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Throughout this talk, we let:
» No :=NU{0};
» " denote the n-th iterate of the self-map f on some ambient
space X (with 0 :=idx);
> the orbit of a point x € X under f is denoted by Of(x) and
consists of all £"(x) for all n € Np; and

» an arithmetic progression inside Ny is a set of the form
{an + b} e, for some given a, b € Ny (so, in the case a =0,
we allow the arithmetic progression be a singleton).
DML: Given a quasiprojective variety X defined over a field K of
characteristic 0 endowed with an endomorphism ®, then for any
subvariety V. C X and for any point o € X(K), the set

{neNp: ®"(a0) € V(K)}

is a finite union of arithmetic progressions.
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such as the cases when:
» & is an unramified endomorphism of a smooth variety;
» @& is an endomorphism of AZ;
» & : AN — AN is given by the coordinatewise action of
one-variable polynomials, i.e,

(X1, .oy xn) — (A(x1), ..., iv(xn))

and V c AN is a curve.
The next interesting case, still open for the DML conjecture is the
case of arbitrary endomorphisms ® of A3
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For example, consider the case of the affine line V C A? given by
the equation x + y =1 (over Fp(t)) and the automorphism & of
A? given by

®(x,y) = (tx, (L - t)y).

Then the set S of all n € Ng such that ®7(1,1) € V(F,(t)) is the
set
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since it reduces to solving the equation
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One can construct other examples in which the return set S is even
more complicated, as follows.
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1 on 1
. — :neNp,p.
{p2—1 P 0}
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Let p > 2, let K =TFp(t), let X = A3, let & : A3 — A3 given by
O(x,y,z) = (tx, (1 + t)y, (1 — t)z), let V C A3 be the hyperplane
given by the equation y +z —2x =2, and let & = (1,1, 1).
Then one can show that the return set S of all n € Ng such that
d"(a) € Vis

{p™ + p"™: ni,nm € Np}.

All these examples motivate the following conjecture.



Dynamical Mordell-Lang Conjecture in positive
characteristic

DML in characteristic p: Given a quasiprojective variety X
defined over a field K of characteristic 0 endowed with an
endomorphism ®, then for any subvariety V. C X and for any point
a € X(K), the set

{neNg: ®"(a) € V(K)}

is a finite union of arithmetic progressions along with finitely many
sets of the form

m
chpkf”f :nj€Ng foreachj=1,...m,, (1)
j=1

for some m € N, some ¢; € Q, and some k; € Np.
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Results

Theorem (jointly with Pietro Corvaja, Thomas Scanlon and
Umberto Zannier): Let ® : G — GN be a regular sel-map
defined over a field K of characteristic p, let o € GN(K) and let
V C GN be a subvariety. Then the Dynamical Mordell-Lang
Conjecture holds in the following two cases:

(1) dim(V) < 2.

(2) o is a group endomorphism and there is no nontrivial
connected algebraic subgroup G C GV such that an iterate of
® induces an endomorphism of G that equals a power of the
Frobenius. In other words, if we write the action of ® as
X — XA for some N-by-N matrix with integer entries, then A

has no eigenvalue which is multiplicatively dependent with
respect to p.
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Strategy

Step 1: A regular self-map ¢ : G — G/ is a composition of a
translation with a group endomorphism X — x4 (for some

A € My n(Z)). Therefore, for any given starting point

a € GN(K), the entire orbit O () is contained in some finitely
generated subgroup I' ¢ GN(K).

Step 2: According to the the F-structure theorem of Rahim
Moosa and Thomas Scanlon, the intersection of the subvariety

V C GV with the finitely generated subgroup I is a finite union of
F-sets, i.e., sets of the form S; - H;, where each H; is a subgroup of
I and each S; is a set of the form

m

Pl .
H’}/j 1nje Np ¢,
Jj=1

for some given ; € GN(K) and k; € No.
Step 3. We are left to determine the set of all n € Ny such that
®"(a) € S - H, for a given F-set S - H.
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Step 3

This last step is equivalent with some deep classical Diophantine
questions.

