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The Take-Home Message Regarding 
Phenotype-Centric Modeling

It is based on linear algebra in a log space and avoids dense sampling 
and numerical simulation

This strategy is especially useful at the early stage of investigations 
when little is known

It provides an efficient “Fail-Early” method of hypothesis testing

For a given model architecture, the strategy starts without kinetic 
parameter values and ends with predicted values for the realization of 
specific phenotypes

Properties of specific phenotypes as well as relationships among 
phenotypes are related mechanistically to genotype and environment
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What Is Meant By Architecture And What 
Can It Tell Us About Phenotypes?

Mechanism Architecture Phenotypes

?

• Who are the players?
• Who is talking to whom?
• How are they doing it?
• What are they saying? 

Speak Up! or Shut Up!



What Can Phenotypes In Turn Tell Us About Their 
Population Dynamics And Evolution?

dN i

dt
= m ji

j ≠i

n

∑ µ j N j - mij
j ≠i

n

∑ µi N i + µi N i

•  Growth rate constants &
•  Mutation rate constants 

Phenotypes

?

Population Dynamics
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I Will Address These Two Questions In A
Three-Part Presentation

•  Overview of Biochemical Systems Theory, Phenotypes, 
Design Principles and Modeling Strategy

•  Derivation of Phenotype-Specific Mutation Rates
•  Simple Example of Population Dynamics and Evolution
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?

Underlying Mechanisms Are Key To The Problem

The inability to relate genotype and environment to 
phenotypes exhibited by biological systems is one of 
the ‘Grand Challenges’ in biology (Brenner, 2000)



Mechanisms Provide One Of Three Critical 
Mappings Between Genotype And Phenotype

DNA
Sequence

Organismal
Phenotypes

Biochemical
Phenotypes
of Systems

Kinetic
Parameters of
Components

BST
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• Scope includes mechanistic models governed by rate laws
• Rate laws are the power functions of chemical kinetics and 

the rational functions of biochemical kinetics
• These functions and conserved quantities are integrated 

into a network by means of Kirchhoff’s Node Law 
• The result is a system of Differential-Algebraic equations

Biochemical Systems Theory
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Generalized Mass Action Equations

Without loss of generality, the Differential-Algebraic equations consisting of 
power-law and rational functions can be recast into Generalized Mass Action 
equations consisting only of sums and products of power-law functions.  
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Savageau, M.A. and Voit, E.O. (1987) Recasting nonlinear differential equations as S-systems:  a canonical nonlinear form.  
Math. Biosci. 87, 83-115. 



Comparable Quantitative Concepts Lacking  
For A Deep Understanding Of 

Genotype To Phenotype

• Genotype has a well-defined generic definition: genome 
sequence

• Phenotype has no comparable generic definition: 
ad hoc and descriptive
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Microbial Phenotypes
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Without A Generic Definition Of Phenotype, 
You Cannot “Predict” Phenotypes That 

You Have Not Already Seen!
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Definition Of Phenotypes: 
Valid Combination Of Dominant Processes 

Involving All Concentrations and Fluxes

A

C

B•••

•••

•••

•••

(First conceptually; later more mathematical detail in the concrete example)
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Test For Validity Involves S-System 
Equations And Inequalities

• Solution of linear equations in logarithmic coordinates 

• Satisfying linear inequalities in logarithmic coordinates
• Rigorously define linear hyper-planes for phenotype boundaries 

(polytopes) 
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Definitions Of Phenotype Based On 
Biochemical Systems Theory

• A phenotype is the set, or sets, of concentrations and fluxes 
corresponding to a valid combination of dominant processes
functioning within an intact system

• A qualitatively distinct phenotype is the characteristic phenotype 
that exists throughout a region of validity (polytope) in parameter 
space

• A phenotypic repertoire is the collection of qualitatively distinct 
phenotypes integrated into a space-filling structure -- the System 
Design Space of parameter values

Savageau, et al. (2009) Phenotypes and Tolerances in the Design Space of Biochemical Systems. 
Proc Natl Acad Sci U S A. 106(16), 6435-6440. 
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Biochemical Phenotypes Characterized By

• Mechanisms: Portions of the system’s mechanisms being exercised
• Equations: S-system equations
• Geometry: Boundaries, volumes & robustness in design space
• Design: System design principles
• Behavior: Qualitative and quantitative
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Design Space Toolbox (DST) For Automated 
Prediction Of Phenotype Characteristics

• Repertoire dependent only on Architecture
• Parameter values for the realization of each phenotype
• Concentrations & Fluxes in steady state
• Global tolerances for each parameter
• Signal amplification measured by input-output gain factors
• Eigenvalues for local dynamics
• Mutation rates based on polytope volumes and centroids 

(as we shall see)
Valderrama Gómez, M.A, et al.  (2020) Mechanistic Modeling of Biochemical Systems without 
A Priori Parameter Values Using the Design Space Toolbox v.3.0, iScience 23, 1-19. 
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The Docker images used by DST3 are freely available at https://hub.docker.com/r/savageau/dst3 



Sample Space of System Parameters,
Environmental Variables, Initial Conditions 

Estimate Phenotypic Repertoire

Experimentally Test
And Refine Model

Conceptual Model
(Hypothesis)

Measure & Estimate 
Parameter Values

Select Phenotypes
Of Interest  

Predict Parameter Values

Experimentally Test
And Refine Model

Conceptual Model
(Hypothesis)

Enumerate Phenotypic 
Repertoire

Phenotype-CentricSimulation-Centric

Sample Space of System Parameters,
Environmental Variables, Initial Conditions 

Estimate Phenotypic Repertoire

Experimentally Test
And Refine Model

Conceptual Model
(Hypothesis)

Measure & Estimate 
Parameter Values

Select Phenotypes
Of Interest  

Predict Parameter Values

Experimentally Test
And Refine Model

Conceptual Model
(Hypothesis)

Enumerate Phenotypic 
Repertoire

Toolbox Enables A Very Different Modeling Strategy

Valderrama Gómez, et al. (2018) Phenotype-centric modeling for elucidation of biological design principles. J. Theoret. Biol. 455, 281-292. 



First: The Phenotypic Repertoire Identifies 
(Without Kinetic Parameter Values)

• “Physiological” phenotypes
• Normal
• Cyclic (rapid equilibrium)
• Co-dominant

• Pathological phenotypes
• Exploding
• Imploding

• Phenotypes of interest by filtering the repertoire
• Multi-modality
• Oscillations
• Complex logic functions
• “Fail-Early” hypothesis testing

19
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20
principles.7 All these aspects of the design space strategy would
be further enhanced if the strategy could be more fully
automated. This has been the motivation for the work presented
here. The automated strategy provides a novel method of model
reduction with the advantage of efficiently identifying regions of
interest in the overall phenotypic landscape. The behavior in these
regions can then be examined with conventional methods to
obtain a more refined analysis of the full system, particularly
near boundaries between phenotypes where the differences tend
to break down.10 Parameter values can be bounded and even
fixed by specific constraints, and once constrained, the analysis
can guarantee that parameters meet realistic requirements.
Although scalability is an issue being actively explored, there is
compensation in that computations can be performed in parallel
(see Part 1 in Supplementary Online Methods).

