
E∞-algebras and general linear groups

Oscar Randal-Williams



Homological stability

All based on joint work with S. Galatius and A. Kupers.

We have developed a general method which is quite powerful for
studying homological stability and related questions. I will explain
some of the results we have obtained, then say something about
the method.

Homological stability is the phenomenon that

Hd(GLn(A),GLn−1(A)) = 0 for all d ≤ f (n)

for some divergent function f .

One can ask this question for homology with k-coe�cients: the
function f may then depend on k.

Stability with Z-coe�cients known when A has “finite stable rank in
the sense of Bass” (Maazen–van der Kallen): f (n) = n−sr(A)

2 su�ces.
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The Nesterenko–Suslin theorem

Sometimes one has homological stability in a range of degrees
much larger than the slope 1

2 range of Maazen and van der Kallen.

As a first example, our methods re-prove:

Theorem (Suslin, Nesterenko, Guin). If A is a connected semi-local
ring with all residue fields infinite then

Hd(GLn(A),GLn−1(A);Z) = 0 for d < n,

and Hn(GLn(A),GLn−1(A);Z) ∼= KM
n (A), nth Milnor K-theory.

Milnor K-theory: KM
∗ (A) is the graded ring generated by KM

1 (A) = A×

and subject to the relations a · b = 0 ∈ KM
2 (A) whenever a,b ∈ A×

satisfy a + b = 1. (A calculation shows it is graded commutative.)
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A degree above the Nesterenko–Suslin theorem

We also study these relative homology groups one degree further
up (and rationally). We first show that⊕

n≥1
Hn+1(GLn(A),GLn−1(A);Q)

can be made into a KM
∗ (A)⊗Q-module, then analyse how it may be

generated e�ciently as a KM
∗ (A)⊗Q-module.

Theorem (Galatius–Kupers–R-W). If A is a connected semi-local ring
with all residue fields infinite, then there is a map of graded
Q-vector spaces

Harr3(KM
∗ (A)⊗Q) −→ Q⊗KM

∗ (A)⊗Q
⊕
n≥1

Hn+1(GLn(A),GLn−1(A);Q)

which is an isomorphism in gradings ≥ 5.

Here Harr = Harrison homology = André–Quillen homology.
Third Harrison homology measures “relations between relations” in
a presentation of the quadratic algebra KM

∗ (A)⊗Q. 3



Improved homological stability

Under further assumptions on A, our methods (which I have not yet
told you) instead give improved homological stability results:

Theorem (Galatius–Kupers–R-W).

(i) If A is a connected semi-local ring with all residue fields infinite
and such that K2(A)⊗Q = 0 (e.g. F̄q, Fq(t), number field, Q̄) then

Hd(GLn(A),GLn−1(A);Q) = 0 for d < 4n−1
3 .

(ii) If A is a connected semi-local ring with all residue fields infinite
and p is a prime number such that A× ⊗ Z/p = 0 then

Hd(GLn(A),GLn−1(A);Z/p) = 0 for d < 5n
4 .

(iii) If F is an algebraically closed field then, for all primes p,

Hd(GLn(F),GLn−1(F);Z/p) = 0 for d < 5n
3 .

The slopes of these stability ranges are all > 1.
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Resolving some conjectures

The last part implies that if F is an algebraically closed field then

Hn+1(GLn(F),GLn−1(F);Z/p) = 0

for all n > 1 and all primes p.

This resolves a conjecture of Mirzaii on certain “higher pre-Bloch
groups” pn(F), and a conjecture of Yagunov on a di�erent notion of
“higher pre-Bloch groups” ℘n(F) and ℘n(F)cl.

In a di�erent direction, we can complete an approach of Mirzaii to
proving Suslin’s “injectivity conjecture”:

Theorem (Galatius–Kupers–R-W). If F is an infinite field and k is a
field in which (n− 1)! is invertible then the stabilisation map

Hn(GLn−1(F);k) −→ Hn(GLn(F);k)

is injective.
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Methods



Overview

These results are proved by considering the totality

R+ =
∐
n≥0

BGLn(A),

as a unital E∞-algebra in the category of N-graded spaces.

