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Introduction and Motivation

Strong minimality is a central notion in model theory.

The Key Model Theoretic Problem about DCF (D. Marker’s talk):

Understand the strongly minimal sets.

This is a problem internal to Model theory/DCF (although it has been
applied very successfully).

Goal:

1 Use the slightly more general notion irreducibility to explain the
relevance outside model theory.

2 Give an idea of the problem of proving that a differential equation is
strongly minimal.
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Irreducibility: All solutions are ‘new’

Let us give the Painlevé-Umemura definition of a classical/known
functions.

In what follows we will identify a meromorphic function f on an open
set U ⊂ C with its restriction f|V onto an open subset V ⊂ U.

S will denote certain set of meromorphic functions on a domain
U ⊂ C.

We assume that all the elements in S are already known functions.

One then define the permissible operations to obtain other know
functions from S.
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(O) Let f ∈ S. Then f ′ is a known function.
(P1) Let f1, f2 ∈ S, then the functions f1 ± f2, f1 · f2 and f1/f2 (if f2 6= 0)

are known functions.
(P2) If f is a solution of an equation X n + a1X n−1 + . . .+ an = 0, with

ai ∈ S, then f is a known function.

(P3) Let f ∈ S. Then
∫

f dt is a known function.

(P4) If f is a solution of linear ODE X (n) + a1X (n−1) + . . .+ anX = 0,
with ai ∈ S, then f is a known function.

(P5) Let Γ ⊂ Cn be a lattice such that the quotient Cn/Γ is an abelian
variety. Let π : Cn → Cn/Γ be the projection. Let φ be a
meromorphic function on Cn/Γ. Then φ · π · (f1, . . . , fn), where
f1, . . . , f2 ∈ S, is a known function.

For each k ∈ N>0

(Qk ) If f is a solution of an ODE G(y , y ′, . . . , y (k)) = 0 where G has
coefficients from S. Then f a know function.
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Here F ∈ C(t)(X1, . . . ,Xn) denotes a rational function and n > 1.

Definition
The equation y (n) = F (y , y ′, . . . , y (n−1)) is PU-irreducible if, starting
from the set of constant functions C, one cannot express any of its
solutions by a finite iteration of the permissible operations
(0), (P1), . . . , (P5) and (Q1), . . . , (Qn−1).

Fact
The equation y (n) = F (y , y ′, . . . , y (n−1)) is PU-irreducible if

1 It has no solution solution in C(t)alg ; and

2 For any solution f and any finitely generated differential field
extension K of C(t), either

f ∈ K alg or tr .deg(K (f , f ′, . . . , f (n−1))/K ) = n.
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from the set of constant functions C, one cannot express any of its
solutions by a finite iteration of the permissible operations
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Fact
The equation y (n) = F (y , y ′, . . . , y (n−1)) is PU-irreducible if

1 It has no solution solution in C(t)alg ; and

2 The set defined by the equation in a differentially closed field is
strongly minimal.
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2. Proving Strong minimality

It can be quite hard to prove that an ODE is strongly minimal.

Example:

The equation y ′′ = 2y3 + ty + 1
2 is not strongly minimal

because of the existence of

y ′ = y2 +
t
2
.

The equation y ′′ = 2y3 + ty + 3
2 is not strongly minimal

because of the existence of

(y ′)3 − (y2 + t
2)(y ′)2 − (y4 + ty2 + 4y + t2

4 )y ′

+y6 + 3
2 ty4 + 4y3 + 3

4 t2y2 + 2ty + 2 + t3

8 = 0
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The equation PII(α):

y ′′ = 2y3 + ty + α, α ∈ C

is the second Painlevé equation.

Isolated by P. Painlevé as one of the equation of the form
y ′′ = f (y , y ′) that has the Painlevé property.

If w is a solution of PII(α), then

T+(w) = −w − α + 1/2
w ′ + w2 + t/2

T−(w) = −w +
α− 1/2

w ′ − w2 − t/2

are solutions of PII(α + 1) and PII(α− 1) respectively.

