells or features

The degree of feature or cell overlap between datasets varied dramatically within each study.
Intuitively, to integrate information across modalities, at least one type of overlap (whether on the
features or cells, Figure 4) is required. The �eld has made progress in developing methods to
integrate data sets across the same (bulk) samples of single cells, mostly based on dimension
reduction techniques. Amongst them, NMF (LIGER) and Projection to Latent Structures (sGCCA [23])
were used for the scNMT-seq study. When there was no cell overlap, such as in the spatial studies,
imputation methods were used to predict gene, protein, or spatial expression values based on
nearest neighbors, latent variables, or optimal transport. These methods were also used to predict
cell types. The most challenging study was the spatial proteomics, which raised the issue of no overlap
between cells or features - the so called fourth corner that relies on phenotypes (Challenge 3 in
proteomics). We anticipate that this scenario will be avoided once technological progress and
increase in data availability is achieved [28].



Figure 4:

Caption �gure: Common challenge 3: Addressing partial overlap of information across cells or
features A. Overlap of features (genes) but not cells (e.g. spatial transcriptomics where cell type
prediction for seqFISH data was performed based on scRNA-seq where cell types are known. B. Partial
overlap of features (proteins) but no overlap of cells (e.g. spatial proteomics that required data
imputation or cell type prediction). C. Overlap of cells across assays, but no overlap of features
(e.g. scNMT-seq where data integration was performed). D. Lack of overlap between cells and features
(the so-called fourth corner problem in spatial proteomics hackathon).

Table: Di�erent methods were used in the hackathon and further available as reproducible vignettes.
* indicates that the method was not applied on the hackathon data. For some common challenges,
‘bulk’ indicates the method was originally developed for bulk omics, ‘sc’ indicates the method was
speci�cally developed for single-cell data {#tbl:common}

Common
challenges

Tasks sc Spatial sc targeted proteomics sc NMT-seq

Pre-
processing

Normalization
& data
transformation

Data
distribution
checks
(Coullomb,
Singh) 
High
Variable
Genes
selection
(Xu)

Variance Stabilization
Normalisation [29] (Meng) 
Arcsinh transformation
(Jeganathan). 
Inverse transformation
(Jeganathan) 
Selection of patients
(Jeganathan)

Summaries of DNA measurements (input
data provided in hackathon)



Common
challenges

Tasks sc Spatial sc targeted proteomics sc NMT-seq

Managing
di�erences
in scale 

Data
integration

LIGER [30]
(Sodico�)
(sc) 
ComBat
(Singh) 
Projection
methods
MFA, sGCCA
[23]
(Singh*)
(bulk) 
UMAP/tSNE
(Sodico�)
(sc)

Multi-block PCA [31] 
Weighting matrices based
on their similarities:
STATIS, MFA (Chen*)(bulk) 
Scale MIBI-TOF to the
range of CyTOF values
(Jenagan)

LIGER [30] (Welch) (sc) 
Projection method sGCCA [23] (Abadi)
(bulk) 
Multi Omics Supervised Integrative
Clustering with weights (Arora) (bulk)

Overlap Cell overlap 
(features not
matching)

Dimension reduction and projection
methods: 
LIGER [30] (Welch) (sc) 
sGCCA [23] (Abadi) (bulk) 

Partial feature
overlap 
(cells not
matching)

Imputation: 
Direct inversion with latent
variables (Sankaran) 
Optimal transport to
predict protein expression
(Lin) 
K Nearest Neighbor
averaging (Jeganathan) 
 
No imputation: 
Biological Network
Interaction (Foster*)

Partial cell
overlap 
(features not
matching)

Multi block PCA [31]
(Meng*)

No cell overlap 
(complete
feature overlap)

Transfer cell type label
with Random Forest (Hsu)

LIGER [30] (Welch)

No cell overlap 
(partial feature
overlap)

Topic modeling to predict
cell spatial co-location or
spatial expression
(Jeganathan, partial
feature overlap) 

No overlap RLQ [32] (Chen*)



Common
challenges

Tasks sc Spatial sc targeted proteomics sc NMT-seq

Generic
approaches

Classi�cation &
feature
selection

Backward
selection
with SVM
(Coullomb) 
self training
ENet (Singh) 
Balanced
error rate
(Coullomb,
Singh) 
Recursive
Feature
Elimination
(Xu) 
 
(all bulk)

Multi Omics Supervised Integrative
Clustering (Arora) (bulk) 
Lasso penalization in regression-type
models (bulk)

Cell type
prediction

Projection
with LIGER
[30]
(Sodico�) 
SVM
(Coullomb,
Xu) 
ssEnet
(Singh) 
(all bulk)

Spatial
analysis

Hidden
Markov
random
�eld 
Voronoi
tesselation
(Coullomb)
(bulk)

Spatial autocorrelation
with Moran’s Index (Hsu,
Lin) 
 
Selection of spatial
discriminative features: 
Moran’s Index, NN
correlation, Cell type,
interaction composition, L
function (Lin) 
 
(all bulk?)

