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Introduction and Motivation

@ Strong minimality is a central notion in model theory.
@ The Key Model Theoretic Problem about DCF (D. Marker’s talk):
Understand the strongly minimal sets.

@ This is a problem internal to Model theory/DCF (although it has been
applied very successfully).
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Introduction and Motivation

@ Strong minimality is a central notion in model theory.

@ The Key Model Theoretic Problem about DCF (D. Marker’s talk):

Understand the strongly minimal sets.

@ This is a problem internal to Model theory/DCF (although it has been
applied very successfully).

@ Goal:

@ Use the slightly more general notion irreducibility to explain the
relevance outside model theory.

@ Give an idea of the problem of proving that a differential equation is
strongly minimal.
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Irreducibility: All solutions are ‘new’

Let us give the Painlevé-Umemura definition of a classical/known
functions.

@ In what follows we will identify a meromorphic function f on an open
set U C C with its restriction f,, onto an open subset V C U.
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Irreducibility: All solutions are ‘new’
Let us give the Painlevé-Umemura definition of a classical/known
functions.

@ In what follows we will identify a meromorphic function f on an open
set U C C with its restriction f,, onto an open subset V C U.

@ S will denote certain set of meromorphic functions on a domain
UccC.

@ We assume that all the elements in S are already known functions.

@ One then define the permissible operations to obtain other know
functions from S.
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(O) Let f € S. Then f" is a known function.

(P1) Let fi, > € S, then the functions f; + £, f; - f, and f; /1> (if f # 0)
are known functions.

(P2) If f is a solution of an equation X" + a;X"~' + ... + a, = 0, with
a; € S, then f is a known function.
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Functions in C (S)#9 are known functions.
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Functions in C (S)#9 are known functions.

(P3) Let f € S. Then [ f dt is a known function.
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- Functions in C (S)#9 are known functions.
(P3) Let f € S. Then [ f dt is a known function.

(P4) If f is a solution of linear ODE X" + a; X("1) 4 . 4 a,X =0,
with g; € S, then f is a known function.
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- Functions in C (S)#9 are known functions.
(P3) Let f € S. Then [ f dt is a known function.

(P4) If f is a solution of linear ODE X" + a; X("1) 4 . 4 a,X =0,
with g; € S, then f is a known function.

(P5) Let ' C C" be a lattice such that the quotient C" /T is an abelian
variety. Let 7 : C" — C"/I be the projection. Let ¢ be a
meromorphic function on C"/I'. Then ¢ - 7 - (fy, ..., f,), where
fi,...,f, € S, is a known function.
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- Functions in C (S)#9 are known functions.
(P3) Let f € S. Then [ f dt is a known function.

(P4) If f is a solution of linear ODE X" + a; X("1) 4 . 4 a,X =0,
with g; € S, then f is a known function.

(P5) Let ' C C" be a lattice such that the quotient C" /T is an abelian
variety. Let 7 : C" — C"/I be the projection. Let ¢ be a
meromorphic function on C"/I'. Then ¢ - 7 - (fy, ..., f,), where
fi,...,f, € S, is a known function.

For each k € Ny
(Qx) If fis a solution of an ODE G(y, y/,...,y")) = 0 where G has

coefficients from S. Then f a known function.
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Here F € C(t)(Xj,..., Xn) denotes a rational function and n > 1.

Definition

The equation y(" = F(y,y', ...,y 1) is PU-irreducible if, starting
from the set of constant functions C, one cannot express any of its
solutions by a finite iteration of the permissible operations

(0), (P1),..., (P5) and (Q4),...,(Qn_1)
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Here F € C(t)(Xj,..., Xn) denotes a rational function and n > 1.

Definition

The equation y(" = F(y,y', ...,y 1) is PU-irreducible if, starting
from the set of constant functions C, one cannot express any of its
solutions by a finite iteration of the permissible operations

(0), (P1),..., (P5) and (Q4),...,(Qn_1)

The equation y( = F(y,y’,...,y("=1)) is PU-irreducible if

@ It has no solution solution in C(t)29; and

v
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Here F € C(t)(Xj,..., Xn) denotes a rational function and n > 1.

Definition

The equation y(" = F(y,y', ...,y 1) is PU-irreducible if, starting
from the set of constant functions C, one cannot express any of its
solutions by a finite iteration of the permissible operations

(0), (P1),..., (P5) and (Q4),...,(Qn_1)

The equation y( = F(y,y’,...,y("=1)) is PU-irreducible if

@ It has no solution solution in C(t)29; and

@ For any solution f and any finitely generated differential field
extension K of C(t), either

fGKa/Q or tr.deg(K(fyfla“'7f(n_1))/K):n'
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Here F € C(t)(Xj,..., Xn) denotes a rational function and n > 1.