As illustrations of these innovations we have provided
applications to different gene circuit designs exhibiting rich
dynamic behaviors that include bi-stability and limit-cycle
oscillations. In the application to a general class of two-gene
circuits we identified nine out of 16 designs capable of exhibiting
sustained oscillatory behavior, with two being new designs
overlooked in an earlier study. Moreover, for many designs in
this class we identified multiple phenotypes capable of exhibiting
oscillatory behavior. For one design we found an ensemble of four
distinct oscillatory phenotypes that can be visualized within a
single relevant slice of design space.
This identification and characterization of the phenotypic

potential of nonlinear models can serve as a rigorous basis for
model discrimination in the process of hypothesis testing. Once a
working hypothesis has been formulated in terms of system

Table 2. Summary of global properties for the 16 designs in the general class of two-gene circuits

Design identifier Indices for the mode of controla Phenotypic fractionb No. of oscillatory phenotypes

D.1 π1= 0, δ1= 0, π3= 0, δ3= 0 6/16 0
D.2 π1= 0, δ1= 1, π3= 0, δ3= 0 10/36 0
D.3 π1= 0, δ1= 0, π3= 0, δ3= 1 15/36 1
D.4 π1= 0, δ1= 1, π3= 0, δ3= 1 25/81 2
D.5 π1= 1, δ1= 0, π3= 0, δ3= 0 4/16 0
D.6 π1= 1, δ1= 1, π3= 0, δ3= 0 10/36 0
D.7 π1= 1, δ1= 0, π3= 0, δ3= 1 10/36 0
D.8 π1= 1, δ1= 1, π3= 0, δ3= 1 25/81 1
D.9 π1= 0, δ1= 0, π3= 1, δ3= 0 9/16 1
D.10 π1= 0, δ1= 1, π3= 1, δ3= 0 15/36 2
D.11 π1= 0, δ1= 0, π3= 1, δ3= 1 15/36 2
D.12 π1= 0, δ1= 1, π3= 1, δ3= 1 25/81 4
D.13 π1= 1, δ1= 0, π3= 1, δ3= 0 6/16 0
D.14 π1= 1, δ1= 1, π3= 1, δ3= 0 15/36 1
D.15 π1= 1, δ1= 0, π3= 1, δ3= 1 10/36 0
D.16 π1= 1, δ1= 1, π3= 1, δ3= 1 25/81 2

aThe meaning of the π and δ symbols is described in the caption of Figure 1.
bThe phenotypic fraction is shown as the number of valid phenotypes divided by the maximum number of potential phenotypes.
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Figure 3. Example of an ensemble of four oscillatory phenotypes in a two-dimensional slice of system design space for the D.12 design.
(a,b) System design space with the effective rate constant for inactivation of the two regulators on the x and y axes, normalized with respect
to the growth rate, μ, with a 1 h doubling time. See caption of Figure 2 for details. (c–f) Temporal behavior of normalized repressor
concentration x4 determined by simulation of the full system within the phenotypic regions of potentially oscillation in panels (a,b) indicated
by the symbols in the upper-left corners (regions 43 ●, 16 ■, 45 ▲ and 18 ▼). It should be noted that sustained oscillations may dynamically
cycle through different qualitatively distinct phenotypes in state space.11
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principles.7 All these aspects of the design space strategy would
be further enhanced if the strategy could be more fully
automated. This has been the motivation for the work presented
here. The automated strategy provides a novel method of model
reduction with the advantage of efficiently identifying regions of
interest in the overall phenotypic landscape. The behavior in these
regions can then be examined with conventional methods to
obtain a more refined analysis of the full system, particularly
near boundaries between phenotypes where the differences tend
to break down.10 Parameter values can be bounded and even
fixed by specific constraints, and once constrained, the analysis
can guarantee that parameters meet realistic requirements.
Although scalability is an issue being actively explored, there is
compensation in that computations can be performed in parallel
(see Part 1 in Supplementary Online Methods).

As illustrations of these innovations we have provided
applications to different gene circuit designs exhibiting rich
dynamic behaviors that include bi-stability and limit-cycle
oscillations. In the application to a general class of two-gene
circuits we identified nine out of 16 designs capable of exhibiting
sustained oscillatory behavior, with two being new designs
overlooked in an earlier study. Moreover, for many designs in
this class we identified multiple phenotypes capable of exhibiting
oscillatory behavior. For one design we found an ensemble of four
distinct oscillatory phenotypes that can be visualized within a
single relevant slice of design space.
This identification and characterization of the phenotypic

potential of nonlinear models can serve as a rigorous basis for
model discrimination in the process of hypothesis testing. Once a
working hypothesis has been formulated in terms of system

Table 2. Summary of global properties for the 16 designs in the general class of two-gene circuits

Design identifier Indices for the mode of controla Phenotypic fractionb No. of oscillatory phenotypes

D.1 π1= 0, δ1= 0, π3= 0, δ3= 0 6/16 0
D.2 π1= 0, δ1= 1, π3= 0, δ3= 0 10/36 0
D.3 π1= 0, δ1= 0, π3= 0, δ3= 1 15/36 1
D.4 π1= 0, δ1= 1, π3= 0, δ3= 1 25/81 2
D.5 π1= 1, δ1= 0, π3= 0, δ3= 0 4/16 0
D.6 π1= 1, δ1= 1, π3= 0, δ3= 0 10/36 0
D.7 π1= 1, δ1= 0, π3= 0, δ3= 1 10/36 0
D.8 π1= 1, δ1= 1, π3= 0, δ3= 1 25/81 1
D.9 π1= 0, δ1= 0, π3= 1, δ3= 0 9/16 1
D.10 π1= 0, δ1= 1, π3= 1, δ3= 0 15/36 2
D.11 π1= 0, δ1= 0, π3= 1, δ3= 1 15/36 2
D.12 π1= 0, δ1= 1, π3= 1, δ3= 1 25/81 4
D.13 π1= 1, δ1= 0, π3= 1, δ3= 0 6/16 0
D.14 π1= 1, δ1= 1, π3= 1, δ3= 0 15/36 1
D.15 π1= 1, δ1= 0, π3= 1, δ3= 1 10/36 0
D.16 π1= 1, δ1= 1, π3= 1, δ3= 1 25/81 2

aThe meaning of the π and δ symbols is described in the caption of Figure 1.
bThe phenotypic fraction is shown as the number of valid phenotypes divided by the maximum number of potential phenotypes.

0

2

4

6

lo
g 1

0(
β 4

 /µ
)

lo
g 1

0(
β 4

 /µ
)

log10(β2/µ)

0 5 10 15 20

0.5

lo
g[
x 4

]

lo
g[
x 4

]
lo

g[
x 4

]

lo
g[
x 4

]

7
16
18
27
40
41
43
44
45
72
41, 43, 44
45, 41, 44

Time (hr)

0.5

1.5

0 2 4 6
0

2

4

6

0,1,2

0,1

2

0

Time (hr)

1

2

3

0 5 10 15 20

0 5 10 15 20 0 5 10 15 20

Time (hr)Time (hr)