Inclusion of
additional
information

Survival prediction: Cox
regression based on
spatial features (Lin)

Include annotated hypersensitive sites
index to anchor new/unseen data from
DNase-seq, (sc)ATAC-seq, scNMT-seq, for
de novo peak calling (Meuleman*) (bulk)

Challenges for interpretation

The analyses from each hackathon emphasized that regardless of the common di�culties faced by
our participants, there is no one method �ts all for multi-omics integration. An equally important
complement to the diverse computational methods used to solve multi-omics analysis problems rests
in the biological interpretation of their solutions, with the notable challenge that the integrated data
from these approaches are often of higher dimension than the input datasets. For example, low
dimensional representation of the results may require additional contiguous data, such as spatial
coordinates to capture higher level cellular structure or prognostics (two of our hackathons). Thus,



e�orts to interpret multi-omics data require standardized vocabulary, benchmarked methods, and
abstracted latent variables that can be compared between studies.

Organizing patterns for interpretation

Interpretation hinges on the analysis method selected for a given dataset. Some methods used in the
hackathons and summarized in Table 1 aimed to predict a clearly de�ned outcome, such as
recognizing the environment of tumor cells versus that of healthy cells (see proteomics section). The
supervised setting often provides easier interpretations, as one can easily rank the covariates and
contiguous data in terms of their predictive potential.

However, when data are collected without the availability of a clear response (e.g. survival time, tumor
size, cell growth) using multiple di�erent technologies, data integration requires organizing patterns
that enable interpretation. Clustering is often used as one unsupervised method that can use latent
variables - for example using a categorical variable such as cell type which was not directly measured
on the data but enables simple interpretations [33]. Unfortunately, biological phenomenona are often
not as clearcut.

During clustering, overseparating data by forcing the data into types only provides a static description
when the variation should often be along a continuum. Indeed, although a latent factor can be a
useful �rst approximation, the development of cells and their fate is a dynamic process. Thus, we
recommend referring back to the original data that enabled interpretation of the cell trajectories: in
our case, where the underlying latent variable of interest is expressed along a gradient of
development (e.g. pseudo-time, disease progression).

Nonetheless, latent variables represent a rich anchor for many multimodal methods and can often be
useful in highlighting what the modalities have in “common” and how they di�er, as shown in the
scNMT-seq hackathon. Disparate sources of evidence, or in this case, data from di�erent
technologies, are more compelling than many replicates of the same technology. Thus, if di�erent
technologies allow a consensus on underlying latent variables, this information is worth retaining. The
commonalities are well understood in the case of classical multivariate factor analyses where the data
are decomposed into common and unique components [34]. A schematic summary of the di�erent
stages in interpretation is provided in Figure 5).

Figure 5:

Caption �gure: A Schematic diagram of stages of interpretation and integration of data sources. B
Standards in Geographic Information Systems enable the integration of multiple layers of data. C
Integrative analysis across multiple modes of data results in complementary evidence, allowing
stronger conclusions, an instance of Cardinal Newman’s principle: ‘Supposes a thesis (e.g. the guilt of
an accused man) is supported by a great deal of circumstantial evidence of di�erent forms, but in



agreement with each other; then even if each piece of evidence is in itself insu�cient to produce any
strong belief, the thesis is decisively strengthened by their joint e�ect.’

Reasoning by analogy with geospatial problems

Multiple domains of knowledge can be combined easily if there is a common coordinate system, as in
geospatial analyses. This is often a goal in multimodal or conjoint analyses, when the �rst step is to
�nd a common compromise or consensus on which to project each of the individual modalities.
Conjoint analyses also known as STATIS [35] was a very early multimodal method designed as “PCA of
PCAs” where the �rst step in the analyses was to identify the commonalities between di�erent
modalities and de�ne a consensus onto which the individual data sets were projected [36]. STATIS
can be considered as an extension of the class of matrix decomposition methods to data cubes. Many
extensions to matrix decompositions have since been designed for multimodal data, [37] o�ers an
overview of the relations between many of them.

In both spatial transcriptomics and the spatial proteomics hackathons, a spatial dimension was
already naturally available, where we could leverage spatial statistics methods to quantify spatial
e�ects. In these studies, contiguity and clustering can be tested and easily understood in the spatial
context, and layers of information can be mapped to the natural coordinate system in the same way a
GIS system incorporates them (Figure 5B).

The spatial coordinate system analogy can be pursued further by �nding a “consensus space” that
provides a common coordinate system. Thus, by creating an abstract coordinate space, we can
leverage methods developed for true spatial co-occurrences, and evalute these co-occurrences in
abstract spatial coordinates as an e�ective strategy for creating layered maps despite the the absence
of a physical coordinate system. There are however pitfalls in using very sophisticated dimension
reduction techniques which lead to over-interpretation or misinterpretation of spatial relations. One
such example is the size and closeness of clusters in t-SNE which do not represent true densities or
similarities in the original data.

Explaining results by linking databases

Figure 5A shows how connections to layers of information from external databases can be
incorporated into the �nal output. Real biological understanding is often limited to the integration of
this contiguous information that is available from metadata or from exterior sources such as Gene
Ontologies, Biomart [38], Kegg, Human Cell Atlas (HCA) or within software systems (see software
section).