Definition

The equation y(" = F(y,y/, ...,y 1) is PU-irreducible if, starting
from the set of constant functions C, one cannot express any of its
solutions by a finite iteration of the permissible operations

(0), (P1),..., (P5)and (Q1),...,(Qn_1).

The equation y( = F(y,y/, ..., y("=1)) is PU-irreducible if
@ It has no solution solution in C(t)29; and

© The set defined by the equation in a differentially closed field is
strongly minimal.
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2. Proving Strong minimality
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2. Proving Strong minimality

@ It can be quite hard to prove that an ODE is strongly minimal.
@ Example:
The equation y” = 2y® + ty + 1 is not strongly minimal
because of the existence of

t
/ 2
y =Yy —|-f2.
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2. Proving Strong minimality

@ It can be quite hard to prove that an ODE is strongly minimal.

@ Example:
The equation y” = 2y® + ty + 1 is not strongly minimal
because of the existence of
t
/2 -
y=y+3
The equation y” = 2y + ty + 3 is not strongly minimal

because of the existence of
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2. Proving Strong minimality

@ It can be quite hard to prove that an ODE is strongly minimal.

@ Example:
The equation y” = 2y® + ty + 1 is not strongly minimal
because of the existence of
t
Iy ,2 -

y=y+ 5"
The equation y” = 2y + ty + 3 is not strongly minimal
because of the existence of

VP =P+ D2 -+ 2+ 4y + )y
+y8+ 3yt 4yt 3Ry raty 245 =0
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@ The equation Py(«):
V' =23 +ty+a, acC
is the second Painlevé equation.

@ Isolated by P. Painlevé as one of the equation of the form
y" = f(y,y’) that has the Painlevé property.
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@ The equation Py(«):
V' =23 +ty+a, acC
is the second Painlevé equation.

@ Isolated by P. Painlevé as one of the equation of the form
y" = f(y,y’) that has the Painlevé property.

@ If wis a solution of Py(«), then

a+1/2
R = w2
T(w) = —w+t a—1/2

w — w2 —t/2

are solutions of Py(a+ 1) and Pj(« — 1) respectively.
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@ The equation Py(«):
V' =23 +ty+a, acC
is the second Painlevé equation.

@ Isolated by P. Painlevé as one of the equation of the form
y" = f(y,y’) that has the Painlevé property.

@ If wis a solution of Py(«), then

a+1/2
R = w2
T(w) = —w+t a—1/2

w — w2 —t/2

are solutions of Py(a + 1) and Pjy(a — 1) respectively.

The degree in y’ of the order 1 subvariety of Py(1/2+ n), n€ N, is 3".
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Proving Strong minimality: Puiseux Series/Valuation

" y
@ Isy = v strongly minimal?
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Proving Strong minimality: Puiseux Series/Valuation

o Isy’ = y7 strongly minimal? Yes by Poizat/Marker

@ The calculations involved are specific to the equation and cannot be
generalized.
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Proving Strong minimality: Puiseux Series/Valuation

o Isy’ = y7 strongly minimal? Yes by Poizat/Marker

@ The calculations involved are specific to the equation and cannot be
generalized.

Result (Freitag-Jaoui-N)
The solution set of equation
! / (.y) (01)

y:}’m

where the rational function % € C(y) has a simple pole aty = 0, is

strongly minimal (and so geometrically trivial).
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Proof idea for y" = £
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Proof idea for y” = y7:
@ |If not strongly minimal, there is a solution f and a differential field K
such that tr.deg(K(f,f')/K) = 1 and so

u=feK()39\ K9
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Proof idea for y" = £

@ |If not strongly minimal, there is a solution f and a differential field K
such that tr.deg(K(f,f')/K) = 1 and so

u=feK()39\ K9

We can hence take a Puiseux series expansion of f/
oo
u= Z a,'T’
i=r

where 7€ = f for some e € N-g and a; € K49,
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Proof idea for y" = £

@ |If not strongly minimal, there is a solution f and a differential field K
such that tr.deg(K(f,f')/K) = 1 and so

u=feK()39\ K9

@ We can hence take a Puiseux series expansion of f/
oo
u= Z a,'T’
i=r
where 7€ = f for some e € N-g and a; € K49,

@ Plug in the equation (u)’

2 and get a contradiction.
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The Painlevé equation (again): y” = 2y° + ty + «

@ Painlevé (1895) claimed that at least for generic values of the
parameters all the Painlevé equations would be strongly minimal.

@ This was proven to be true in a series of papers by K. Okamoto, K.
Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over

about 15 years.
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The Painlevé equation (again): y” = 2y° + ty + «

@ Painlevé (1895) claimed that at least for generic values of the
parameters all the Painlevé equations would be strongly minimal.

@ This was proven to be true in a series of papers by K. Okamoto, K.
Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over

about 15 years.

