Hermitian geometry of Oeljeklaus-Toma manifolds

Alexandra Otiman

University of Florence and Institute of Mathematics of the Romanian Academy
Locally Conformal Symplectic Manifolds: Interactions and Applications
Banff, 2021

A Riemannian metric g on a complex manifold (M, J) is Kähler if

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J, J \cdot)$

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J \cdot, J \cdot)$ (g Hermitian)

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J \cdot, J \cdot)$ (g Hermitian)
(3) $d \Omega_{g}=0 \quad\left(\right.$ where $\left.\Omega_{g}(\cdot, \cdot)=g(J, \cdot)\right)$.

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J \cdot, J \cdot) \quad$ (g Hermitian)
(2) $d \Omega_{g}=0 \quad\left(\right.$ where $\left.\Omega_{g}(\cdot, \cdot)=g(J \cdot, \cdot)\right)$.

- $\operatorname{dim}_{\mathbb{C}}=1$:

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J \cdot, J \cdot) \quad$ (g Hermitian)
(2) $d \Omega_{g}=0 \quad\left(\right.$ where $\left.\Omega_{g}(\cdot, \cdot)=g(J \cdot, \cdot)\right)$.

- $\operatorname{dim}_{\mathbb{C}}=1:(M, J, g)$ Kähler

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J \cdot, J \cdot) \quad$ (g Hermitian)
(2) $d \Omega_{g}=0 \quad\left(\right.$ where $\left.\Omega_{g}(\cdot, \cdot)=g(J \cdot, \cdot)\right)$.

- $\operatorname{dim}_{\mathbb{C}}=1:(M, J, g)$ Kähler
- $\operatorname{dim}_{\mathbb{C}}=2$:

A Riemannian metric g on a complex manifold (M, J) is Kähler if
(1) $g(\cdot, \cdot)=g(J \cdot, J \cdot) \quad$ (g Hermitian)
(2) $d \Omega_{g}=0 \quad\left(\right.$ where $\left.\Omega_{g}(\cdot, \cdot)=g(J \cdot, \cdot)\right)$.

- $\operatorname{dim}_{\mathbb{C}}=1:(M, J, g)$ Kähler
- $\operatorname{dim}_{\mathbb{C}}=2$:

Theorem (Miyaoka, Todorov, Siu, Buchdahl, Lamari)

(M, J) compact complex surface admits a Kähler metric $\Leftrightarrow b_{1}$ even.

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics?

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics $(\partial \bar{\partial} \Omega=0$, Gauduchon metrics in $\operatorname{dim}_{\mathbb{C}}=2$)

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial \bar{\partial} \Omega=0$, Gauduchon metrics in $\operatorname{dim}_{\mathbb{C}}=2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are locally conformally Kähler (lcK) (Tricerri, Ornea, Gauduchon, Belgun, Brunella)

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial \bar{\partial} \Omega=0$, Gauduchon metrics in $\operatorname{dim}_{\mathbb{C}}=2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are locally conformally Kähler (lcK) (Tricerri, Ornea, Gauduchon, Belgun, Brunella)
Ω is $I c K$ if $d \Omega=\theta \wedge \Omega$, for a closed real one-form θ.

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics $(\partial \bar{\partial} \Omega=0$, Gauduchon metrics in $\operatorname{dim}_{\mathbb{C}}=2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are locally conformally Kähler (lcK) (Tricerri, Ornea, Gauduchon, Belgun, Brunella) Ω is $I c K$ if $d \Omega=\theta \wedge \Omega$, for a closed real one-form θ.
What about their higher dimensional analogues?

Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic surfaces, Inoue surfaces $\left(\mathcal{S}_{A}, \mathcal{S}^{+}, \mathcal{S}^{-}\right)$, Hopf surfaces, Kato surfaces
(Global Spherical Shell) Conjecture: These are all the surfaces!
Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics $(\partial \bar{\partial} \Omega=0$, Gauduchon metrics in $\operatorname{dim}_{\mathbb{C}}=2$)
- except a subclass of Inoue surfaces, all known non-Kähler surfaces are locally conformally Kähler (lcK) (Tricerri, Ornea, Gauduchon, Belgun, Brunella) Ω is Ic 伴 $d \Omega=\theta \wedge \Omega$, for a closed real one-form θ.
What about their higher dimensional analogues?
Today: Study Oeljeklaus-Toma manifolds (generalize Inoue surfaces of type \mathcal{S}_{A})

Inoue-Bombieri surface \mathcal{S}_{A}

Let $A \in \mathrm{SL}_{3}(\mathbb{Z})$ with one real eigenvalue $\alpha>1$ and two complex eigenvalues β and $\bar{\beta}$.