As many methods su�er from identi�ability issues, redundant biological knowledge can be
enlightening. By providing information on the extreme points in a map or brushing a map with known
gene expression features, one can delineate orientations and clusters. As an example, it is only
through coloring by CD56 across time that we can see the dynamics of immune response [39], similar
to the principle behind the interactive brushing illustrated in Figure 5C.

Explaining methods

Simulations can often provide e�ective and transparent communication tools to shed light into
complex analytical methods. By generating data from di�erent probabilistic models, we increase our
understanding of the methods’ limitations including identi�ability problems resulting from
overparametrized models. More realistic data can also be simulated by adding constraints on the
parameters that reduce or eliminate identi�ability issues. By using well de�ned generative processes



during data simulation, we can then benchmark methods to clarify what some complex methods do,
as we discuss in the benchmarking section.

Visualization of step-by-step transformations and optimizations of data also help clarify how certain
methods �t models or reduce data dimensionality. These visualizations are often very specialized
(e.g. correspondence analyses, goodness of �t qqplots or rootograms, mean-variance �tting plots),
but serve as intermediary checks to unpack seemingly black boxes analytical processes.

Finally, spanning all of these interpretation challenges is a central communication barriers between
data analysts and the community of practitionners who do not have the same vocabulary or
background. Many tools are used as black boxes where users do not have a clear understanding on
the statistical or mathematical principles underpinning the methods. A clear glossary of terms, and
how we are using those terms is crucial to improve communication. For example, many synonyms for
multimodal data exist and some have nuances, as we have collated in Table 2. Understanding the
relation between methods described by di�erent teams is essential. Data scientist often try to
organize the methods �rst, thus it is useful to create a dichotomy of methods and their underlying
properties for our collaborators.

Techniques and challenges for benchmarking methods

Visualizations and biological assessment of marker gene lists resulting from multi-omics analyses
provide a critical interpretation of high-throughput data integration, but additional quantitative
metrics are necessary to delineate biologically-relevant features from features arising from either
computational or technical artifacts. Quantitative benchmarks are also essential to enable unbiased
comparisons between analytical methods. For example, the goal of multi-platform single-cell data
analysis is often the recovery of known cell types through computational methods. Metrics such as
the adjusted Rand Index (ARI) enable a direct assessment of the clustering results with respect to
known cell types. When cell types or biological features are not known a priori, benchmark methods
can also be used to discover known relationships between data modalities. For example, cis gene
regulatory mechanisms observed between chromatin accessibility and gene expression. Our
hackathons highlighted that many of these relationships are not fully understood at the single-cell
level, and that benchmarking standards are critically needed for validation (Figure 6A).

Figure 6:

Caption �gure: A Systematic benchmarking of single-cell multi-omic analysis methods can involve
experimental data (as per our hackathons), custom control datasets, where known structure is
imposed through the experimental design or simulated data. The amount of biological signal and



ground truth available varies considerably between these types of data. The resulting multi-omics
datasets are analysed by competing methods and compared using metrics that have general purpose
or take ground truth into account (e.g. cell type labels or number of cell types simulated). B scNMT-
seq study: correlations with linear projections (MOFA+) evaluated with cross-validation.

Challenges and strategies for benchmarking

Benchmarking multi-modal methods is inherently di�cult, as ground truth is rarely known. Ground
truth can be introduced through simulating high-throughput data in silico, but in the context of data
integration, the simulation of a realistic covariance structure across features and across data
modalities are challenging [40] and must rely on an underlying generative model that may introduce
further biases into the benchmarking analysis. Another strategy is to use cross-validation within a
study, or conduct cross-study validation to assess whether solutions found by multi-modal methods
generalize to held-out observations or held-out studies. The latter was attempted in the spatial
proteomics cross-study hackathon, but where ground truth was unknown.

Challenge 1: creating benchmarking datasets

Benchmark datasets serve two main purposes: to provide ground truth for the intended e�ect of
exposure in a proposed study design, and to provide validation for an analytic task for which a new
computational method may be proposed (e.g. data integration in our hackathons), Figure 6A.

For single-cell studies, benchmark datasets have largely focused on measuring sequencing depth and
diversity of cell types derived from a single assay of interest (e.g. scRNA-seq). Common experimental
designs involve creating arti�cial samples through the mixing of cells in known proportions [41,42,43]
or creating dilution series to simulate variation in cell size [41,44]. Simulating data is also popular and
made more convenient through software such as the splatter  R package [45].

For multi-modal assays, while the intended e�ects can vary based on the leading biological questions,
one may abstract out common data integration tasks such as co-embedding, mapping or correlation,
and inferring causal relationships. We distinguish data integration from further downstream analyses
that may occur on integrated samples such as di�erential analysis of both assays with regard to a
certain exposure. Both the intended e�ects and data integration task rely on study design that takes
into account the biological and technical variability via replicates, block design, randomization, the
power analysis for the intended e�ect or data integration task, and the dependencies between
modalities. For example, gene expression depends on gene regulatory element activity and thus
requires that experiment design must also account for spatial and temporal elements in sampling for
a given observation.