Try to construct R+ as a cellular object in this category. Such cell
structures can be constrained by calculating or estimating the
analogue HE∞

n,d(R) of cellular homology in this category.

We prove that if A is a connected semi-local ring with all residue
fields infinite, then HE∞

n,d(R) = 0 for d < 2(n− 1).

This vanishing range is twice as good as what one might first expect,
and opens the door to Hd(GLn(A),GLn−1(A);k) beyond slope 1.

Going through that door still requires detailed calculations with
E∞-algebras, which I won’t say anything about today.
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Graded objects

Let C denote sSet, sSet∗, or (because we are eventually interested in
taking k-homology) sModk.

Write ⊗ for the cartesian, smash, or tensor product.

We will consider N-graded objects in C, meaning CN := Fun(N,C).
This is given the Day convolution monoidal structure:

(X ⊗ Y)(n) =
⊔

a+b=n

X(a)⊗ Y(b).

Define bigraded homology groups as Hn,d(X;k) := Hd(X(n);k).
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Ek-algebras

Let Ck denote the non-unital (Ck(0) = ∅) little k-cubes operad.

e1

e2

en

C2(n) =

· · ·

The categories CN are all tensored over Top: can make sense of the
monad

Ek(X) :=
⊔
n≥1
Ck(n)�Sn X⊗n

and so of Ek-algebras X in CN. Call the category of these AlgEk
(CN). 8



Ek-cells

Let Sn,d denote the N-graded space which is Sd in grading n and
trivial otherwise, and similarly Dn,d.

Given an Ek-algebra X and a map f : Sn,d−1 → X can define the cell
attachment X ∪Ek

f Dn,d as the pushout in AlgEk
(CN) of

Ek(Dn,d)←− Ek(Sn,d−1)
f ad

−→ X.

Cellular Ek-algebras are those formed by iterated cell attachments.
A CW-Ek-algebra is similar but the attaching maps are controlled
(e.g. it comes with a skeletal filtration).

(Every object is equivalent to a cellular one, as usual.)
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Ek-indecomposables

Have inclusion CN
∗ → AlgEk

(CN
∗ ) by imposing the trivial Ek-action, with

left adjoint QEk , called the “Ek-indecomposables”.

e.g. Have QEk (Ek(X)) = X

If X is a cellular Ek-algebra then it follows that QEk (X) is a cellular
object in CN

∗ with one (n,d)-cell for each Ek-(n,d)-cell of X.

This construction is not homotopy invariant, so on a general X one
should evaluate the derived functor

QEk
L (X) := QEk (any cellular Ek-algebra equivalent to X),

a.k.a. topological Quillen homology (for the operad Ck).
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Ek-homology and minimal cell structures

Define Ek-homology as HEk
n,d(X) := Hn,d(QEk

L (X)).

If k is a field, the discussion so far shows

dimk HEk
n,d(X;k) ≤ number of Ek-(n, d)-cells in any

Ek-cellular approximation of X.

Just as in classical homotopy theory, homology can be used to
detect minimal cell structures as long as we work in a stable
context.

Theorem. Let k be a field and C = sModk. Then X ∈ AlgE2
(sModN

k
)

has a cellular approximation cX ∼→ X with precisely dimk HE2
n,d(X)

many E2-(n,d)-cells.

Furthermore cX can be taken to be “CW”, not just “cellular”.
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Computing derived Ek-indecomposables

Crucially to this entire business, QEk
L (X) may also be computed

another way: by a k-fold bar construction.

(Getzler–Jones, Basterra–Mandell, Fresse, Francis)

Theorem. If X is an Ek-algebra with unitalisation X+, then

1⊕ ΣkQEk
L (X) ' BEk (X+);

the latter is the k-fold bar construction.

Considering the k-fold bar construction as the bar construction of
the (k− 1)-fold bar construction gives a bar spectral sequence

E2
n,p,q = TorH∗,∗(BEk−1 (X+);k)

p (k,k)n,q ⇒ Hn,p+q(BEk (X+);k).