Inoue-Bombieri surface \mathcal{S}_{A}

Let $A \in \mathrm{SL}_{3}(\mathbb{Z})$ with one real eigenvalue $\alpha>1$ and two complex eigenvalues β and $\bar{\beta}$. $\left(a_{1}, a_{2}, a_{3}\right)$ - eigenvector of α.

Inoue-Bombieri surface \mathcal{S}_{A}

Let $A \in \mathrm{SL}_{3}(\mathbb{Z})$ with one real eigenvalue $\alpha>1$ and two complex eigenvalues β and $\bar{\beta}$.
$\left(a_{1}, a_{2}, a_{3}\right)$ - eigenvector of α.
$\left(b_{1}, b_{2}, b_{3}\right)$ - eigenvector of β.

Inoue-Bombieri surface \mathcal{S}_{A}

Let $A \in \mathrm{SL}_{3}(\mathbb{Z})$ with one real eigenvalue $\alpha>1$ and two complex eigenvalues β and $\bar{\beta}$.
$\left(a_{1}, a_{2}, a_{3}\right)$ - eigenvector of α.
$\left(b_{1}, b_{2}, b_{3}\right)$ - eigenvector of β.
G_{A} be the group of affine transformations of $\mathbb{C} \times \mathbb{H}$ generated by:

$$
\begin{aligned}
& (z, w) \mapsto(\beta z, \alpha w), \\
& (z, w) \mapsto\left(z+b_{i}, w+a_{i}\right) .
\end{aligned}
$$

Inoue-Bombieri surface \mathcal{S}_{A}

Let $A \in \mathrm{SL}_{3}(\mathbb{Z})$ with one real eigenvalue $\alpha>1$ and two complex eigenvalues β and $\bar{\beta}$.
$\left(a_{1}, a_{2}, a_{3}\right)$ - eigenvector of α.
$\left(b_{1}, b_{2}, b_{3}\right)$ - eigenvector of β.
G_{A} be the group of affine transformations of $\mathbb{C} \times \mathbb{H}$ generated by:

$$
\begin{aligned}
(z, w) & \mapsto(\beta z, \alpha w) \\
(z, w) & \mapsto\left(z+b_{i}, w+a_{i}\right) \\
\mathcal{S}_{A} & :=\mathbb{C} \times \mathbb{H} / G_{A}
\end{aligned}
$$

Inoue-Bombieri surface \mathcal{S}_{A}

Let $A \in \mathrm{SL}_{3}(\mathbb{Z})$ with one real eigenvalue $\alpha>1$ and two complex eigenvalues β and $\bar{\beta}$.
$\left(a_{1}, a_{2}, a_{3}\right)$ - eigenvector of α.
$\left(b_{1}, b_{2}, b_{3}\right)$ - eigenvector of β.
G_{A} be the group of affine transformations of $\mathbb{C} \times \mathbb{H}$ generated by:

$$
\begin{aligned}
(z, w) & \mapsto(\beta z, \alpha w) \\
(z, w) & \mapsto\left(z+b_{i}, w+a_{i}\right) \\
\mathcal{S}_{A} & :=\mathbb{C} \times \mathbb{H} / G_{A}
\end{aligned}
$$

Theorem

Tricerri ('82) On S_{A}, the metric $\omega=\frac{d w \wedge d \bar{w}}{(\operatorname{lm} w)^{2}}+\operatorname{Im} w d z \wedge d \bar{z}$ is IcK $\left(d \omega=\frac{d \operatorname{lm} w}{\operatorname{lm} w} \wedge \omega\right)$.

Oeljeklaus-Toma (OT) manifolds -the construction

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings }
$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\begin{array}{r}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}
$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{c}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{c}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{r}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{r}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

$$
\begin{aligned}
\sigma_{i}: K & \rightarrow \mathbb{C} \\
\sigma_{i}(\alpha) & =\alpha_{i}
\end{aligned}
$$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{r}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

$$
\begin{aligned}
\sigma_{i}: K & \rightarrow \mathbb{C} \\
\sigma_{i}(\alpha) & =\alpha_{i}
\end{aligned}
$$

$[K: \mathbb{Q}]=n=s+2 t$

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{r}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

$$
\begin{array}{r}
\sigma_{i}: K \rightarrow \mathbb{C} \\
\sigma_{i}(\alpha)=\alpha_{i}
\end{array}
$$

$[K: \mathbb{Q}]=n=s+2 t$ (from now on, consider only the case $s, t \geq 1)$.