0.5

1.5

0.5

0.5

1.5

0.5

Figure 3. Example of an ensemble of four oscillatory phenotypes in a two-dimensional slice of system design space for the D.12 design.
(a,b) System design space with the effective rate constant for inactivation of the two regulators on the x and y axes, normalized with respect
to the growth rate, μ, with a 1 h doubling time. See caption of Figure 2 for details. (c–f) Temporal behavior of normalized repressor
concentration x4 determined by simulation of the full system within the phenotypic regions of potentially oscillation in panels (a,b) indicated
by the symbols in the upper-left corners (regions 43 ●, 16 ■, 45 ▲ and 18 ▼). It should be noted that sustained oscillations may dynamically
cycle through different qualitatively distinct phenotypes in state space.11
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We previously used design space methodology to characterize
several natural systems5–9 and a number of synthetic
constructs.10,11 In each case, the approach started with experi-
mentally determined parameter values for an established model.
An early application of this approach to the oxygen stress
response system in human erythrocytes revealed three
qualitatively distinct phenotypes whose ranked fitness revealed
a physiological, pathological and potentially lethal phenotype.12

Experimental data for 67 well-characterized variants of the G6PD
enzyme, the key component of the stress response system,
exhibited two of the three phenotypes: variants from ‘normal’
individuals were typically associated with the physiological
phenotype and those from ‘hemolytic’ individuals were typically
associated with the pathological phenotype. None of these 67
well-characterized variants was associated with the phenotype
having the worst fitness characteristics, which we suggest might
indicate that such variants are lethal. However, as systems become
larger and more complex with relatively few known parameter
values, systematic and automated strategies that identify, analyze
and rank their qualitatively distinct phenotypes become essential.
Here we introduce a new strategy, based on system design

space methodology, that inverts the previous order of analysis and
automates the entire process. The strategy starts with the
relatively fixed, architectural, features of a model—as distinct
from its parameters (for more on this distinction see System
Architecture in Supplementary Online Methods)—and proceeds
automatically in four parts: (a) enumerating the phenotypic
repertoire without specifying parameter values, (b) finding a
set of parameter values for the realization and characterization
of each qualitatively distinct phenotype, (c) identifying a two-
dimensional slice of system design space that allows simultaneous
visualization of several regions representing qualitatively distinct
phenotypes and (d) identifying an ordered sequence of pheno-
types capable of modeling specific functional characteristics of
natural systems or guiding construction of synthetic systems to
achieve desired functions. We demonstrate validity of the
automated strategy, without specifying parameter values, by
applying it to a previously analyzed gene circuit oscillator, which
was based on experimentally measured and estimated parameter
values. The demonstration is extended to a general class of
two-gene circuits, showing that it not only reproduces earlier
results but also reveals new results previously overlooked.

MATERIALS AND METHODS
Details in Supplementary Online Methods provide (a) background on the
design space methodology, (b) a simple example (see Supplementary
Figure M1) as a vehicle to introduce the more abstract and technical
aspects for each part of the strategy and (c) a description of the
methodology applied to a general class of two-gene circuits. The Results
section provides in parallel a more intuitive description of the same
strategy and the application to synthetic circuits for the design of an
oscillator. Readers immediately interested in the technical aspects might
wish to proceed directly to Supplementary Online Methods and then
return to the new results presented here.

RESULTS
We first illustrate our strategy by reanalyzing a two-gene
relaxation oscillator circuit that displays rich behaviors including
hysteresis and oscillations.10 Then, we perform an automated
analysis for the class of two-gene circuitry involving an activator
and a repressor as shown in Figure 1.

Two-gene relaxation oscillator
We apply our strategy to a two-gene synthetic oscillator that has
been shown to exhibit damped oscillations.13 Its design is similar
to that in Figure 1 with architectural indices given by π1 = 1, δ1 = 1,

π3 = 1, and δ3 = 0. We previously formulated a mechanistic model,
incorporated experimentally estimated parameter values, per-
formed conventional bifurcation analysis as well as our design
space analysis, and showed that the design is capable of
exhibiting sustained oscillations.10 Our goal here is to test the
extent to which our automated methods reproduce the previous
results, but without experimentally estimated parameter values.
The first part of our automated strategy involves enumerating

the qualitatively distinct phenotypes of the system to identify
its complete phenotypic repertoire (e.g., see Supplementary
Table M1). The mechanistic model and the meaning of its
parameters can be found in Supplementary Online Methods.
It has a maximum of 36 potentially valid qualitatively distinct
phenotypes, as defined within the framework of the design space
approach.14 However, our automatic enumeration reveals that
only 15 of these are valid somewhere in parameter space. The
phenotypic repertoire of the system is listed in Table 1 and
shown graphically in the left panel of Figure 2a by an arbitrary
color-coded Case no. in design space.
The second part of our automated strategy involves finding a

set of parameter values that realizes each qualitatively distinct
phenotype and facilitates their further characterization (e.g., see
Supplementary Figure M2). The steady-state solution, or fixed
point, of the S-system model identified with each phenotype can
be determined analytically, and diverse steady-state and local
dynamic characteristics can then be determined.15,16 As shown in
the last column of Table 1, we find phenotypes that are stable,
exponentially unstable and oscillatory unstable. The number of
eigenvalues with positive real part is the phenotypic characteristic
plotted as a heat map in the left panel of Figure 2b. The case with
two complex conjugate eigenvalues having positive real part is
consistent with limit cycle oscillations arising through Hopf
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Figure 1. General class of two-gene circuits with one activator and
one repressor. The species represent activator mRNA, X1; nascent
activator protein, XA; mature activator protein, X2; repressor mRNA,
X3; nascent repressor protein, XR; and mature repressor protein, X4.
Barbed arrows represent stimulatory influences; blunt arrows
represent inhibitory influences. Arrows ending on the shaft of other
arrows represent influence on a given process; horizontal arrows
represent mass flow. The alternative modes of transcription control
are shown inside the large dashed boxes. The alternatives include
two dual, one single and one constitutive mode of transcription
control. The π and δ are binary indices that define the mode of
transcriptional control. The primary mode of transcriptional control
involves an activator (π= 1) or a repressor (π= 0). The transcriptional
control involves dual (δ= 1) or single (δ= 0) regulators. The
combination δ1= 0 and π1= 1 (or δ3= 0 and π3= 0) indicates a
constitutive mode of transcription control for the activator
(or repressor). For example, the relaxation oscillator design is
represented by π1= 1, δ1= 1, π3= 1 and δ3= 0. Note: the single
modes of transcriptional control of the activator (Box 1) and
repressor (Box 2) are different.
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Here we revisit this general class of circuit designs, which are represented by the 

following mechanistic model that we reproduce here for convenience, 
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where X1, XA and X2 represent the concentration of activator mRNA, immature protein 

and functional protein, respectfully; X3, XR and X4 represent the concentration of 

repressor mRNA, immature protein and functional protein, respectfully. The α and β 

parameters are the first-order rate constants for synthesis and degradation; µ is the 

exponential growth rate of the cells; the ρ parameters represent the capacity for 

regulation; the K2R and K2 parameters are the concentrations of activator for half-maximal 

induction of repressor and activator transcription; the K4 and K4A parameters are the 

concentrations of repressor for half-maximal repression of repressor and activator 

transcription. The π and δ are binary indices that can assume either a 0 or 1 value that 

define the mode of transcriptional control. The π parameters determine whether the 

primary mode of transcriptional control involves an activator (π = 1) or a repressor (π = 

We examined 16 alternative logic functions without specifying kinetic parameter values 
and identified the number of phenotypes capable of generating oscillations in each case
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conformational shift when bound to anhydrotetracycline (aTc). This change in structure reduces the binding 
affinity for specific DNA sequences within the promoter regions of their target genes, thus relieving repression 
and causing an induction of target gene expression30,31. The repressor λ  CI does not respond to either of these 
gratuitous inducers that constitute the environmental signals used in the reported experiments7 . These transcrip-
tional circuits are represented by the diagrams in Fig. 6.