As such, no universal benchmark data scheme may suit every combination of modalities (e.g. mising
cells design does not generalise to the spatial context), and benchmark datasets should be
established for commonly used combinations of modalities or technologies towards speci�c data
integration tasks.

Challenge 2: cross-validation within study

Cross-validation within a representative multi-modal study is one possible approach for quantitative
assessment for unbiased comparison of methods. We note that the approach of cross-validation – in
which observations are split into folds or left out individually for assessing model �t – has been used
often for parameter tuning within methods, or for other aspects of model selection
[24,40,46,47,48,49,50,51,52,53,54,55]. 
Similarly, permutation has been used to create null datasets, either as a demonstration that a



particular method is not over�tting, or for parameter tuning, where the optimal parameter setting
should result in a model score that is far from the null distribution of model scores [56,57,58]. Cross-
validation is particularly useful as a quantitative assessment of a method’s self-consistency, even
though it cannot determine the accuracy of a method in a completely unbiased way if we do not have
access to an external test data set for further con�rmation.

As part of the third hackathon, a cross-validation analysis of the scNMT-seq dataset using MOFA+ was
performed. Strong relationships found among pairs of modalities in training data were often
reproduced in held out cells (Figure 6B). This CV analysis also revealed that we could reliably match
dimensions of latent space across cross-validation folds. Previous evaluations of multi-modal
methods have focused only on the top ‘latent factor’ [59], however, we showed in our analyses, many
latent factors can be reliably discovered in held out cells in studies of complex biological processes
such as the di�erentiation of embryonic cells.

For clustering assessment, several studies have used resampling or data-splitting strategies to
determine prediction strength [13,60,61,62]. These techniques could be further extended in a multi-
modal setting for clustering of cells into putative cell types or cell states. Community-based
benchmarking e�orts in the area of multi-modal data analysis could follow the paradigm of the
DREAM Challenges, with multi-modal training data provided and test samples held out, in order to
evaluate the method submissions from participating groups.

Challenge 3: cross-validation between studies

Our benchmarking hackathons have emphasized the need to access external studies for methods
assessment and validation, where either the ground truth is based on biological knowledge of the
system being studied, or via high-quality control experiments where the ground truth (e.g. cell type
labels) are known (Figure 6A). To take advantage of all data and technologies available, cross-study
validation could also extend to cross-platform to assess whether relationships discovered in one
dataset are present in other datasets, such as looking across single-cell and bulk omics, as was
recently proposed in [63].

Software strategies to enable analyses of multimodal single-
cell experiments

Open-source software is essential in bioinformatics and computational biology. Benchmark datasets,
analysis pipelines, and the development of multimodal genome-scale experiments are all enabled
through community-developed, open-source software, and data sharing platforms. A wide array of
genomics frameworks for multi-platform single-cell data have been developed in R and Python. Along
with other software, these frameworks use standardized licensing in Creative Commons, Artistic, or
GNU so that all components are accessible for full vetting by the community (see List of sofware)).
Our hackathons hinged on the central challenges such as widescale adoption, extension, and
collaboration to enable inference and visualization of the multimodal single-cell experiments in our
analytic frameworks. We designed each case study to leverage and build on these open frameworks
to further develop and evaluate robust benchmarking strategies. Easy to use data packages to
distribute the multi-omics data and reproducible vignettes were key outputs from our workshop.

Collaboration enabled through continuous integration

Open-source software e�orts facilitate a community-level coordinated approach to support
collaboration rather than duplication of e�ort between groups working on similar problems. Real-
time improvements to the tool-set should be feasible, respecting the needs for stability, reliability, and

http://dreamchallenges.org/


continuity of access to evolving components. To that end, exploration and engagement with all these
tools is richly enabled through code sharing resources. Our hackathons directly leveraged through
GitHub with our reproducible analyses reports to enable continuous integration of changes to source
codes (using Github Action), and containerized snapshots of the analyses environments. The
hackathons analyses conducted in R were assembled into R packages to facilitate libraries loading,
while those conducted in Python enabled automatic installation and deployment

Usability and adoption by the community

Robust software ecosystems are required to build broad user bases [64,65,66]. Bioconductor is one
example of such ecosystem, that provides multiplatform and continuous delivery of contributed
software while assisting a wide range of users with standardized documentation, tests, community
forums, and workshops [67,68,69]. In the case of the hackathons, the R/Bioconductor ecosystem for
multi-omics enabled data structures and vignettes to support reproducible, open-source, open
development analysis. During this workshop, we identi�ed key software goals needed to advance the
methods and interpretation of multi-omics.

Challenge 1: data accessibility

Providing data to the scienti�c community is a long-standing issue. A particular challenge in our
hackathons was that each data modality was characterized by a di�erent collection of features from
possibly non-overlapping collections of samples (see common challenges section). Thus, common
data structures are needed to store and operate on these data collections, and support data
dissemination with robust metadata and implementation of analytical frameworks.

