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Homological stability

All based on joint work with S. Galatius and A. Kupers.

We have developed a general method which is quite powerful for
studying homological stability and related questions. | will explain
some of the results we have obtained, then say something about
the method.

Homological stability is the phenomenon that
Hg4(GLn(A), GL,_4(A)) = o for all d < f(n)

for some divergent function f.

One can ask this question for homology with k-coefficients: the
function f may then depend on k.

Stability with Z-coefficients known when A has “finite stable rank in

the sense of Bass” (Maazen-van der Kallen): f(n) = "= suffices.



The Nesterenko-Suslin theorem

Sometimes one has homological stability in a range of degrees
much larger than the slope ] range of Maazen and van der Kallen.

As a first example, our methods re-prove:
Theorem (Suslin, Nesterenko, Guin). If A is a connected semi-local
ring with all residue fields infinite then

Hq4(GLh(A), GLy—+(A); Z) = o ford < n,
and H,(GL,(A), GL,_1(A); Z) = KM(A), nth Milnor K-theory.
Milnor K-theory: KY(A) is the graded ring generated by KM(A) = A*

and subject to the relations a - b = 0 € KI(A) whenever a,b € AX
satisfy a + b = 1. (A calculation shows it is graded commutative.)



A degree above the Nesterenko-Suslin theorem

We also study these relative homology groups one degree further
up (and rationally). We first show that

@ Hni4(GLA(A), GLr—4(A); Q)

can be made into a K¥(A) ® Q-module, then analyse how it may be
generated efficiently as a K" (A) ® Q-module.

Theorem (Galatius-Kupers-R-W). If A is a connected semi-local ring
with all residue fields infinite, then there is a map of graded
Q-vector spaces
Harrs (K (A) ® Q) — Q @xmayeq EP Hrsa(GLa(A), GLa—+(A); Q)
n>1

which is an isomorphism in gradings > 5.

Here Harr = Harrison homology = André-Quillen homology.
Third Harrison homology measures “relations between relations” in
a presentation of the quadratic algebra K¥(A) ® Q. 5



Improved homological stability

Under further assumptions on A, our methods (which I have not yet
told you) instead give improved homological stability results:

Theorem (Galatius-Kupers-R-W).

(i) IfAis a connected semi-local ring with all residue fields infinite
and such that K,(A) ® Q = o (e.g. g, Fy(t), number field, Q) then

Ha(GLn(A), GLa_1(A); Q) = 0 for d < 4=,

(ii) If Ais a connected semi-local ring with all residue fields infinite
and p is a prime number such that A* @ Z/p = o then

Ha(GLn(A),GLn—+(A); Z/p) = o for d < 3.
(iii) If F is an algebraically closed field then, for all primes p,

Ha(GLn(FF), GLn—+(F); Z/p) = o ford < .

The slopes of these stability ranges are all > 1.



Resolving some conjectures

The last part implies that if F is an algebraically closed field then
Hn+1(GLn(F)7 GL,’,,‘](F); Z/P) =0
for all n > 1and all primes p.

This resolves a conjecture of Mirzaii on certain “higher pre-Bloch
groups” pp(F), and a conjecture of Yagunov on a different notion of
“higher pre-Bloch groups” g, (F) and gn(F)-

In a different direction, we can complete an approach of Mirzaii to
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proving Suslin’s “injectivity conjecture”:

Theorem (Galatius-Kupers-R-W). If F is an infinite field and k is a
field in which (n — 1)! is invertible then the stabilisation map

Hn(GLn_+(F); k) — Hp(GLn(F); k)

is injective.



Methods



These results are proved by considering the totality
R = [] BGLA(A),
n>o
as a unital E.-algebra in the category of N-graded spaces.

Try to construct R™ as a cellular object in this category. Such cell
structures can be constrained by calculating or estimating the
analogue HEf’;(R) of cellular homology in this category.

We prove that if A is a connected semi-local ring with all residue
fields infinite, then Hy%(R) = o for d < 2(n —1).

This vanishing range is twice as good as what one might first expect,
and opens the door to Hyg(GL,(A), GL,_4(A); k) beyond slope 1.

Going through that door still requires detailed calculations with
E..-algebras, which | won't say anything about today.



Graded objects

Let C denote sSet, sSet,, or (because we are eventually interested in
taking k-homology) sMod,.

Write ® for the cartesian, smash, or tensor product.
We will consider N-graded objects in C, meaning CV := Fun(N, C).
This is given the Day convolution monoidal structure:

(X®Y)( |_| X(a
a+b=n

Define bigraded homology groups as Hp 4(X; k) := Hq(X(n); k).



Let C, denote the non-unital (C¢(0) = @) little k-cubes operad.

(=}

Cy(n) =

€4

€n

The categories CV are all tensored over Top: can make sense of the
monad

Er(X) == |_| Ce(n) ©s, X*"

n>1

and so of E,-algebras X in CV. Call the category of these AlgEh(CN). 8



Let S™9 denote the N-graded space which is S¢ in grading n and
trivial otherwise, and similarly D™9.

Given an E,-algebra X and a map f : S"9~" — X can define the cell
attachment XU?‘ D4 as the pushout in Alg, (CY) of

ad
Ex(D™Y) — Ex(S"%) L5 x.

Cellular E,-algebras are those formed by iterated cell attachments.
A CW-Er-algebra is similar but the attaching maps are controlled
(e.g. it comes with a skeletal filtration).

(Every object is equivalent to a cellular one, as usual.)