Circuit architecture and expected results. The transcriptional circuits, represented by the diagrams in Fig. 6, share 
a general topology (an architectural feature) in which the transcriptional repressors are coupled to form a hierar-
chical regulatory cascade involving an inducible primary repressor, an inducible secondary repressor, a tertiary 
repressor, and a reporter protein. The primary repressor protein binds to the promoter region of its own gene and 
that of the gene for the secondary repressor, thus repressing gene expression of both the primary and secondary 
repressors. The secondary repressor binds to the promoter region of the gene for the tertiary repressor to cause 
its repression. The tertiary repressor binds to the promoter region of the gene encoding a fluorescent reporter 
protein, thus repressing gene expression and consequently cell fluorescence.

Circuit architecture. Although the general topology is the same for both circuits, the primary and secondary 
repressors are switched such that the primary repressor in one circuit is the secondary repressor in the other and 
vice versa. We refer to the individual circuits by their primary repressor; hence, the gene circuit in Fig. 6a is the 
TetR-primary circuit and that in Fig. 6b is the LacI-primary circuit.

Note that the D038 and D052 constructs depicted in Fig. 2 of Guet et al.7  share the same promoters, with 
exception of the lac promoter for which two are shown. However, they also report experimental data showing that 
the qualitative aspects of the D052 construct are the same, regardless of the specific lac promoter used7  Here, we 
assume that the lac promoters are identical, since this represents a more stringent comparison.

Experimental observations. The binary logic functions reported by Guet et al.7  are ‘fuzzy’ as they depend on 
an arbitrary fluorescence threshold to discriminate between the binary output states. Here, we reevaluate the 
observed fluorescence profiles and focus on the qualitative nature of the results to identify the appropriate binary 
logic functions that will be the focus of our analysis.

The qualitative nature of the published results is as follows. The TetR-primary circuit, shown in Fig. 6a, exhib-
its high fluorescence intensity at a low IPTG and high aTc (−  /+ ); background level fluorescence at high IPTG and 
high aTc (+ /+ ); and low fluorescence at the remaining conditions (+ /−   and −  /−  ). In contrast, the LacI-primary 
circuit, shown in Fig. 6b, exhibits high fluorescence intensity at low IPTG and low aTc (−  /−  ); and background 
level fluorescence intensity at all other experimental conditions (+ /−  , −  /+ , + /+ ) [data reported from Fig. 6A in 
Guet et al.7 ]. The reported result for the TetR-primary circuit is a conditional “aTc AND NOT IPTG”, also known 
as a NIF1, binary logic function. A fluorescence intensity threshold can be chosen such that the conditional logic 
function is produced; however, an alternative threshold can be chosen such that the construct exhibits a NOT 

Figure 6. Conceptual models for experimental constructs consisting of a three-gene hierarchical 
regulatory circuit. Transcription and translation are collapsed into a single kinetic-step, without loss of 
generality in steady state. The ordering of genes represents the order in which they are encoded on the plasmids 
constructed by Guet et al.7 . (a) The TetR-primary circuit and (b) the LacI-primary circuit. 21
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Here, we present a novel strategy aimed at overcoming this challenge; it consists of three phases: (1) an inno-
vative model-independent phase that rigorously characterizes experimental data, (2) a model-dependent phase 
that automatically identifies the repertoire of model phenotypes, and (3) a model-discrimination phase that sys-
tematically compares the results of the previous phases. The methods are first presented in detail using a simple 
well-characterized system, the lac operon of Escherichia coli, to facilitate the introduction.

We then illustrate this strategy with an application to published examples of synthetic gene constructs that 
exhibit unexpected results7, and demonstrate that the conventional models are unable to exhibit specific exper-
imental observations, regardless of parameter values. We propose a series of hypotheses with the potential to 
resolve the discrepancies between model phenotypes, as defined rigorously within the System Design Space 
method11,12, and experimental data. Our analysis identifies 5 out of 40 hypotheses that can account for the qualita-
tive nature of the experimental observations. Thus, given experimental results consisting of discrete observations 
and a set of mechanistic models based on biochemical kinetics, our strategy determines whether the models are 
consistent or inconsistent with the experimental data.

Three-Phase Strategy for Model Discrimination
The process of model discrimination requires comparing model behavior against experimental data. Our strategy, 
outlined in Fig. 1, involves three phases: analyzing landscapes that realize discrete experimental data to identify 
their essential landmarks, analyzing quantitative models to identify their repertoire of qualitatively distinct phe-
notypes, and reconciling landmarks and phenotypes to discriminate among alternative models (hypotheses). 
The first is a model-independent phase that is concerned only with characterizing discrete experimental obser-
vations. The second is a model-dependent phase that is concerned only with model architecture and parameter 
values. We have previously defined the architecture of a model as the collection of attributes that remain fixed 
independent of specific values for the parameters that characterize a particular instance12. Important architectural 
features include (a) the network topology of interactions, (b) the signs of the interactions, and (c) the number of 
binding sites involved in the interactions. The third is a model-discrimination Phase in which a specific model 
architecture serves as the basis for our mathematical representation of a hypothesis concerning the experimental 
data. We test hypotheses at two levels: (1) the architectural level, defined purely by the model’s architecture, and 
(2) the biological level, defined by parameter values restricted to a range about their experimentally measured or 
estimated value.

Figure 1. A flowchart illustrating the major steps in the strategy for model discrimination. The three 
phases of the method are highlighted by different colors. Discrimination at the level of model architecture is 
determined without parameter values. Discrimination at the biological level is determined in the same way as 
at the architectural level but with the imposition of bounds on the values for the parameters such that they are 
biologically relevant.

Lomnitz & Savageau (2015) Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems.  
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We examine 40 alternative hypotheses and showed that 5 have the potential to reproduce 
the experimental data, and only one can do so with biologically relevant parameter values. 
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Fig. 3. Workflow from Conceptual Model to Predicted Induction Characteristic. (A) Model architecture includes the interaction network, signs of interactions, and number of 
binding events in the interactions. Blue characters in parenthesis are used to construct the mathematical model shown in the neighboring panel. (B) Mathematical model 
consisting of chemical and biochemical kinetic equations. Simulation-centric strategy: (C) Decades of work experimentally measuring and computationally estimating values 
for the parameters of the model in (A). (D) The resulting nominal set of parameter values. (E) The phenotypic repertoire can be obtained by dense sampling the parameter 
space and simulation; however, for our purposes here, we use the DST2 software with the experimentally determined values for the parameters to visualize the distinct 
phenotypic regions (See also Fig. 5 ). (F) The steady-state induction characteristic is predicted for various values of the input variable, RecA activity in the case of phage λ
induction. Phenotype-centric strategy: (G) The phenotypic repertoire is enumerated without specifying values for the kinetic and thermodynamic parameters, and the list can 
be filtered to obtain only the phenotypes of interest (blue). (H) Parameter values are predicted automatically for each qualitatively-distinct phenotype of interest to localize 
estimates within a ‘chunk’ of parameter space. (I) The phenotypic repertoire can be visualized without sampling by taking slices through the high-dimensional object in the 
system design space (See also Fig. 5 ). (J) The steady-state induction characteristic is predicted for various values of the input variable, which is RecA activity. 