Oeljeklaus-Toma (OT) manifolds -the construction

- introduced by K. Oeljeklaus and M. Toma in 2005
- compact non-Kähler manifolds
- higher dimensional analogues of Inoue-Bombieri surface Let $\mathbb{Q} \subseteq K$ finite extension, $[K: \mathbb{Q}]=n$

$$
\left.\begin{array}{c}
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{R} \quad s \text { real embeddings } \\
\sigma_{s+1}, \ldots, \sigma_{s+t}: K \hookrightarrow \mathbb{C} \\
\bar{\sigma}_{s+1}, \ldots, \bar{\sigma}_{s+t}: K \hookrightarrow \mathbb{C}
\end{array}\right\} 2 t \text { complex embeddings. }
$$

$K=\mathbb{Q}(\alpha), \alpha$ algebraic number, α_{i} its conjugates

$$
\begin{array}{r}
\sigma_{i}: K \rightarrow \mathbb{C} \\
\sigma_{i}(\alpha)=\alpha_{i}
\end{array}
$$

$[K: \mathbb{Q}]=n=s+2 t$ (from now on, consider only the case $s, t \geq 1$). For any $s, t \in \mathbb{N}$, there exists $\mathbb{Q} \subseteq K$ with s real embeddings, $2 t$ complex embeddings.

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*+}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right.
$$

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*+}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right.
$$

$$
\mathcal{O}_{K} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*++}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right.
$$

$$
\mathcal{O}_{K} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

$T_{a}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1}+\sigma_{1}(a), \ldots, z_{s+t}+\sigma_{s+t}(a)\right)$.

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*++}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right.
$$

$$
\mathcal{O}_{K} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

$T_{a}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1}+\sigma_{1}(a), \ldots, z_{s+t}+\sigma_{s+t}(a)\right)$.

$$
\sigma: \mathcal{O}_{K} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}
$$

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*++}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right.
$$

$$
\mathcal{O}_{K} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

$T_{a}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1}+\sigma_{1}(a), \ldots, z_{s+t}+\sigma_{s+t}(a)\right)$.

$$
\sigma: \mathcal{O}_{K} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t}
$$

$$
\sigma(a)=\left(\sigma_{1}(a), \ldots, \sigma_{s+t}(a)\right)
$$

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\begin{gathered}
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*,+}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right. \\
\mathcal{O}_{K} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
T_{a}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1}+\sigma_{1}(a), \ldots, z_{s+t}+\sigma_{s+t}(a)\right) \\
\sigma: \mathcal{O}_{K} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t} \\
\sigma(a)=\left(\sigma_{1}(a), \ldots, \sigma_{s+t}(a)\right)
\end{gathered}
$$

$\operatorname{Im} \sigma$ is a lattice of rank $s+2 t=n$

Oeljeklaus-Toma manifold: a compact quotient of $\mathbb{H}^{s} \times \mathbb{C}^{t}$, where $\mathbb{H}:=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

$$
\begin{gathered}
\text { Let }\left\{\begin{array}{l}
\mathcal{O}_{K} \text { the ring of algebraic integers of } K \\
\mathcal{O}_{K}^{*,+}=\left\{u \in \mathcal{O}_{K}^{*} \mid \sigma_{i}(u)>0,1 \leq i \leq s\right\}
\end{array}\right. \\
\mathcal{O}_{K} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
T_{a}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1}+\sigma_{1}(a), \ldots, z_{s+t}+\sigma_{s+t}(a)\right) \\
\sigma: \mathcal{O}_{K} \hookrightarrow \mathbb{R}^{s} \times \mathbb{C}^{t} \\
\sigma(a)=\left(\sigma_{1}(a), \ldots, \sigma_{s+t}(a)\right)
\end{gathered}
$$