E.-indecomposables

Have inclusion CIY — Algg, (C)Y) by imposing the trivial E,-action, with
left adjoint QF, called the “E,-indecomposables”.

e.g. Have Qf(Ex(X)) = X

If X is a cellular Ex-algebra then it follows that Qf+(X) is a cellular
object in CIY with one (n, d)-cell for each Ex-(n, d)-cell of X.

This construction is not homotopy invariant, so on a general X one
should evaluate the derived functor

QE”(X) := QF(any cellular E,-algebra equivalent to X),

a.k.a. topological Quillen homology (for the operad Cy).
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Er,-homology and minimal cell structures

Define E,-homology as Hf"(X) := Hn 4(Q* (X))

If k is a field, the discussion so far shows

. Er . number of Ex-(n, d)-cells in any
dimy Hn,d(x' ]k) < E-cellular approximation of X.

Just as in classical homotopy theory, homology can be used to
detect minimal cell structures as long as we work in a stable
context.

Theorem. Let k be a field and C = sMody. Then X € AlgEz(sModE)
has a cellular approximation cX = X with precisely dimy Hﬁfd(x)
many E,-(n, d)-cells.

Furthermore cX can be taken to be “CW”, not just “cellular”.
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Computing derived E.-indecomposables

Crucially to this entire business, QE’*(X) may also be computed
another way: by a k-fold bar construction.

(Getzler-Jones, Basterra-Mandell, Fresse, Francis)

Theorem. If X is an Ex-algebra with unitalisation X™, then
1 & T*Q(X) ~ B (X™);
the latter is the k-fold bar construction.

Considering the k-fold bar construction as the bar construction of
the (k — 1)-fold bar construction gives a bar spectral sequence

Ep )
E%,p,q _ Torg*,*(B k (X+)'k)(ﬂ{, ]k)n,q = H,,7p+q(BE’*(X+); ]k)

SoHif;(X):oford<)\.n_(k_1)

= Hy(X) =oford < A-n— (k- 1) too.

12



The general linear groups




The general linear group E__-algebra

Let A be a connected commutative ring for which f.g. projective
modules are free.

The symmetric monoidal category P, of f.g. projective A-modules
and their isomorphisms has classifying space

R* = BPs ~ [ [ BGLs(A)

n>o
and is equipped with an action of an E,.-operad. We consider this
as N-graded via the rank functor r : P, — N.

By direct calculation this has
B (RY)(n) =~ T2S(A")net,(a)
where S(A") is Charney'’s split Tits building, i.e.
[p] — {(Mo,...,Mp,) nonzero submodules of A" s. t. EBM; =A"}.

Theorem (Charney). If A is Dedekind then S(A") is (n — 3)-connected.

= H'y(R)=oford <n—1. ®



Theorem (Galatius-Kupers-R-W). If A is a connected semi-local ring
with all residue fields infinite, then Hﬁjg(R) =oford < 2(n—1).

This involves analysing the 2-dimensional version of the split Tits
building, and relating it to the square of the ordinary Tits building.

It is related to Rognes’ connectivity conjecture, cf. Patzt’s talk.

Theorem (Galatius-Kupers-R-W). If A is an infinite field then
Z ifn=n1,
Hi ,(R) =< Z/p if n = pk with p prime,
o] otherwise.
This involves proving [St(A") ® St(A")]eL,a) = Z, i.e. classifying
equivariant bilinear forms on the classical Steinberg module.
(This implies that St(A") is indecomposable, cf. Putman’s talk.)

14



Combining the previous results with calculations of Suslin for
GL,(A), we obtain the following chart for Hﬁfg(R):

6 H5(A><,Z) ? ? ?
: Hs(A%;Z) 2 7 e
“ H,(AX; Z) ? 7/3
: Hy(A¥:Z) - p(A) "
2 Hy(AX;Z) - Z]2
1 A>< g
o Z{o )
d/no {1 ) . c .

p(A) = “pre-Bloch group”: generated by [x] € A* \ {1} subject to
y 1—x7" 1-x|
-1+ ] + [1 —W} ’ L —y} -°
whenever x,y,1—x,1—y,and x —y € A*.
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Relation to homological stability

For a ring of coefficients k, let
R < Alg;_(sMody)

be the k-linearisation of R* =[], BGLn(A) € Alg,__ (sSet™).

For the basepoint o € Ho(BGL4(A); k) = H,0(R;), stabilisation can
be described in terms of the E.,-structure as

0 H(BGLy_1(A): k) = Hy_14(RE) —> Ha(BGLA(A); k) = Hp.a(RY).
Writing R;" /o for the cofibre in sMod, of — - o : R{-[1] — R{, have

Ha(GLn(A), GLn_+(A); k) = Hp 4(R; /o).



Deducing homological stability results

The strategy is to choose a minimal CW-structure on R as per the
E..-homology on the chart, consider its skeletal filtration and study
the spectral sequence

El,*,* = H*y*,*(gr(R]lt)/o-) => H**(RE/U)
Now gr(R;") is the free E..-algebra with one generator for each
E..-cell of R}, and by the chart o is the only generator of slope < 1.

From this and the known homology of free E..-algebras, one
immediately deduces homological stability of slope .

To do better than this, need to analyse how the low-dimensional
E..-cells are attached to each other, i.e. show that R} is better than
the free E..-algebra with the same collection of cells.



Based on work with S. Galatius and A. Kupers:

E..-cells and general linear groups of infinite fields.
arXiv:2005.05620.

Cellular E,-algebras.
arXiv:1805.07184.

For further applications of these ideas see also:

E,-cells and mapping class groups.
Publ. Math. Inst. Hautes Etudes Sci. 130 (2019), 1-61.

E..-cells and general linear groups of finite fields.
arxiv:1810.11931.
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