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Permutons

A permuton is a
probability measure on
[0, 1]2 with both
marginals uniform.
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Permutations of all sizes are densely embedded in permutons.
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A Baxter permutation avoids the vincular patterns 2413 and 3142. In
other words, a permutation σ is Baxter if it is not possible to find
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A Baxter permutation avoids the vincular patterns 2413 and 3142. In
other words, a permutation σ is Baxter if it is not possible to find
i < j < k s.t. σ( j + 1) < σ(i) < σ(k) < σ( j) or
σ( j) < σ(k) < σ(i) < σ( j + 1).

Theorem. (Borga, M) There exists a random permuton µB such that if
σn is a uniform random Baxter permutation of size n, µσn → µB in
distribution in the space of permutons.
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Theorem (Bonichon,
Bousquet-Mélou, Fusy
’11) OP−1 : Pn → On is
a bĳection.

σ ∈ Pn

m � OP−1(σ) ∈ On

m∗ � OP−1(σ∗) ∈ On
T (m)

Inverse bĳection: OP(m)
is the only permutation
π such that the i-th
edge in the exploration
of T (m) is the π(i)-th
edge in the exploration
of T (m∗)

T (m∗)
T (m∗∗)
T (m∗∗∗)
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Bipolar orientations and walks in the quadrant

Yt
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Theorem.
(Kenyon-Miller-Sheffield-Wilson, 2010)
Let (0,X1 + 1,X2 + 1, . . .Xn + 1) and
(0,Yn + 1,Yn−1 + 1, . . . ,Y1 + 1) be the
height processes of T (m) and T (m∗∗).
Denote OW(m) � W � (X,Y). Then
OW is a bĳection between Pn and the
set Wn of n-step walks in the cone from
(N, 0) to (0,N) and steps in
(1,−1) ∪ (−N) ×N.
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Yt

Xt

We construct a coalescent process
Z � (Z( j) (i))1≤ j≤i≤n driven by (X,Y).
The branching structure of the
trajectories is that of T (m∗), but edges
are visited in the order given by T (m).
Comparing the orders given by visit
times and by the contour exploration
allows to recover the permutation.



Scaling limits of coalescent-walk processes
Theorem (Kenyon, Miller,Sheffield,Wilson) Let (Xn ,Yn ) be the coding
walk of a uniform bipolar orientation of size n. Then

1
√

2n
(Xn (n·),Yn (n·)) converges to a pair of Brownian excursions with

cross-correlation −1/2. This is peanosphere convergence of
bipolar-oriented maps to SLE-decorated LQG.
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Theorem (Prokaj, Cinlar, Hajri, Karakus) Let (X,Y) be a pair of
standard Brownian motions with cross-correlation coefficient
ρ ∈ [−1, 1). Then the perturbed Tanaka’s equation
dZ(t) � 1{Z(t)>0}dY(t) − 1{Z(t)≤0}dX(t), t ≥ 0
has strong solutions.
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that 1
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2n
(Z(bnuc)

n (n·) → Z(u) .

The construction of the Baxter permuton is then straightforward. For
0 < s < t < 1, set s ≺ t if Z(s) (t) < 0 and t ≺ s otherwise.
Set φ(t) � Leb{s ∈ [0, 1] : s ≺ t} and µB � (Id, φ)∗Leb � P(X,Y).
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Let (Xn ,Yn ) be the walks coding, respectively, the map mn and its
dual m∗n . Let (X,Y be a Brownian excursion in the quadrant of
correlation −1/2. Consider the map s : C([0, 1],R2) → C([0, 1],R2)
defined by s( f , g) � (g(1 − ·), f (1 − ·)). Consider also the map
R :M →M that rotates a permuton by an angle −π/2,
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where (X∗ ,Y∗) � r(X,Y), and µB � P(X,Y). Moreover, we have the
following equalities that hold at almost every point of C([0, 1],R2

≥0),

r2
� s , r4

� Id, P ◦ r � R ◦ P.

The convergence of the first four marginals is an extension of a result
of Gwynne,Holden,Sun that deals with infinite-volume bipolar
triangulations.
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Perspectives
Our methods can be easily adapted to weighted models of bipolar
orientations, including bipolar k-angulations.

Many examples of classes of permutations are encoded by generating
trees. A work of Borga gives bĳections with colored walks in the
quadrant. We expect that some of them have a coalescent-walk
process encoding.

We expect the correlation parameter ρ to vary, and might lose
symmetry at the origin, as in the study of Schnyder woods by
Li-Sun-Watson.