Theorem: Let {ux} be a linear recurrence sequence of integers, let
m,ci,...,cm € N, and let q be a power of the prime number p

such that
m
Z ¢ <q-—1.
i=1

Then there exists N € N, there exists an algebraically closed field
K, there exists an algebraic group endomorphism ¢ : Gﬁ — G,A,’,,
there exists a € GN(K) and there exists a subvariety V C GN(K)
such that the set of all n € Ny for which ®"(a) € V(K) is
precisely the set of all n € Ng such that

m
up = Z ciq™, (2)
i=1

for some n1,...,n, € Np.
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For example, a special case of this polynomial-exponential equation
is

which is open when m > 5. One still expects that the set of
n € Ny satisfying the general polynomial-exponential equation

m

.

up = § cp”
i=1

is a finite union of arithmetic progressions along with finitely many

sets of the form
¢

kinj .
Z djp TS Np
j=1
but when m > 2, the case of a general linear recurrence sequence
{un} is open.
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So, in order to prove the DML in characteristic p, we needed to
employ the aforementioned technical hypotheses which guarantee
that either

(1) m < 2 (this is the case when the dimension of the subvariety
V C GV is at most 2);or

(2) no characteristic root of the linear recurrence sequence {u,} is
multiplicatively dependent with respect to p (this is the case
when ® is a group endomorphism corresponding to a matrix
A € My n(Z) whose eigenvalues are not multiplicatively
dependent with respect to p).
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Beyond tori

For a regular self-map ® on an isotrivial semiabelian variety G, the
strategy works identically, only that this time we obtain that the
problem is equivalent with solving even more general
polynomial-exponential equations of the form:

m
un = E Ci)‘7i7
i=1

where {u,} is a linear recurrence sequence and the \;’s are the
eigenvalues of the Frobenius endomorphism of G.

At the opposite spectrum, if G were an abelian variety defined over
an algebraically closed field K which has trivial trace over F, then
actually the DML problem in characteristic p is identical in
methods and solution to the classical DML problem for abelian
varieties (and in this case, the return set is simply a finite union of
arithmetic progressions).

For arbitrary semiabelian varieties, and more general, for arbitrary
ambient varieties, the DML problem in characteristic p is expected
to be at least as difficult as the classical DML -conjecture.
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The Zariski dense orbit conjecture

Conjecture (Zhang, Medvedev-Scanlon, Amerik-Campana):
Let X be a quasiprojective variety defined over an algebraically
closed field K of characteristic 0 endowed with a dominant rational
self-map ®. Then the folowing dichotomy holds:

(A) there exists a point o € X(K) whose orbit O () is
well-defined and also Zariski dense in X ;or

(B) there exists a nonconstant rational function f : X --+ P such
that fo® = f.

The result is known in general when K is uncountable, but when K
is countable, the conclusion was proven only in a handful of cases.
The difficulty lies in the fact that if condition (B) does not hold,
then one can prove that outside a countable union | J; Y; of proper
subvarieties of X, each point would have a well-defined Zariski
dense orbit; however, if K is countable, one needs to show that

U; Yi(K) is a proper subset of X(K).
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There are several instances when the conjecture is known to hold:

» & : AV — AN is given by the coordinatewise action of
one-variable polynomials

(Xl7 oo 7X/\/) — (/"1(X1)7 ey fN(XN))-

» O is a regular self-map of a semiabelian variety.

» O is a group endomorphism of a commutative linear algebraic
group.

» & is an endomorphism of a projective surface.

The next interesting open case is the case of arbitrary
endomorphisms ® of AS3.
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Useful

(i)
(ii)
(iii)

reductions

It suffices to prove the result after replacing ¢ by any suitable
iterate of it.

It suffices to prove the result after replacing ® by a conjugate
of it W"lo® oW, where W is an automorphism of X.

Generally, the strategy in all known instances when the Zariski
dense conjecture was proven is to assume that condition (B)
does not hold (i.e., that ® does not leave invariant a
non-constant rational function) and then use the arithmetic of
the ambient variety X combined with various information on
the map @ to prove the existence of a Zariski dense orbit.
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Conjecture 1: Let X be a quasiprojective variety defined over an
algebraically closed field K of characteristic p and let ® : X --» X
be a dominant rational self-map defined over K as well. Assume
trdegg K > dim(X). Then either there exists a € X(K) whose
orbit under ® is well-defined and Zariski dense in X, or there exists
a non-constant rational function f : X --+ X such that f o ® = f.
Theorem (jointly with Sina Saleh): The above Conjecture 1
holds for regular self-maps ¢ : GN — GN.

Once again, the Frobenius endomorphism complicates the
arithmetic dynamics question; we expect this is the only
obstruction from obtaining the aforementioned dichotomy for the
Zariski dense orbit conjecture.
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transcendence degree over Fp,, let X be a quasiprojective variety
defined over K, and let ® : X --+ X be a dominant rational

self-map defined over K as well. Then one of the following three
conditions must hold:

(A) There exists o € X(K) whose orbit O¢(«) is Zariski dense in
X.