Fact
The degree in y ′ of the order 1 subvariety of PII(1/2 + n), n ∈ N, is 3n.
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Proving Strong minimality: Puiseux Series/Valuation

Is y ′′ = y ′

y strongly minimal?

Yes by Poizat/Marker

The calculations involved are specific to the equation and cannot be
generalized.

Result (Freitag-Jaoui-N)
The solution set of equation

y ′′ = y ′
p(y)

q(y)
(0.1)

where the rational function p(y)
q(y) ∈ C(y) has a simple pole at y = 0, is

strongly minimal (and so geometrically trivial).
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Proof idea for y ′′ = y ′

y :

If not strongly minimal, there is a solution f and a differential field K
such that tr .deg(K (f , f ′)/K ) = 1 and so

u = f ′ ∈ K (f )alg \ K alg

We can hence take a Puiseux series expansion of f ′

u =
∞∑
i=r

aiτ
i

where τe = f for some e ∈ N>0 and ai ∈ K alg .

Plug in the equation (u)′ = u
f and get a contradiction.
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The Painlevé equation (again): y ′′ = 2y3 + ty + α

Painlevé (1895) claimed that at least for generic values of the
parameters all the Painlevé equations would be strongly minimal.

This was proven to be true in a series of papers by K. Okamoto, K.
Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over
about 15 years.

Fact
PII(α) is strongly minimal if and only if α ∈ 1

2 + Z

Genericity matters outside model theory:

Peter J. Forrester and Nicholas S. Witte, Painlevé II in random matrix
theory and related fields, Constr. Approx. 41 (2015), no. 3, 589-613.
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Schwartzian triangle Equations

The Schwartzian triangle equation S(α, β, γ) is given by

St (y) =
1
2

(
1− β−2

y2 +
1− γ−2

(y − 1)2 +
β−2 + γ−2 − α−2 − 1

y(y − 1)

)
(y ′)2

where

St (y) =

(
y ′′

y ′

)′
− 1

2

(
y ′′

y ′

)2

is the Schwartzian derivative and α, β, γ ∈ C.
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The solutions of S(α, β, γ) are conformal mapping of hyperbolic
triangle to the complex upper half plane.

The solutions of S(k , l ,m) when 2 ≤ k ≤ l ≤ m (integers or∞) and
1
k + 1

l + 1
m < 1 are Fuchsian automorphic functions.

Painlevé (1895) claimed that S(k , l ,m) is strongly minimal.

Result (Casale-Freitag-N and Freitag-Scanlon for (2,3,∞))
The equation S(k , l ,m), with 2 ≤ k ≤ l ≤ m (integers or∞) and
1
k + 1

l + 1
m < 1, is strongly minimal (and much more. . .).

We use the above result to prove a deep functional transcendence
result called the Ax-Lindemann-Weierstrass theorem with derivative
for the Fuchsian automorphic functions.
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Result (Blázquez Sanz-Casale-Freitag-N)
If α, β, γ are algebraically independent over Q, then the equation
S(α, β, γ) is strongly minimal (and much more. . .).

Key method in the proof:

Here α1, α2, . . . , αn ∈ Cn are algebraically independent over Q

Fact
Let θ(x1, x2, . . . , xn) be a formula in the language (0,1,+,×,D) such
that

U |= θ(α1, α2, . . . , αn).

Then for all but finitely many α̂ ∈ C we have

U |= θ(α̂, α2, . . . , αn)
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that

U |= θ(α1, α2, . . . , αn).

Then for all but finitely many α̂ ∈ C we have

U |= θ(α̂, α2, . . . , αn)
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Fun Strategy

Strategy
To prove that the generic Painlevé equations are strongly minimal, one
only needed to prove that one (strategic) equation in each family is
strongly minimal.

Example:

Step 1: Show that PII(0) : y ′′ = 2y3 + ty is strongly minimal.

Step 2: Use Backlund transformations to deduce that PII(n) strongly
minimal for all n ∈ Z.

Step 3: Conclude, using previous fact, that PII(α) is strongly minimal
for transcendental α.
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Thank you very much for your attention.
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