Fig. 4. Genetic Network Involving an Activator and a Repressor. The synthesis of 
the activator molecule A undergoes an autocatalytic activation and a repression by 
the repressor molecule R, whose synthesis is in turn activated by A. 
Savageau, 2013 ) and induction preferences in catabolically diverse 
Pseudomonas putida ( Nichols and Harwood, 1995; Rojo, 2010 ), 
in plants including asymmetric stem cell division of Arabidopsis 
thaliana ( Cruz-Ramírez et al., 2012 ), and in animals including tra- 
cheal cell specification from a field of progenitor cells of Drosophila 
melanogaster ( Metzger and Krasnow, 1999; Zelzer and Shilo, 20 0 0 ) 
and neural progenitor cells switching to oligodendroglia in the 
brains of Rattus norvegicus ( Lai et al., 2004 ). Homeostatic regula- 
tion is generated by negative feedba ck , and under certain condi- 
tions it also can generate oscillations ( Elowitz and Leibler, 20 0 0 ); 

however, more robust oscillations are obtained with a combination 
of positive and negative feedback ( Lomnitz and Savageau, 2014; 
Novák and Tyson, 2008; Purcell et al., 2010; Tsai et al., 2008 ). This 
architecture is at the core of circadian clocks found in organisms 
including cyanobacteria ( Tomita et al., 2005 ), flies ( Hardin, 2011 ), 
plants ( Nohales and Kay, 2016  ), and mammals ( Papazyan et al., 
2016  ). Additionally, it is at the core of many synthetic gene oscilla- 
tors ( Atkinson et al., 2003; Stricker et al., 2008; Tigges et al., 2009 ) 
that provide a simplified and experimentally tractable context for 
study. 

The examination of the network illustrated in Fig. 4 will provide 
a more detailed treatment of the various steps in a design space 
analysis and demonstrate how this type of analysis can be used 
to elucidate underlying design principles that would otherwise be 
difficult if not impossible to discover by intuition or tractable ex- 
periments. 

A typical model with the equations for mRNA dynamics as- 
sumed to be fast and their quasi-steady state values incorporated 
into the slower equations for protein dynamics involves rational 
functions for the synthesis of the repressor ( R ) and activator ( A ) in 
the following equations: 
1 
βR dR 

dt = γR 1 
ρR + ( A 

K A )n 
1 + ( A 

K A )n − R ρR > 1 (4) 

Valderrama-Gómez, et al. (2018) Phenotype-centric modeling for elucidation of biological design principles. Journal of Theoretical 
Biology 455,  281–292.  

Phenotypes in Parameter Space and State Space
this S-system is clearly unstable throughout its phenotypic
region since g12 ¼ 2 > 1.

A global view of these dynamic traits, another pheno-
typic characteristic, can be obtained by plotting the number
of eigenvalues with positive real part on the z-axis. The
results are shown in Fig. 3(d), in which the stable regimes
with zero are shown in blue, the bistable regimes with one
(for the unstable phenotype) are in red, and the oscillatory
regimes with two are in yellow.

IV. COMPARISONS WITH CONVENTIONAL
BIFURCATION ANALYSIS

The system design space provides a global view of the
qualitatively distinct phenotypes of the system. The bounda-
ries in system design space are not arbitrary, rather they are
completely determined by the model itself. In some cases,
these boundaries correspond to conventional bifurcations. In
others, they signify a qualitative change in phenotype repre-
sented by the solution of the different forms of the S-system
equations governing the adjacent phenotypes. For example,
as was seen in Sec. III D, the dependency of the activator
concentration X2 on the repressor lifetime 1=b4 is zero-order
in case 22, inverse 2/3 power in case 23, and second-order in
case 24.

The individual phenotypes can be further analyzed in
detail using quantitative methods. In this particular case,
involving the example in Sec. III, the focus is on the
dynamic characteristics. Fig. 3(d) exhibits a number of stable
regions, several hysteretic regions, and a central oscillatory
region. The regions representing hysteresis or oscillation
tend to be overestimates due to the lack of dominance at the
boundaries.24

The system design space methodology provides for the
rapid identification of regions of potential interest that can
then be explored in more detail by quantitative methods if
necessary. In the case of the circuit in Fig. 2, the method
identified regions with three distinct dynamic behaviors. The
results from the analysis in system design space are com-
pared with the results from conventional bifurcation analy-
sis30 in Fig. 4. The bifurcation diagram in Fig. 4(a) is
obtained with the lifetime of the repressor fixed at a value
corresponding to b4 ¼ 100=h. Superimposed is the corre-
sponding steady-state value of X2 and its local stability as
determined from the analysis in system design space. A com-
parison of the two results shows that the hysteretic region, as
determine by bifurcation analysis, is entirely within that
determined by the design space analysis, as expected.
The bifurcation diagram in Fig. 4(b) is obtained with the life-
time of the repressor fixed at a value corresponding to
b4 ¼ logð2Þ=h. In this case, the hysteretic and oscillatory
regions as determined by the bifurcation analysis also are
entirely within those determined by the design space
analysis.

As the bifurcation parameter b2 increases from the left,
oscillations emerge with gradually increasing amplitude as
the result of a typical super-critical Hopf bifurcation; as it
decreases from the right, large-amplitude oscillations emerge
full blown as the result of a sub-critical Hopf bifurcation.

Although the bifurcation diagram in Fig. 4(b) suggests a hys-
teretic switch with the oscillations forming and dissolving at
different threshold values of the bifurcation parameter, the
hysteresis is not seen in this case because the amplitude of
the oscillation is so large that the system is thrown into the
basin of attraction for the stable steady state without main-
taining the oscillation. The envelope for the amplitude of the
oscillations is shown in Fig. 5(a) and the corresponding
frequency of the oscillations is shown in Fig. 5(b), as a func-
tion of the bifurcation parameter b2.

V. DISCUSSION

The system design space methodology in this paper pro-
vides two innovations that show promise for dealing with the
genotype-phenotype challenge. First, it provides a mathe-
matically rigorous definition of phenotype as a combination
of dominant processes with linear hyper-plane boundaries,
which define an irregular polytope within which the pheno-
type is valid. Second, it provides for the deconstruction of
complex systems into a finite number of mathematically trac-
table nonlinear sub-systems representing the qualitatively
distinct phenotypes.

The S-systems that characterize the qualitatively distinct
phenotypes are rigorously defined by the underlying mecha-
nisms of the system itself, and all of the parameters are
involved in determining the geometrical landmarks in design
space. Moreover, the S-systems typically involve distributed
aspects of the entire system and are not a localized “module”

FIG. 4. Comparison of saddle-point (open circles) and Hopf bifurcations
(filled circles) as determined by system design space (gray lines) and con-
ventional bifurcation (black lines) analyses. (a) Saddle-point bifurcation pre-
dicted with the lifetime of the repressor fixed at a value corresponding to
b4 ¼ 100=h. (b) Saddle-point and Hopf bifurcations predicted with the life-
time of the repressor fixed at a value corresponding to b4 ¼ logð2Þ=h.
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!1:82! log b2 < log b4 < 1:18! log b2 and

!0:830þ 0:5 log b2 < log b4 < 0:669þ 0:5 log b2 (42)

are more useful for making comparisons in Sec. III F.
Similarly, for case 24, the boundary conditions in numerical
form are

0:5þ log b2 < log b4 < 1:5þ log b2 and

log b4 < 0:669þ 0:5logb2: (43)

As seen in Eq. (40) through Eq. (43), all of the boundaries
are linear in logarithmic coordinates (see also Fig. 3(a)).