(B) There exists a non-constant rational function f : X —-» P!
such that f o ® = f.

(C) There exists a positive integer m, there exist subvarieties
Y C Z C X and there exists a birational automorphism T of
Z with the following properties:
(1) Y is defined over a finite field Fq and dim(Y') > 2;

(2) Z is invariant under ®™, i.e., ¢ := ®™|z is a rational self~map
onZ;



Conjecture 2: Let K be an algebraically closed field of positive
transcendence degree over Fp, let X be a quasiprojective variety
defined over K, and let ® : X --+ X be a dominant rational
self-map defined over K as well. Then one of the following three
conditions must hold:

(A) There exists o € X(K) whose orbit O¢(«) is Zariski dense in
X.

(B) There exists a non-constant rational function f : X —-» P!
such that f o ® = f.

(C) There exists a positive integer m, there exist subvarieties

Y C Z C X and there exists a birational automorphism T of

Z with the following properties:

(1) Y is defined over a finite field Fq and dim(Y') > 2;

(2) Z is invariant under ®™, i.e., ¢ := ®™|z is a rational self~map
on Z;and

(3) (r7toypor) restricted to Y induces the Frobenius
endomorphism F of Y, which corresponds to the field
automorphism x — x9.
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Theorem (jointly with Sina Saleh): Let K be an algebraically
closed field of characteristic p such that trdegFP K>1. Let

¢ : GN — GN be a dominant regular self-map defined over K.
Then at least one of the following statements must hold.

(A) There exists a € GN(K) whose orbit under & is Zariski dense

(B)
(©)

in GN.
There exists a non-constant rational function f : GN —-» P!
such that f o ® = f.

There exist positive integers m and r, a connected algebraic
subgroup Y of GN of dimension at least equal to 2 and a
translation map T, : GN — GN corresponding to a point
y € GN(K) such that

(ytodTorn) |y =(F)ly, (3)

where F is the usual Frobenius endomorphism of GN induced
by the field automorphism x +— xP.
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In case of regular self-maps ® : GN — G/, condition (C) can be
rephrased more simply as follows. We write ® as a composition of
a translation with an algebraic group endomorphism

X A

for some N-by-N matrix A with integer entries. Then condition (C)
is equivalent with asking that there exist two distinct Jordan blocks
for the Jordan canonical form of A with the property that their
corresponding eigenvalues A1 and Ay have the property that there
exist £, m € N such that

The next examples of regular self-maps ® on G2, defined over
K :=Fp(t) will show the various instances of conditions (A)-(C)
from our result.
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Example 1. ®(x1, x2, x3) = (B1x1, B2x2, F3x3) for some given
01, 02,03 € K. Then ® has a Zariski dense orbit (i.e.,
condition (A) is met) if and only if 31, 82, O3 are multiplicatively
independent; otherwise there is a nonconstant invariant rational
function f (i.e., condition (B) is met). In this case, condition (C)
is never met.
Example 2. ®(x1, %, x3) = (X, x§, x¥) for some given integer
k > 1. In this case, condition (C) is met and neither
conditions (A) or (B) are met. For any starting point
a = (a1,az,a3) € G3 (K), the orbit Op(a) is contained in
C x G, where C C G2, is a plane curve defined over F,
containing the point (a1, ap).

2 3
Example 3. ®(xq,x2, x3) = (x1, x5 ,xé’) satisfies condition (A)
always, i.e., there exists a Zariski dense orbit.



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.There are two extreme cases for our regular
self-map ® of GV in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of ® composed
with a suitable translation on G decomposes as a direct product
of the following two limit cases.



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.There are two extreme cases for our regular
self-map ® of GV in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of ® composed
with a suitable translation on G decomposes as a direct product
of the following two limit cases.

Case 1. ¢ : GN — GN is a dominant group endomorphism

X — XA for a matrix A € My n(Z) whose eigenvalues are not roots
of unity.



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.There are two extreme cases for our regular
self-map ® of GV in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of ® composed
with a suitable translation on G decomposes as a direct product
of the following two limit cases.

Case 1. ¢ : GN — GN is a dominant group endomorphism

X — XA for a matrix A € My n(Z) whose eigenvalues are not roots
of unity.

Case 2. ¢ : GN — GW is a composition of a translation with a
unipotent group endomorphism.



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.There are two extreme cases for our regular
self-map ® of GV in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of ® composed
with a suitable translation on G decomposes as a direct product
of the following two limit cases.