$\operatorname{Im} \sigma$ is a lattice of rank $s+2 t=n$

$$
\mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K} \simeq \mathbb{R}_{+}^{s} \times \mathbb{T}^{n}
$$

$$
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

$$
\mathcal{O}_{K}^{*++} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

$$
R_{u}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1} \cdot \sigma_{1}(u), \ldots, z_{s+t} \cdot \sigma_{s+t}(u)\right) .
$$

$$
\begin{gathered}
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
R_{u}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1} \cdot \sigma_{1}(u), \ldots, z_{s+t} \cdot \sigma_{s+t}(u)\right) \\
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
R_{u}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1} \cdot \sigma_{1}(u), \ldots, z_{s+t} \cdot \sigma_{s+t}(u)\right) \\
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
\end{gathered}
$$

There exists a subgroup $U \subset \mathcal{O}_{K}^{*,+}$ of rank s such that the action

$$
U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
$$

is fixed-point-free, properly discontinuous, and co-compact.

$$
\begin{gathered}
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
R_{u}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1} \cdot \sigma_{1}(u), \ldots, z_{s+t} \cdot \sigma_{s+t}(u)\right) \\
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
\end{gathered}
$$

There exists a subgroup $U \subset \mathcal{O}_{K}^{*,+}$ of rank s such that the action

$$
U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
$$

is fixed-point-free, properly discontinuous, and co-compact.

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t}
$$

$\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)$.

$$
\begin{gathered}
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
R_{u}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1} \cdot \sigma_{1}(u), \ldots, z_{s+t} \cdot \sigma_{s+t}(u)\right) \\
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
\end{gathered}
$$

There exists a subgroup $U \subset \mathcal{O}_{K}^{*,+}$ of rank s such that the action

$$
U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
$$

is fixed-point-free, properly discontinuous, and co-compact.

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t}
$$

$\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)$.

$$
\operatorname{Im} \ell \leq \mathcal{H}:=\left\{\left(x_{1}, \ldots, x_{s+t}\right) \mid x_{1}+\ldots+x_{s+t}=0\right\}
$$

$$
\begin{gathered}
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} \\
R_{u}\left(w_{1}, \ldots, w_{s}, z_{s+1}, \ldots, z_{s+t}\right):=\left(w_{1} \cdot \sigma_{1}(u), \ldots, z_{s+t} \cdot \sigma_{s+t}(u)\right) \\
\mathcal{O}_{K}^{*,+} \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
\end{gathered}
$$

There exists a subgroup $U \subset \mathcal{O}_{K}^{*,+}$ of rank s such that the action

$$
U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
$$

is fixed-point-free, properly discontinuous, and co-compact.

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t}
$$

$\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)$.

$$
\operatorname{Im} \ell \leq \mathcal{H}:=\left\{\left(x_{1}, \ldots, x_{s+t}\right) \mid x_{1}+\ldots+x_{s+t}=0\right\}
$$

(u unit $\left.\sigma_{1}(u) \ldots \sigma_{s}(u) \sigma_{s+1}(u) \ldots \sigma_{s+t}(u) \bar{\sigma}_{s+1}(u) \ldots \bar{\sigma}_{s+t}(u)=1\right)$

Classical result from number theory:

Im ℓ maximal lattice in \mathcal{H}

Classical result from number theory:
Im ℓ maximal lattice in \mathcal{H}

$$
(\operatorname{rank} s+t-1)
$$

Choose $U \leq \mathcal{O}_{K}^{*,+}$ such that $p r_{\mathbb{R}^{s}}(I(U))$ is a lattice of rank s.

Classical result from number theory:
Im ℓ maximal lattice in \mathcal{H}

$$
(\operatorname{rank} s+t-1)
$$

Choose $U \leq \mathcal{O}_{K}^{*,+}$ such that $p r_{\mathbb{R}^{s}}(I(U))$ is a lattice of rank s.

$$
U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
$$

is fixed-point-free, properly discontinuous, and co-compact.

Classical result from number theory:
Im ℓ maximal lattice in \mathcal{H}

$$
(\operatorname{rank} s+t-1)
$$

Choose $U \leq \mathcal{O}_{K}^{*,+}$ such that $\operatorname{pr}_{\mathbb{R}^{s}}(I(U))$ is a lattice of rank s.

$$
U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K}
$$

is fixed-point-free, properly discontinuous, and co-compact.

$$
\mathcal{O}_{K} \rtimes U \circlearrowleft \mathbb{H}^{s} \times \mathbb{C}^{t}
$$

Theorem (Oeljeklaus-Toma, 2005)

$$
X(K, U):=\mathbb{H}^{s} \times \mathbb{C}^{t} / \mathcal{O}_{K} \rtimes U
$$

is a compact complex manifold associated to algebraic number field K and to the admissible subgroup U of $\mathcal{O}_{K}^{*,+}$.