Py(«) is strongly minimal if and only if o € 5 + Z
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The Painlevé equation (again): y” = 2y° + ty + «

@ Painlevé (1895) claimed that at least for generic values of the
parameters all the Painlevé equations would be strongly minimal.

@ This was proven to be true in a series of papers by K. Okamoto, K.
Nishioka, M. Noumi, H. Umemura and H. Watanabe spanning over

about 15 years.

Py(«) is strongly minimal if and only if o € 5 + Z

@ Genericity matters outside model theory:

Peter J. Forrester and Nicholas S. Witte, Painlevé Il in random matrix
theory and related fields, Constr. Approx. 41 (2015), no. 3, 589-613.
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Schwartzian triangle Equations

@ The Schwartzian triangle equation S(«, 3,7) is given by

1 1— -2 1— -2 -2 -2 _ —2_1
e e e e 24

2\ y? (y —1)? yly—-1)

@ where
y/l ! 1 y// 2
s0)-(5) ~z (5

@ is the Schwartzian derivative and «, 3, € C.
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@ The solutions of S(«, 3,~) are conformal mapping of hyperbolic
triangle to the complex upper half plane.

@ The solutions of S(k, I, m) when 2 < k < | < m (integers or oc) and
1+ 1+ L <1 are Fuchsian automorphic functions.
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@ The solutions of S(«, 3,~) are conformal mapping of hyperbolic
triangle to the complex upper half plane.

@ The solutions of S(k, I, m) when 2 < k < | < m (integers or oc) and
1+ 1+ L <1 are Fuchsian automorphic functions.

@ Painlevé (1895) claimed that S(k, /, m) is strongly minimal.
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@ The solutions of S(«, 3,~) are conformal mapping of hyperbolic
triangle to the complex upper half plane.

@ The solutions of S(k, I, m) when 2 < k < | < m (integers or oc) and
1+ 1+ L <1 are Fuchsian automorphic functions.

@ Painlevé (1895) claimed that S(k, /, m) is strongly minimal.

Result (Casale-Freitag-N and Freitag-Scanlon for (2, 3, o0))

The equation S(k, I, m), with2 < k < | < m (integers or o) and
1414+ L <1, is strongly minimal (and much more. . .).

@ We use the above result to prove a deep functional transcendence
result called the Ax-Lindemann-Weierstrass theorem with derivative
for the Fuchsian automorphic functions.
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Result (Blazquez Sanz-Casale-Freitag-N)

If o, 3, ~ are algebraically independent over Q, then the equation
S(a, B,7) is strongly minimal (and much more. . .).
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Result (Blazquez Sanz-Casale-Freitag-N)

If o, 3, ~ are algebraically independent over Q, then the equation
S(a, B,7) is strongly minimal (and much more. . .).

@ Key method in the proof:
Here a4, as,...,an € C™ are algebraically independent over Q

Let 6(xy, X2, ..., Xp) be a formula in the language (0,1, +, x, D) such
that
u ): 9(0[1,0{2,. : -aOén)-
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Result (Blazquez Sanz-Casale-Freitag-N)

If o, 3, ~ are algebraically independent over Q, then the equation
S(a, B,7) is strongly minimal (and much more. . .).

@ Key method in the proof:
Here a4, as,...,an € C™ are algebraically independent over Q

Let 6(xy, X2, ..., Xp) be a formula in the language (0,1, +, x, D) such
that
u ): 9(0[1,0{2,. : -aOén)-

Then for all but finitely many & € C we have

UEOGo,a, ... ap)
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Fun Strategy

To prove that the generic Painlevé equations are strongly minimal, one
only needed to prove that one (strategic) equation in each family is
strongly minimal.
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Fun Strategy

To prove that the generic Painlevé equations are strongly minimal, one
only needed to prove that one (strategic) equation in each family is
strongly minimal.

@ Example:

Step 1: Show that P;(0) : y” = 2y3 + ty is strongly minimal.
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Fun Strategy

To prove that the generic Painlevé equations are strongly minimal, one
only needed to prove that one (strategic) equation in each family is
strongly minimal.

@ Example:
Step 1: Show that P;(0) : y” = 2y3 + ty is strongly minimal.

Step 2: Use Backlund transformations to deduce that Pj(n) strongly
minimal for all n € Z.
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Fun Strategy

To prove that the generic Painlevé equations are strongly minimal, one
only needed to prove that one (strategic) equation in each family is
strongly minimal.

@ Example:
Step 1: Show that P;(0) : y” = 2y3 + ty is strongly minimal.

Step 2: Use Backlund transformations to deduce that Pj(n) strongly
minimal for all n € Z.

Step 3: Conclude, using previous fact, that Py(«) is strongly minimal
for transcendental «.
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Thank you very much attention.
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