The MultiAssayExperiment  integrative data class from Bioconductor was our class of choice to
enable the collation of standard data formats, easy data access, and processing. It uses the S4 object-
oriented structure in R [70,71] and includes several features to support multi-platform genomics data
analysis, to store features from multiple data modalities (e.g. gene expression units from scRNA-seq
and protein units in sc-proteomics) from either the same or distinct cells, biological specimen of
origin, or from multiple dimensions (e.g. spatial coordinates, locations of eQTLs). This class also
enables to store sample metadata (e.g. study, center, phenotype, perturbation) and provides a map
between the datasets from di�erent assays for downstream analysis.

In our hackathons, pre-processing steps applied to the raw data were fully documented. The input
data were stored as MultiAssayExperiment  objects that were centrally managed and hosted on 
ExperimentHub [72] as a starting point for all analyses. The SingleCellMultiModal  package was

used to query the relevant datasets for each analysis [doi:10.18129/B9.bioc.SingleCellMultiModal]
(Figure 7). Text-based machine-readable data were also made available for non-R users, and also to
facilitate alternative data preprocessing for participants.

Besides e�cient data storage, several hackathon contributors used the MultiAssayExperiment
class to implement further data processing and extraction of spatial information from raster objects
in their analyses. This infrastructure was readily suitable for the spatial and scNMT-seq hackathons
but the lack of overlap between samples in the spatial proteomics hackathon revealed an important
area of future work to link biologically related datasets without direct feature or sample mappings for
multi-omics analysis. Further, our hackathons highlighted the need for scalability of storing and
e�ciently retrieving single-cell data datasets [73,74]. New algorithms are emerging, that allow for
data to be stored in memory or on disk (e.g. [75,76] in R or [77] in Python).

https://github.com/BIRSBiointegration/Hackathon/blob/master/analysis-vignettes.md


Figure 7:

Caption �gure: A Software infrastructure using Bioconductor for the �rst hackathon to combine
seqFISH-based SpatialExperiment  and SingleCellExperiment  instances into a 
MultiAssayExperiment . B To combine these two di�erent experiments, the seqFISH data were

stored into a SpatialExperiment  S4 class object, while the scRNA-seq data were stored into a 
SingleCellExperiment  class object [78]. These objects were then stored into a 
MultiAssayExperiment  class object and released with the SingleCellMultiModal

Bioconductor package [79].

Challenge 2: software infrastructure to handle assay-speci�c features

The hackathons further highlighted emerging challenges to handle di�erent data modalities.

RNA-seq has well-de�ned units and IDs (e.g., transcript names), but other assays need to be
summarized at di�erent genomic scales (e.g., gene promoters, exons, introns, or gene bodies), as was
highlighted in the scNMT-seq hackathon. Tools such as the GenomicRanges  R package [80] have
been proposed to compute summaries at di�erent scales and overlaps between signal (e.g., ATAC-seq
peaks) and genomic annotation.

Further, the observations of di�erent modalities may not be directly comparable: for instance, gene
expression may be measured from individual cells in single-cell RNA-seq, but spatial transcriptomics
may have a �ner (sub-cellular) or coarser (multi-cellular) resolution. Methods such as SPOTlight [81]
can be used to deconvolute multi-cellular spots signal.

Finally, in the absence of universal standards, the metadata available may vary from modalities, or
independent studies (e.g. spatial proteomics), thus urging the need from the computational biology
community to de�ne the minimum set of metadata variables necessary for each assay, as well as for
pairs of assays to be comparable for common analyses.

Challenge 3: accessible vizualization

Our brainstorm discussions on the Data Interpretation Challenge highlighted the importance of novel
data visualization strategies to make sens of multi-modal data analyses. Often, these visualization
strategies rely on heatmaps or reduced dimension plots, and utilize color to represent the di�erent
dimensions. These colors and low dimensional plots facilitate pattern detection and interpretation of
increasingly complex and rich data. However, relying on color for interpretation leads to di�culties in
perceiving patterns for a substantial proportion of the population with color vision de�ciencies and
can result in di�erent data interpretations between individuals.



Presenting accessible scienti�c information requires the inclusion of colorblind friendly visualizations
[82,83] standardized as default settings through use of color palettes such as R/viridis [84] and
dittoSeq [85] with a limit of 10 colors. Additional visual cues to di�erentiate regions or cells can also
reduce the dependence on colors using hatched areas or point shapes. The inclusion an “accessibility
caption” accompanying �gures which to guide the reader’s perception of the images would also
greatly bene�t broader data accessibility. Thus, implementing community standards for accessible
visualizations is essential for bioinformatics software communities to ensure standardized
interpretation of multi-platform single-cell data.