Let $f(x)=x^{p}-2, p$ prime.

Let $f(x)=x^{p}-2, p$ prime. one real root: $\sqrt[p]{2}$

Let $f(x)=x^{p}-2, p$ prime.
one real root: $\sqrt[p]{2}$
complex roots: $\sqrt[p]{2} \epsilon, \ldots, \sqrt[p]{2} \epsilon^{p-1}$

Let $f(x)=x^{p}-2, p$ prime.
one real root: $\sqrt[p]{2}$
complex roots: $\sqrt[p]{2} \epsilon, \ldots, \sqrt[p]{2} \epsilon^{p-1}$
$K=\mathbb{Q}(\sqrt[p]{2})$

Let $f(x)=x^{p}-2, p$ prime.
one real root: $\sqrt[p]{2}$
complex roots: $\sqrt[p]{2} \epsilon, \ldots, \sqrt[p]{2} \epsilon^{p-1}$
$K=\mathbb{Q}(\sqrt[p]{2})$
$u=\sqrt[p]{2}-1$
u unit since $(\sqrt[p]{2}-1) \ldots\left(\sqrt[p]{2} \epsilon^{p-1}-1\right)=(-1)^{p} f(1)=1$

Let $f(x)=x^{p}-2, p$ prime.
one real root: $\sqrt[p]{2}$
complex roots: $\sqrt[p]{2} \epsilon, \ldots, \sqrt[p]{2} \epsilon^{p-1}$
$K=\mathbb{Q}(\sqrt[p]{2})$
$u=\sqrt[p]{2}-1$
u unit since $(\sqrt[p]{2}-1) \ldots\left(\sqrt[p]{2} \epsilon^{p-1}-1\right)=(-1)^{p} f(1)=1$
$U=\langle u\rangle$
$\mathbb{T}^{p} \rightarrow X(K, U) \rightarrow S^{1}$

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$
- $\mathbb{T}^{n} \rightarrow X(K, U) \rightarrow \mathbb{T}^{s}$

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$
- $\mathbb{T}^{n} \rightarrow X(K, U) \rightarrow \mathbb{T}^{s}$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$
- $\mathbb{T}^{n} \rightarrow X(K, U) \rightarrow \mathbb{T}^{s}$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) $\left(b_{l}=\sum_{p+q=1} h^{p, q}\right)$

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$
- $\mathbb{T}^{n} \rightarrow X(K, U) \rightarrow \mathbb{T}^{s}$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) $\left(b_{l}=\sum_{p+q=1} h^{p, q}\right)$
- Kod $=-\infty$, there are no global holomorphic vector fields or holomorphic one-forms

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$
- $\mathbb{T}^{n} \rightarrow X(K, U) \rightarrow \mathbb{T}^{s}$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) $\left(b_{l}=\sum_{p+q=1} h^{p, q}\right)$
- Kod $=-\infty$, there are no global holomorphic vector fields or holomorphic one-forms
- they have a solvmanifold structure $\Gamma \backslash G$ (Kasuya, 2012)

Oeljeklaus-Toma manifolds - Facts

- $b_{1}(X(K, U))=s \geq 1$
- $\mathbb{T}^{n} \rightarrow X(K, U) \rightarrow \mathbb{T}^{s}$
- de Rham cohomology is computable in terms of number-theoretical invariants (Istrati, -, 2017)
- Dolbeault cohomology is computable in terms of number-theoretical invariants, Hodge decomposition holds (Toma, -, 2018) $\left(b_{l}=\sum_{p+q=1} h^{p, q}\right)$
- Kod $=-\infty$, there are no global holomorphic vector fields or holomorphic one-forms
- they have a solvmanifold structure $\Gamma \backslash G$ (Kasuya, 2012)

What about the Hermitian geometry of $X(K, U)$?

Locally conformally metrics on $X(K, U)$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)
$X(K, U)$ admits a locally conformally Kähler metric if and only if

$$
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U
$$

Locally conformally metrics on $X(K, U)$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

$X(K, U)$ admits a locally conformally Kähler metric if and only if

$$
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U
$$

Proof (Sketch):

loc. conf. Kähler metric Ω on $X(K, U)$

$$
\Uparrow
$$

$\tilde{\Omega}$ Kähler metric on $\mathbb{H}^{s} \times \mathbb{C}^{t}$ such that $\forall \gamma \in$ Deck, $\gamma^{*} \tilde{\Omega}=\underbrace{c_{\gamma}}_{\in \mathbb{R}>0} \tilde{\Omega}$.