F. Constructing the system design space

All the boundaries of the valid phenotypes, which are
linear hyper-planes, can be determined and the system design
space constructed computationally (for small systems using
a MATLAB tool box11). All but 8 of the 36 potential pheno-
types for this example are valid. The results are plotted in
Fig. 3(a) with the rate of removal of the activator on the
x-axis and that of the repressor on the y-axis.

The global tolerance to a change in phenotype by
parameter variation is estimated by the ratio of values at the
extremes that remain within a phenotypic region. For exam-
ple, the global tolerances to a change in the oscillatory phe-
notype by variation in a regulator half-life are estimated to
be 10 fold, as is evident from the slice of system design
space in Fig. 3(a). The global tolerances for the other param-
eters can be readily estimated in a similar fashion, and the
values are all at least an order of magnitude.

G. Analysis

The analysis of each phenotype is a straightforward
application of linear analysis in the logarithmic space. Any
phenotypic characteristic of interest can be determined by
analysis and plotted as a heat map on the z-axis. We have
already shown how the steady-state solutions are obtained in
the process of determining phenotype validity (Sec. III D).

The steady-state solution for the activator X2 over all the
phenotypic regions is plotted for increasing values of b2 in
Fig. 3(b) and for decreasing values in Fig. 3(c). The pheno-
types with different values in the two plots represent cases of
bistability and hysteresis.

The local dynamics can be verified analytically and the
results often apply to an entire region of the design space.
The behavior in regions with three overlapping phenotypes
is of particular interest because it represents regions of
hysteresis in which two of the phenotypes are stable and the
third unstable. As an example, the stability for the case 22
phenotype is obtained following application of Eq. (8):

du1=dt ¼ F1½!u1 %
du2=dt ¼ F2½ u1 ! u2 %
du3=dt ¼ F3½ ! u3 %
du4=dt ¼ F4½ u3 ! u4%:

(44)

The F-factors are always positive, so this S-system is clearly
stable throughout the region for case 22, regardless of param-
eter values. Similarly, for the case 35 phenotype,

du1=dt ¼ F1½!u1 %
du2=dt ¼ F2½ u1 ! u2 %
du3=dt ¼ F3½ g32u2 ! u3 %
du4=dt ¼ F4½ u3 ! u4%:

(45)

This S-system, like that for case 22, is stable throughout its
phenotypic region. For the third overlapping phenotype (case
24),

du1=dt ¼ F1½!u1 þ g12u2 ! g14u4%
du2=dt ¼ F2½ u1 ! u2 %
du3=dt ¼ F3½ ! u3 %
du4=dt ¼ F4½ u3 ! u4%:

(46)

The characteristic equation in this case is
½k2þ ðF1þF2ÞkþF1F2ð1! g12Þ%ðkþF3ÞðkþF4Þ ¼ 0, and

FIG. 3. (a) System design space for a
relaxation oscillator involving both posi-
tive and negative feedback loops. The
color bar represents the case number
for each of the phenotypes. (b)–(d)
Phenotypic characteristics represented
as a heat map on the z-axis of the system
design space: (b) logarithm of activator
concentration X2 with increasing values
or (c) decreasing values of the parameter
b2, and (d) number of eigenvalues with
positive real part. Color bar represents
the value of the phenotypic character in
each example.
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Figure S6. Dynamic Behavior of the three S-Systems and the Full System. State space 
trajectories are simulated for the full system using optimal parameter values listed in Table S4 
and are represented by grey lines. The isoclines predicted for the S-system corresponding to 
each phenotype are shown as dashed lines. Red lines correspond to the isocline for R and blue 
lines for the isoclines for A. Solid blue and red lines represent isoclines of the whole system (A) 
Case 30, lower hysteric phenotype. Isoclines for this phenotype correspond to the vertical and 
inclined dashed lines. Black dots at the interception of vertical and horizontal lines correspond to 
the steady state solutions for Case 29 (upper dot) and Case 36 (lower dot), which overlap with 
the Case 30 in the design space (see Figure 6B in the main text). (B) Case 9, upper hysteric 
phenotype. Isoclines for this phenotype correspond to the vertical and inclined dashed lines. 
Black dots at the interception of vertical and horizontal lines correspond to the steady state 
solutions for Case 8 (upper dot) and Case 15 (lower dot), which overlap with the Case 9 in the 
design space (see Figure 6B in the main text).  (C) Case 27, oscillatory phenotype. Isoclines for 
this phenotype correspond to both inclined dashed lines.  

 

for the hysteretic switches of the full system are accurately captured by the isoclines of the 

corresponding S-systems except near their intersections, whereas for the oscillatory phenotype 

the deviations occur beyond the range of the stable limit cycle. 
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FIGURE 7 | Basins of attraction for a 4-state genetic counter. The x-axis

represents the logarithm of the concentration of the first activator, X1; the

y-axis represents the logarithm of the concentration of the second activator,

X2. Different colored regions represent values for the activators that converge

to a unique steady-state attractor. Transitions from an initial steady state (white

circle) to a new steady state (black circle) following an equal size bolus

(275µM) in one of the two activators. The top panels show transient

simulations following a bolus of X1 (green arrows). The bottom panels show

transient simulations following a bolus of X2 (red arrows). Left and right

sub-panels show the transitions from different initial steady-state attractors.

transitions between the steady-state attractors following transient
stimulation is shown in Figure 7.

Assume that the system is poised at the attractor in the (−,+)
quadrant; if X1 is added in some amount, i.e., 275µM, the system
transitions to the attractor in the (+,+) quadrant; then if X1 is
added again in the same amount, a transition to the attractor
in the (+,−) quadrant ensues; therefore, by adding the same
bolus of X1 twice, in a step-wise fashion, the system has switched
between an equal number of steps, which bears the signature of a
genetic counter.

Now, assume the system is poised at the opposite attractor
in the (+,−) quadrant; if X2 is added in the same amount the
system transitions to the attractor in the (+,+) quadrant; then if
X2 is added again in the same amount, a transition to the attractor
in the (+,−) quadrant ensues; therefore, by adding the same
bolus of X2 twice, in a step-wise fashion, the system has reverted
back to the original state.

These traits show that the system has two distinct channels
that enable two sequences of transitions between the same three
states but in the opposite order. A positive channel for (−,+)
→ (+,+) → (+,−) and a negative channel for (+,−) →

(+,+)→ (−,+). By coupling themodule with the reporter gene,
we show that the system is capable of counting between three
levels of reporter concentration and can perform basic arithmetic
using values 0, 1, and 2. An example showing a sequence of

FIGURE 8 | Simulation of the counter following stimulation of the

positive and negative channels. Simulation of system behavior following a

series of transient stimulations at regular intervals of 20 time units (dashed

vertical lines). (A) Lines represent the concentrations of the reporter

corresponding to the counter X4; (B) the positive channel X1; and (C) the

negative channel X2. Transient stimulation of the positive channel, green

vertical lines in (B), results in an increase in the counter state, green

background in (A). Transient stimulation of the negative channel, red vertical

lines in (C), results in a decrease in the counter, red background in (A). Time

intervals without stimulation through either channel show that the count is

stable, as shown by the white background in (A).

additions and subtractions following transient addition of X1 and
X2, respectively, is shown in Figure 8.