Discussion

The Mathematical Frameworks for Integrative Analysis of Emerging Biological Data Workshop
demonstrated the power of hackathons to both inform and develop new analysis methods to capture
the complex, multi-scale nature of biological datasets from high-throughput data modalities. Notably,
the hackathon studies of the workshop were speci�cally designed to span state-of-the-art multi-omics
challenges to map the epigenetic, molecular, and cellular interaction across time and sample
populations. Single-cell measurements spanning molecular modalities can inherently simplify the
challenge of linking disparate biological scales, but layering new sets of molecular measurements
increases the complexity of the analyses to interpret these data. The computational needs hinge on
the underlying biological question being asked as well as the characteristics of the data themselves. In
our workshop, di�erent modelling considerations had to be made for multi-modal integration, as
higlighted in the seqFISH and scNMT-seq challenges (matching on the same genes, or cells) and the
scProteomics challenge (partially unmatched measurements). Regardless, through these hackathons
we identi�ed several common analysis themes spanning algorithmic advances, interpretation,
benchmarking, and software infrastructure necessary for biological interpretation. All hackathons
required methods for dealing with data quality, data loss from summarization, timing variances
between and within omics layers, and batch e�ects. These represent the necessary challenges to
overcome in the coming years, along with e�cient and insightful data visualization strategies to infer
regulatory relationships between di�erent omics.

Technologies to pro�le biological systems at single-cell resolution and across molecular scales are
advancing at an unprecedented pace. Analytically, these advances require the computational
community to pursue research that can �rst enable robust analyses tailored to a speci�c biology or
measurement technology, and second, that can scale and adapt to these rapid advances. Our
hackathons highlighted current technologies for spatial molecular pro�ling. The two technologies
used in this study both have limited molecular resolution. Therefore, multi-platform data combining
the spatial molecular data from either seqFISH, MIBI, or imaging mass cytometry require
complementary data from other single-cell technologies to provide both high spatial and molecular
resolution enabled through data integration. We note that additional technologies, such as slide-seq
[86] and Visium from 10X Genomics produce spatially resolved molecular measurements
approaching measurements of the whole transcriptome, but lack the �ne spatial resolution of these
alternative imaging technologies. As such, emerging technologies still require further multi-platform
data integration for comprehensive analysis. The scNMT-seq challenge did not include spatially
resolved data but highlighted the potential of further inference of gene regulation through concurrent
pro�ling of RNA, methylation, and chromatin state. Technological advances for multi-omics spatial
data and epigenetics data are rapidly advancing and becoming increasingly available through
Nanostring, 10X Genomics, Akoya Biosciences, and others. Our workshop keynote Bernd Bodenmiller
presented new research-level technological advances that enable three-dimensional spatial molecular
pro�ling [87]. Other technologies are currently expanding to allow for temporally resolved pro�ling
[88]. Integration strategies aware of these future directions and the mathematical challenges that
span technologies will be most adept at advancing biological knowledge: this was the primary aim of
this workshop.



The implementation of novel analysis tools requires further robust software ecosystems, including
Bioconductor [89], Biopython, and toolkits such as Scanpy [77], Seurat [90], or Giotto [10], in which
users can create their analysis approaches and while anticipating stable and adaptive data structures
robust for these emerging technologies. The size of these emerging datasets, particularly in the
context of their application to atlas projects (e.g. the Human Tumor Atlas Network [91], Human Cell
Atlas [92], Allen Brain Initiative, Brain Initiative Cell Census Network, or ENCODE, to cite a few) are key
examples that computational e�ciency and scalability of these implementations are becoming ever
more critical.

In addition to new technologies, we wish to emphasize that arising multi-omics analysis methods can
support the generation of new data sources to resolve the multi-scale nature of biological systems.
For example, while the workshop posed the scNMT-seq data and spatial molecular datasets as distinct
challenges for data integration, integration of matched datasets between these spatial and epigenetic
pro�ling techniques could further resolve the dependence of cell-type and cellular-interactions of
regulatory networks. By embedding prior biological knowledge as rules in the analysis approaches,
additional sources of data can generate a new representation of a biological system. For example,
curated regulatory networks from databases such as KEGG, Biocarta, GO, TRANSFAC, or MSigDB
provide commonly used frameworks for this prior knowledge. These gene regulatory networks must
be extended to map the impact of cellular context on transcriptional regulation that are being
uncovered by emerging single-cell atlases. The regulatory networks and dynamic features captured in
single-cell data also provide the potential for future techniques to predict molecular and cellular
states. Our hackathons and workshop have shown that merging single-cell data with mathematical
models have the potential to predict behaviors in biological systems using rules derived from only
prior biological knowledge.
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Type Brief name (link) Description

Matlab
package CytoMAP

CytoMAP: A Spatial Analysis Toolbox
Reveals Features of Myeloid Cell
Organization in Lymphoid Tissues

Matlab
package histoCAT

histoCAT: analysis of cell phenotypes
and interactions in multiplex image
cytometry data

Python
library PyTorch General framework for deep learning

Python & R TensorFlow General framework for deep learning

Python
package SpaCell

SpaCell: integrating tissue morphology
and spatial gene expression to predict
disease cells

Python
package Scanpy Python package for single cell analysis

R data class MultiAssayExperiment unify multiple experiments

R data class SpatialExperiment SpatialExperiment: a collection of S4
classes for Spatial Data

R package Giotto Spatial transcriptomics

R package cytomapper
cytomapper: Visualization of highly
multiplexed imaging cytometry data in
R

R package Spaniel Spaniel: analysis and interactive
sharing of Spatial Transcriptomics data

R package Seurat R toolkit for single cell genomics

R package SpatialLIBD
Transcriptome-scale spatial gene
expression in the human dorsolateral
prefrontal cortex