Case 1. ¢ : GN — GN is a dominant group endomorphism

X — XA for a matrix A € My n(Z) whose eigenvalues are not roots
of unity.

Case 2. ¢ : GN — GW is a composition of a translation with a
unipotent group endomorphism.

For both Cases, an important tool used is the F-structure theorem
of Moosa-Scanlon, but there are several other arguments needed.



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.There are two extreme cases for our regular
self-map ® of GV in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of ® composed
with a suitable translation on G decomposes as a direct product
of the following two limit cases.

Case 1. ¢ : GN — GN is a dominant group endomorphism

X — XA for a matrix A € My n(Z) whose eigenvalues are not roots
of unity.

Case 2. ¢ : GN — GW is a composition of a translation with a
unipotent group endomorphism.

For both Cases, an important tool used is the F-structure theorem
of Moosa-Scanlon, but there are several other arguments needed.
Also, our proof of Case 2 works for an arbitrary function field

K /Fp, while the proof of Case 1 is significantly more delicate when
trdegp, K =1



General strategy

For both theorems (either when trdegp, K > N or not), we have a
similar approach.There are two extreme cases for our regular
self-map ® of GV in which cases we prove that our theorems hold
and then we show how the general case can be induced from these
two special cases by proving that a suitable iterate of ® composed
with a suitable translation on G decomposes as a direct product
of the following two limit cases.

Case 1. ¢ : GN — GN is a dominant group endomorphism

X — XA for a matrix A € My n(Z) whose eigenvalues are not roots
of unity.

Case 2. ¢ : GN — GW is a composition of a translation with a
unipotent group endomorphism.

For both Cases, an important tool used is the F-structure theorem
of Moosa-Scanlon, but there are several other arguments needed.
Also, our proof of Case 2 works for an arbitrary function field

K /Fp, while the proof of Case 1 is significantly more delicate when
trdegy, K =1 (which is not surprising since Condition (C) appears
in Case 1 only).
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Examples for Case 1

Example 4. ¢ : G2, — G2, is the group endomorphism given by
(x,y) — (XP, yPQ). Then the orbit of o := (¢, t) € G2,(Fy(t)) is
Zariski dense since the height of second coordinate in ®"(«) grows
much faster than the height of the first coordinate.

A similar argument works each time when the eigenvalues of the
matrix A corresponding to the group endomorphism & (in arbitrary
dimensions) has eigenvalues whose quotients do not have absolute
value equal to 1.
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(x,y) — (x2,y?) (where p > 2). Then the orbit of

(t,t+1) € G2,(Fp(t)) is Zariski dense, but the proof is harder.
Even for such examples, the easiest route would be to use
Moosa-Scanlon’s F-structure theorem. The general Case 1 reduces
actually to a special case of Laurent’s classical theorem for the unit
equation solved in a finitely generated subgroup of GX (Q):

X'=> cip™, (4)
i=1

for some given m € N and given constants A and ¢;, where A is not
multiplicatively dependent with respect to p. Then there exist
finitely many n € Ny for which one could find tuples

(m,...,nm) € N7 satisfying (4).
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Example 6. Consider the self-map ¢ : G} — G# (defined over a
field K of characteristic p) given by

D(x1, %2, X3, Xa) = (X1X2, X2, X3Xa,YXa)

for some given 3,7 € K. Then & leaves invariant a nonconstant
rational function f if and only if 5 and ~ are multiplicatively
dependent (in which case, the rational function f is simply

X3 - xf = 1 where the integers a and b satisfy the condition

g7 yP=1).

Now, if 8 and ~y are multiplicatively independent, then the orbit of
(1,1,1,1) under & is Zariski dense in G% .
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Beyond tori

The same strategy employed in our proof of Theorem 1 (i.e., the
case of a field K of transcendence degree at least equal to N)
should extend with appropriate modification to the general case
when we replace G by a split semiabelian variety G defined over
a finite field. However, the variant of Theorem 2 (i.e., the case of a
field K of arbitrary transcendence degree) is already quite difficult
since the proof of one of the main technical ingredients in our
proof of Theorem 2 (i.e., the proof of the so-called Case 1 above)
does not extend to the abelian case; even the case of a power of an
elliptic curve is quite challenging.

Furthermore, the case of a non-isotrivial abelian variety defined
over a function field of positive characteristic will have additional
complications since even the structure of the intersection between
a subvariety of such an abelian variety with a finitely generated
subgroup is significantly more delicate.

Finally, the general case in Conjectures 1 and 2 when X is an
arbitrary variety is expected to be just as difficult as the general
case in the classical Zariski dense conjecture.