CONCLUSIONS

The Design Space Toolbox V2 is a compendium of tools
designed to aid in the analysis and design of biochemical
systems. It is particularly useful for the characterization of system
design principles. Indeed, each of the “landmarks” in system
design space—boundaries and vertices—are rigorously defined
by particular constellations of parameter values that represent
the “design principles” of the system (e.g., Savageau and Fasani,
2009). These constellations are not at all obvious and would
be difficult to discover by trial and error, but are automatically
determined with our tools. As in other engineering disciplines,
knowing such design principles allows one to control the system
in a more rational fashion.

These tools have already proven useful for understanding
complex natural circuitry (Savageau, 2013) and for rationally
designing and engineering new synthetic gene circuits (Lomnitz
and Savageau, 2013, 2014, 2015) described by models composed
of power functions from chemical kinetics and rational functions
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CONCLUSIONS

The Design Space Toolbox V2 is a compendium of tools
designed to aid in the analysis and design of biochemical
systems. It is particularly useful for the characterization of system
design principles. Indeed, each of the “landmarks” in system
design space—boundaries and vertices—are rigorously defined
by particular constellations of parameter values that represent
the “design principles” of the system (e.g., Savageau and Fasani,
2009). These constellations are not at all obvious and would
be difficult to discover by trial and error, but are automatically
determined with our tools. As in other engineering disciplines,
knowing such design principles allows one to control the system
in a more rational fashion.

These tools have already proven useful for understanding
complex natural circuitry (Savageau, 2013) and for rationally
designing and engineering new synthetic gene circuits (Lomnitz
and Savageau, 2013, 2014, 2015) described by models composed
of power functions from chemical kinetics and rational functions
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equations are then used as input to the Design Space Toolbox V2
for analysis as described in Section Construction of the System
Design Space.

Computer-Aided Novel Modeling Strategy
We analyze the system using the phenotype-centric modeling
strategy (Lomnitz and Savageau, 2015) that involves (1)
establishing criteria for what constitutes the model phenotypes of
interest, (2) enumerating the repertoire of model phenotypes, (3)
identifying model phenotypes that exhibit the characteristics of
interest, and (4) predicting values for the parameters that realize
the desired behavior. We have previously used this strategy to
identify phenotypes that exhibit the potential for oscillation (e.g.,
see Lomnitz and Savageau, 2015) or specific couplings between
inputs and outputs to achieve binary logic functions (Lomnitz
and Savageau, in press). Here, the phenotype-centric modeling
strategy is applied to identify a variety of phenotypes including
bistability, tristability and quadrastability.

Criteria for Model Phenotypes of Interest
The first step in the phenotype-centric modeling strategy
is to establish criteria for what constitutes a phenotype of
interest based on a set of phenotypic characteristics. Typical
characteristics include the coupling between input and output,
stability of the fixed points, quantitative local robustness to small

changes in system parameters, and qualitative global tolerance to
large changes in system parameters.

The design for the synthetic gene circuit in Figure 4 is
expected to have the potential to exhibit multistability; therefore,
there should be multiple fixed points, some of which are stable
and some unstable, at a single point in parameter space. In the
context of a system’s design space, multistability involves an
overlap or intersection of multiple cases (Savageau and Fasani,
2009; Fasani and Savageau, 2010; Martínez-Antonio et al., 2012).

Although multistability involves a combination of cases
exhibiting either unstable or stable fixed points, we are interested
in those that are stable; thus, the first criterion for what
constitutes a phenotype of interest is that it be locally stable.
Furthermore, a desirable property is that the fixed points be
locally insensitive to unintended signals; thus, a second and third
criterion is that bothX1 andX2 are uncoupled from the repressor,
X3. In summary, we are looking for cases that are locally stable,
have X1 uncoupled from X3 [L(X1, X3) = 0], and have X2

uncoupled from X3 [L(X2, X3)= 0].

Enumerating the Repertoire of Phenotypes
of Interest
The mechanistic model for the synthetic gene circuit is
analyzed here following the outline in Section Design Space
Toolbox V2: we (1) refactor the system equation into the

FIGURE 4 | Conceptual model for the design of a synthetic gene circuit with 2-, 3-, and 4-state memory. (A) A cartoon of the proposed design for a gene

circuit with two autogenously regulated activators, each similar to that in Figure 1. The first is represented in green with a purple dimerization domain and the second

is represented in blue with a yellow dimerization domain. Homodimerization of each leads to the active form of the regulator. A repressor, represented by the red

capsule, sterically hinders the binding of each activator. (B) Binding of monomers from each of the two activators through complementary dimerization domains leads

to a heterodimer that is rapidly degraded by cellular proteases or other machinery. (C) Abstract representation of the synthetic construct. The two activators X1, green

in the cartoon, and X2, blue in the cartoon, heterodimerise to create a complex that is degraded, each activates its own expression by binding to target DNA, and this

binding is sterically hindered by the common repressor X3, red in the cartoon.
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Three-Part Presentation

•  Overview of Biochemical Systems Theory, Phenotypes, 
Design Principles and Modeling Strategy

•  Derivation of Phenotype-Specific Mutation Rates
•  Simple Example of Population Dynamics and Evolution
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Phenotype-Specific Mutation Rates 
Based On Four Factors

• Volume of the recipient phenotype in system design space
• Distance between centroids of the phenotype volumes
• Size scale favoring small distances between phenotypes
• Directional bias between donor and recipient phenotypes
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Mutation Probability Is Proportional To 
Volume Of The Recipient Phenotype

• Volumes are rigorously determined by 
vertex enumeration methods and by 
maximal shared bounding box methods

• Phenotype volumes: #2  >  #1 
• Mutations from large to small volumes are 

rare

• Mutations from small to large volumes are 
frequent
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Mutation Probability Varies With Size-Scale Factor λ Over 
The Distance Between Donor And Recipient Phenotypes

• Large scale mutations are rare; small scale 
mutations are frequent

• Average separation between phenotype #1 and 
#2 is the distance between their centroids, d

• Mutation probability: ~ exp[-|d|/λ]
• Size-scale factor λ is estimated based on 

experimental data for the LAC repressor of E. 
coli.
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Mutation Probability Varies With The Direction of Parameter 
Change Between Donor And Recipient Phenotypes

• The probability is larger when the parameter increase is in the 
direction of increased entropy, ~ exp[-|d|/(λδ)]

• The probability is smaller when the parameter increase is in 
the direction of decreased entropy, ~ exp[-|d|*(δ/λ)]

• Directional bias parameter δ is estimated based on 
experimental data for the LAC repressor of E. coli.
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Phenotype-Specific Mutation Rate Is 
Determined In Four Steps

• The mechanistic parameter 
contribution Kij

• Multiplied by the recipient 
volume contribution Vj

• Normalized to give the 
probability distribution

• Multiplied by the general 
mutation rate constant, m

KijV j

 kij = KijV j /
j=1

nj

∑KijV j

⎛

⎝⎜
⎞

⎠⎟
 kij

j=1

nj

∑ = 1

 mij = mkij

Kij ∼ exp(− logCi − logC j /δλ)