R package Cardinal
Cardinal: an R package for statistical
analysis of mass spectrometry-based
imaging experiments

R package CoGAPS
scCoGAPS learns biologically
meaningful latent spaces from sparse
scRNA-Seq data

R package projectR
ProjectR is a transfer learning
framework to rapidly explore latent
spaces across independent datasets

R package SingleCellMultiModal
Serves multiple datasets obtained from
GEO and other sources and represents
them as MultiAssayExperiment objects

R scripts SpatialAnalysis Scripts for SpatialExperiment usage

Self-
contained
GUI

ST viewer
ST viewer: a tool for analysis and
visualization of spatial transcriptomics
datasets

Shiny app Dynverse
A comparison of single-cell trajectory
inference methods: towards more
accurate and robust tools

R package mixOmics R toolkit for multivariate analysis of
multi-modal data

https://gitlab.com/gernerlab/cytomap
https://github.com/BodenmillerGroup/histoCAT
https://pytorch.org/
https://www.tensorflow.org/
https://github.com/BiomedicalMachineLearning/SpaCell
https://github.com/theislab/scanpy
https://bioconductor.org/packages/MultiAssayExperiment
https://github.com/drighelli/SpatialExperiment
https://github.com/RubD/Giotto
https://github.com/BodenmillerGroup/cytomapper
https://github.com/RachelQueen1/Spaniel/
https://github.com/satijalab/seurat
https://github.com/LieberInstitute/spatialLIBD
https://cardinalmsi.org/
https://github.com/FertigLab/CoGAPS
https://github.com/genesofeve/projectR
https://github.com/waldronlab/SingleCellMultiModal
https://github.com/drighelli/SpatialAnalysis
https://github.com/jfnavarro/st_viewer
https://zouter.shinyapps.io/server/
https://github.com/mixOmicsTeam/mixOmics


Type Brief name (link) Description

Python
package totalVI

A variational autoencoder (deep
learning model) to integrate RNA and
protein data from CITE-seq
experiments

Python web
application ImJoy

Python
package napari Interactive big multi-dimensional 3D

image viewer

Software QuPath Multiplex whole slide image analysis

Python
package Cytokit Multiplex whole slide image analysis

Python
package cmIF Multiplex whole slide image analysis

Software Facetto Multiplex whole slide image analysis,
not available yet

Software,
Python
based

CellPro�ler Image analysis

Vignettes summary

Table: Reproducible analyses from the participants.

Hackathon Participant Title Language Vignette Additional
info

scNMTseq Al JalalAbadi PLS

scNMTseq Wancen Mu and Michael
Love CV-MOFA

scNMTseq Josh Welch LIGER analysis of
scNMT-seq

scNMTseq Arshi Arora MOSAIC analysis of
scNMT-seq

scProteomics Lauren Hsu Exploratory analyses

scProteomics Chen Meng Predicting partially
overlapping data

scProteomics Pratheepa Jeganathan Latent Dirichlet
Allocation

scProteomics Yingxin Lin

Integrative analysis of
breast cancer survival
based on spatial
features

scSpatial Alexis Coullomb Neighbours
Aggregtion

https://github.com/YosefLab/scVI
https://imjoy.io/#/
https://github.com/napari/napari
https://qupath.github.io/
https://github.com/hammerlab/cytokit
https://gitlab.com/engje/cmif
https://github.com/kruegert/facetto
https://cellprofiler.org/
https://github.com/ajabadi/BIRSBIO2020.scNMTseq.PLS
https://ajabadi.github.io/BIRSBIO2020.scNMTseq.PLS/articles
https://hub.docker.com/repository/docker/aljabadi/birs_bio_2020-scnmtseq-pls
https://github.com/mikelove/BIRSBIO2020.Benchmarking.CVmofa
https://mikelove.github.io/BIRSBIO2020.Benchmarking.CVmofa/articles/MOFA-scNMTseq.html
https://hub.docker.com/repository/docker/aljabadi/birs_bio_2020-benchmarking-cv_mofa
https://github.com/jw156605/BIRSBIO2020.scNMTseq.LIGER
https://jw156605.github.io/BIRSBIO2020.scNMTseq.LIGER/articles/scNMT_liger.html
https://hub.docker.com/r/joshuawd/birsbio2020_scnmtseq_liger
https://github.com/arorarshi/BIRSBIO2020.scNMTseq.MOSAIC
https://arorarshi.github.io/BIRSBIO2020.scNMTseq.MOSAIC/articles
https://hub.docker.com/repository/docker/arorarshi/birs_bio_2020-scnmtseq-mosaic
https://github.com/laurenhsu1/BIRSBIO2020.scProteomics.exploratory
https://laurenhsu1.github.io/BIRSBIO2020.scProteomics.exploratory/articles
https://hub.docker.com/repository/docker/laurenhsu/birsbio2020_scproteomics_exploratory
https://github.com/mengchen18/BIRSBIO2020.scProteomics.predictPartialOverlappingData
https://mengchen18.github.io/BIRSBIO2020.scProteomics.predictPartialOverlappingData/articles/predictPartialOverlapData.html
https://github.com/PratheepaJ/BIRSBIO2020scProteomicsLDA
https://pratheepaj.github.io/BIRSBIO2020scProteomicsLDA/articles
https://github.com/YingxinLin/BIRSBIO2020.scProteomics.survival
https://yingxinlin.github.io/BIRSBIO2020.scProteomics.survival/index.html
https://hub.docker.com/repository/docker/yingxinlin/scproteomics
https://github.com/AlexCoul/BIRSBIO2020.seqFISH.neighbors_aggregation
https://alexcoul.github.io/BIRSBIO2020.seqFISH.neighbors_aggregation/spatial%20analysis/transcriptomics/2020/07/15/BIRS_Biointegration-seqFISH_challenge-neighbors_aggregation.html