So HEk−1
n,d (X) = 0 for d < λ · n− (k− 1)

⇒ HEk
n,d(X) = 0 for d < λ · n− (k− 1) too.
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The general linear groups



The general linear group E∞-algebra

Let A be a connected commutative ring for which f.g. projective
modules are free.

The symmetric monoidal category PA of f.g. projective A-modules
and their isomorphisms has classifying space

R+ = BPA '
∐
n≥0

BGLn(A)

and is equipped with an action of an E∞-operad. We consider this
as N-graded via the rank functor r : PA → N.

By direct calculation this has

BE1 (R+)(n) ' Σ2S(An)hGLn(A)

where S(An) is Charney’s split Tits building, i.e.

[p] 7→ {(M0, . . . ,Mp+1) nonzero submodules of An s. t.
⊕

Mi = An}.

Theorem (Charney). If A is Dedekind then S(An) is (n− 3)-connected.

⇒ HE1
n,d(R) = 0 for d < n− 1. 13



Slope 2

Theorem (Galatius–Kupers–R-W). If A is a connected semi-local ring
with all residue fields infinite, then HE∞

n,d(R) = 0 for d < 2(n− 1).

This involves analysing the 2-dimensional version of the split Tits
building, and relating it to the square of the ordinary Tits building.

It is related to Rognes’ connectivity conjecture, cf. Patzt’s talk.

Theorem (Galatius–Kupers–R-W). If A is an infinite field then

HE∞
2n−2(R) =


Z if n = 1,
Z/p if n = pk with p prime,
0 otherwise.

This involves proving [St(An)⊗ St(An)]GLn(A)
∼= Z, i.e. classifying

equivariant bilinear forms on the classical Steinberg module.

(This implies that St(An) is indecomposable, cf. Putman’s talk.)
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E∞-homology

Combining the previous results with calculations of Suslin for
GL2(A), we obtain the following chart for HE∞

n,d(R):

0

1

2

3

4

5

6

0 1 2 3 4
Z{σ}
A×

H2(A×;Z)

H3(A×;Z)

H4(A×;Z)

H5(A×;Z)

H6(A×;Z)

Z/2

p(A)

?

?

?

Z/3

?

? ?

d/n

p(A) = “pre-Bloch group”: generated by [x] ∈ A× \ {1} subject to

[x]− [y] +
[y

x

]
+

[
1− x−1

1− y−1

]
+

[
1− x
1− y

]
= 0

whenever x, y, 1− x, 1− y, and x − y ∈ A×.
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Relation to homological stability

For a ring of coe�cients k, let

R+
k
∈ AlgE∞(sModN

k
)

be the k-linearisation of R+ =
∐

n≥0 BGLn(A) ∈ AlgE∞(sSetN).

For the basepoint σ ∈ H0(BGL1(A);k) = H1,0(R+
k

), stabilisation can
be described in terms of the E∞-structure as

− · σ : Hd(BGLn−1(A);k) = Hn−1,d(R+
k

) −→ Hd(BGLn(A);k) = Hn,d(R+
k

).

Writing R+
k
/σ for the cofibre in sModN

k
of − · σ : R+

k
[1]→ R+

k
, have

Hd(GLn(A),GLn−1(A);k) = Hn,d(R+
k
/σ).
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Deducing homological stability results

The strategy is to choose a minimal CW-structure on R+
k

as per the
E∞-homology on the chart, consider its skeletal filtration and study
the spectral sequence

E1
∗,∗,∗ = H∗,∗,∗(gr(R+

k
)/σ)⇒ H∗,∗(R+

k
/σ).

Now gr(R+
k

) is the free E∞-algebra with one generator for each
E∞-cell of R+

k
, and by the chart σ is the only generator of slope < 1.

From this and the known homology of free E∞-algebras, one
immediately deduces homological stability of slope 1

2 .

To do better than this, need to analyse how the low-dimensional
E∞-cells are attached to each other, i.e. show that R+

k
is better than

the free E∞-algebra with the same collection of cells.
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