K ji ∼ exp(− logC j − logCi δ / λ)
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Ri = Ni / N j
j =1

n

∑ = Relative Frequency

Population Dynamic Equations For Phenotypes In 
Steady-State Exponential Growth

 dNi

dt
= mkjiµ jN j

j=1
j≠i

n

∑ − mkijµiNi
j=1
j≠i

n

∑ + µiNi i = 1,!,n

 dRi
dt

= mkjiµ jRj
j=1
j≠i

n

∑ − mkijµiRi
j=1
j≠i

n

∑ + µiRi − Ri µ jRj
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟

Ni →∞

Ri → Ri
SS

µi = Exponential Growth Rate
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Three-Part Presentation

•  Overview of Biochemical Systems Theory, Phenotypes, 
Design Principles and Modeling Strategy

•  Derivation of Phenotype-Specific Mutation Rates
•  Simple Example of Population Dynamics and Evolution
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Simplified Example Illustrating The Strategy

Primordial precursor to a 
circadian clock

Circadian clock module found in 
nearly all modern organisms mP

P

mN

N

mP

P

mN

N



Oscillatory And Non-Oscillatory Clock Phenotypes 
Responding To Selecting And Non-Selecting Conditions

Time, Generations

R

Time, hrs

Li
gh

t

Selecting

Mechanism

Population

Environment

Time, hrs

[P]

Time, hrs

[P]

Time, Generations

R

Time, hrs

Li
gh

t

Non-Selecting

Woelfle MA, et al (2004) The adaptive value of circadian clocks: an experimental assessment 
in cyanobacteria. Curr Biol. 14:1481–1486.
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Mechanism Predicting Phenotypes
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Biochemical Kinetic Equations

    dmP
dt

=
αmPmax +αmPmin

N
KN

⎛
⎝⎜

⎞
⎠⎟

n

1+ N
KN

⎛
⎝⎜

⎞
⎠⎟

n − βmPmP αmPmax >αmPmin

 
dP
dt

=αPmP − βPP

   dmN
dt

=
αmNmin +αmNmax

P
KP

⎛
⎝⎜

⎞
⎠⎟

p

1+ P
KP

⎛
⎝⎜

⎞
⎠⎟

p − βmNmN αmNmax >αmNmin

 
dN
dt

=αNmN − βNN

mP

P

mN

N

4 variables and 12 kinetic parameters



Phenotypic Repertoire Showing That Only 
Phenotype #7 Is Capable Of Oscillation

Phenotype 
Number

Phenotype 
Signature

Eigenvalues with 
Positive real part

Complex Conjugate
Eigenvalues

1 11 11 11 11 11 11 0 -

3 11 11 11 11 21 11 0 -

5 11 11 21 11 11 11 0 -

6 11 11 21 11 11 21 0 -

7 11 11 21 11 21 11 0 +

8 11 11 21 11 21 21 0 -

11 21 11 11 11 21 11 0 -

15 21 11 21 11 21 11 0 -

16 21 11 21 11 21 21 0 -
37



Predicted Parameter Values For The 
Realization Of Oscillatory Phenotype #7Table 3.  Scaled values for the parameters and 

steady state concentrations automatically 
determined and fixed for phenotype  

Case 7 (11 11 21 11 21 11).  
Parameters Value 

KN 0.316 
KP 1.78 

amNmax 10.0 
amNmin 1.00 
amPmax 10000 
amPmin 1.00 

aN 1.00 
aP 0.01 

bmN 1.00 
bmP 1.00 
bN 1.00 
bP 1.00 
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Automatically Predicted Characteristics Within 
Phenotypes In System Design Space

Phenotype
Volumes

Protein
Burden

Oscillatory
Dynamics



Rescaled Molecular Model With 2 Fixed Parameters (     ,     ) 
Reveals A 10-Parameter Invariant System Design Space And The 

Full Design Principle For Oscillation

ρPρN
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A B
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1< πmax[ ]−4/5 νmax[ ]−2/5 < ρP

1< πmax[ ]+2/5 νmax[ ]−4/5 < ρN

System Design Principle 

 πmax =
1
KP

αmP max

βmP

⎛
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K N
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Dimensionless Parameter Groups 
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Phenotypes Predicting Equilibrium Distributions 
And Population Dynamics 
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Estimation Of Size Scale λ And Directional Bias δ Parameters 
Base On Experimental Data For The LAC Repressor Of E. coli

Markiewicz, P, et al. 1994. Genetic Studies of the lac repressor XIV: Analysis of 4000 altered Escherichia coli lac repressors reveals essential 
and non-essential residues, as well as "spacers" which do not require a specific sequence.  J. Mol. Biol. 240: 421-433. 

 
Proteins Substitution Effect Map Evolution Alignment Map 
 Wild type Constitutive Supper-Repressed Non-Conserved Conserved 
LAC Repressor 67% 31% 2% -- -- 
LAC Family -- -- -- 61% 39% 
Clock N (l=0.6, d=1.85) 67% 31% 2% -- -- 
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Alternative Hypotheses Concerning Neutral and Protein Burden 
Fitness Effects In The Non-Selecting Condition

43

Oscillation

Neutral Non-Selecting Selecting

 
 Growth Rate Differences Relative to Phenotype #7 in  

Non-Selecting Conditions, % 
Phenotype, n Non-Selecting Selecting 

 No Fitness Effects Fitness Effects 
1 0 -2.43E-04 -2.43E-04 
3 0 3.22E-05 3.22E-05 
5 0 -2.47E-04 -2.47E-04 
6 0 -2.64E-04 -2.64E-04 
7 0 0 4.00E-04 
8 0 -3.07E-05 -3.07E-05 

11 0 4.12E-05 4.12E-05 
15 0 1.15E-05 1.15E-05 
16 0 -2.40E-05 -2.40E-05 

 
 

Protein Burden



Two Contributions to the Equilibrium Distribution Of Phenotype Diversity

  

 

1

3
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6
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11

15

16

8

High

Low

The distribution due to robustness (volume) alone is shifted downward to
create a gradient from low to high entropy independent of mutation rate 

Neutral Fitness Effects 

Robustness

Robustness + Entropy
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Various Contributions to the Equilibrium Distribution Of Phenotype Diversity

Robustness, Entropy & Mutation Rate Robustness, Entropy & SelectionProtein Burden Fitness Effects 

Under non-selecting conditions, distributions 
are shifted to lower entropy phenotypes
depending on mutation rate

Under selecting conditions, distributions 
are shifted to the selected phenotype at 
the expense of lower entropy phenotypes 
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Changes In Phenotype Hierarchy And Time Scale Following Imposition 
And Removal Of Selection For Oscillatory Phenotype #7

Neutral Fitness

Mixed Fitness

Imposed Removed

x105 x108

x108x105

B

C D

A

~400 X Slower

~1000 X Slower



Back Calculating Selection Coefficients From The Predicted 
Distribution Of The Qualitatively-Distinct Phenotypes 

Based On Constructed Mutants

A B
Mixed Fitness(Protein Burden)Neutral Fitness

Only the neutral hypothesis is consistent with the LAC experimental data
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It is based on linear algebra in a log space and avoids dense sampling 
and numerical simulation

It is especially useful at the early stage of investigations when little is 
known

It provides an efficient “Fail-Early” method of hypothesis testing

It starts without requiring parameter values and ends with predicted 
values for the realization of specific phenotypes

It predicts systemic properties of specific phenotypes, as well as 
relationships among phenotypes, that are related mechanistically to 
genotype and environment

48

Key Attributes Of The Phenotype-Centric Modeling Strategy 
And The Design Space Toolbox For Its Automated Application
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