Hackathon Participant Title Language Vignette Additional
info

scSpatial Joshua Sodico�
Utilizing LIGER for the
integration of spatial
transcriptomic data

scSpatial Dario Righelli SpatialExperiment
Analysis

scSpatial Amrit Singh

seqFISH+scRNASeq
integration using
semi-supervised
glmnet

scSpatial Hang Xu
Cortex seq-FISH +
scRNA data - gene
selection

Glossary

Table 1:  Glossary of interchangeable terms in the �eld of single-cell and bulk multi-omics (multi-source) data analysis.

Consensus Term Related Terms Description Citation

network graph, adjacency matrix

A set of nodes,
representing objects of
interest, linked by edges,
representing speci�c
relationships between
nodes.

94

node vertex

Element of interest in a
network and linked to other
nodes. For example:
people, cells, proteins or
genes. Nodes can have
several properties called
attributes like cell type or
position.

94

edge link

The relationship between 2
nodes in a network. For
example: friendship in
social networks, cells in
contact in a spatial network,
or gene-gene interactions in
a gene regulatory network.

94

concordant common

Agreement between
multiple modalities with
respect to feature/variable
selection and correlation of
latent factors.

95, 96

consistent coherent

Similar performance
obtained from applying
methods for multimodal
data during multiple rounds
of data splitting.

59

https://github.com/jsodicoff/BIRSBIO2020.seqFISH.LIGERintegration
https://jsodicoff.github.io/BIRSBIO2020.seqFISH.LIGERintegration/articles
https://hub.docker.com/r/sodicoff/birsbio2020.seqfish.liger_int
https://github.com/drighelli/BIRSBIO2020.seqFISH.SpatialAnalysis
https://drighelli.github.io/BIRSBIO2020.seqFISH.SpatialAnalysis/articles
https://hub.docker.com/r/drighelli/birsbio2020_seqfish_spatialanalysis
https://github.com/singha53/BIRSBIO2020.seqFISH.SSEnet
https://singha53.github.io/BIRSBIO2020.seqFISH.SSEnet/articles
https://hub.docker.com/repository/docker/singha53/birsbio2020_seqfish_ssenet
https://github.com/gooday23/BIRSBIO2020.seqFISHChallenge.geneSeletction
https://gooday23.github.io/BIRSBIO2020.seqFISHChallenge.geneSeletction/seqfish/scrna/2020/07/20/BIRS_Biointegration-seqFish_challenge-geneselection.html


Consensus Term Related Terms Description Citation

contributions

variable weights, loadings,
eigenvector, axis, direction,
dimension, coe�cients,
slopes

Contributions of the
original variables in
constructing the
components.

24, 97

latent factors

variates, scores,
projections, components,
latent/hidden/unobserved
variables/factors

Weighted linear
combinations of the original
variables.

24, 97

multimodal

Multiview, multiway arrays,
multimodal, multidomain,
multiblock, multitable,
multi-omics, multi-source
data analysis methods, N-
integration

Methods pertaining to the
analysis of multiple data
matrices for the same set of
observations.

24, 37, 98

conjoint analysis
conjoint analysis, P-
integration, meta-analysis,
multigroup data analysis

Methods pertaining to the
analysis of multiple data
matrices for the same set of
variables.

24, 97, 99

variable feature, variable

A measurable quantity that
describes an observation’s
attributes. Variables from
di�erent modalities include
age, sex, gene or protein
abundance, single
nucleotide variants,
operational taxonomic
units, pixel intensity etc.

94

biomarker marker, biomarker

A variable that is associated
with normal or disease
processes, or responses to
exposures, or interventions.
Any change in this variable
is also associated with a
change in the associated
clinical outcome. These
variables may be used for
diagnostic, monitoring,
Pharmacodynamic
responses. Examples
include LDL cholesterol,
CD4 counts, hemoglobin
A1C.

100

panel biomarker panel, biomarker
signature

A subset of the originally
measured variables that are
determined to be
associated with the
outcome or response
variable. This may be
determined using statistical
inference, feature selection
methods, or
machine/statistical learning.

101, 102



Consensus Term Related Terms Description Citation

observation sample, observation, array

A single entity belonging to
a larger grouping. Examples
include patients, subjects,
participants, cells, biological
sample, usually the unit of
observation on which the
variables are measured etc.

94
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