Locally conformally metrics on $X(K, U)$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

$X(K, U)$ admits a locally conformally Kähler metric if and only if

$$
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U
$$

Proof (Sketch):

loc. conf. Kähler metric Ω on $X(K, U)$

$$
\Uparrow
$$

$\tilde{\Omega}$ Kähler metric on $\mathbb{H}^{s} \times \mathbb{C}^{t}$ such that $\forall \gamma \in$ Deck, $\gamma^{*} \tilde{\Omega}=\underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}$.
(" $\Rightarrow " \pi: \tilde{X} \rightarrow X$ the universal cover, $\left.\pi^{*} \theta=d f, e^{-f} \pi^{*} \Omega=: \tilde{\Omega}\right)$

Locally conformally metrics on $X(K, U)$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

$X(K, U)$ admits a locally conformally Kähler metric if and only if

$$
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U
$$

Proof (Sketch):

loc. conf. Kähler metric Ω on $X(K, U)$

$$
\Uparrow
$$

$\tilde{\Omega}$ Kähler metric on $\mathbb{H}^{s} \times \mathbb{C}^{t}$ such that $\forall \gamma \in$ Deck, $\gamma^{*} \tilde{\Omega}=\underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}$.
(" \Rightarrow " $\pi: \tilde{X} \rightarrow X$ the universal cover, $\left.\pi^{*} \theta=d f, e^{-f} \pi^{*} \Omega=: \tilde{\Omega}\right)$
$\left(" \Leftarrow " \gamma \mapsto \log c_{\gamma} \rightsquigarrow\right.$
$\operatorname{Hom}\left(\pi_{1}(X(K, U)), \mathbb{R}\right) \simeq H_{d R}^{1}(X(K, U)) \ni[\theta]$,

Locally conformally metrics on $X(K, U)$

Theorem (Oeljeklaus, Toma, 2005, Battisti, 2014)

$X(K, U)$ admits a locally conformally Kähler metric if and only if

$$
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U
$$

Proof (Sketch):

loc. conf. Kähler metric Ω on $X(K, U)$

$$
\Uparrow
$$

$\tilde{\Omega}$ Kähler metric on $\mathbb{H}^{s} \times \mathbb{C}^{t}$ such that $\forall \gamma \in$ Deck, $\gamma^{*} \tilde{\Omega}=\underbrace{c_{\gamma}}_{\in \mathbb{R}_{>0}} \tilde{\Omega}$.
(" $\Rightarrow " \pi: \tilde{X} \rightarrow X$ the universal cover, $\left.\pi^{*} \theta=d f, e^{-f} \pi^{*} \Omega=: \tilde{\Omega}\right)$
$\left(" \Leftarrow " \gamma \mapsto \log c_{\gamma} \rightsquigarrow\right.$
$\operatorname{Hom}\left(\pi_{1}(X(K, U)), \mathbb{R}\right) \simeq H_{d R}^{1}(X(K, U)) \ni[\theta], \pi^{*} \theta=d f, e^{f} \tilde{\Omega}$ is π_{1}-invariant, lcK)

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\tilde{\Omega}:=\mathrm{i} \partial \bar{\partial}\left(\left(\prod_{j=1}^{s} \operatorname{Im} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right)
$$

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\begin{aligned}
& \tilde{\Omega}:=\mathrm{i} \partial \bar{\partial}(\\
&\left.\left(\prod_{j=1}^{s} \operatorname{lm} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right) \\
& a \in \mathcal{O}_{K}: a^{*} \tilde{\Omega}=\tilde{\Omega}
\end{aligned}
$$

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\begin{gathered}
\tilde{\Omega}:=i \partial \bar{\partial}\left(\left(\prod_{j=1}^{s} \operatorname{lm} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right) \\
a \in \mathcal{O}_{K}: a^{*} \tilde{\Omega}=\tilde{\Omega} \\
u \in U: u^{*} \tilde{\Omega}=c_{u} \tilde{\Omega}, c_{u}=\left(\prod_{j=1}^{s} \sigma_{j}(u)\right)^{-1 / t}
\end{gathered}
$$

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\begin{gathered}
\tilde{\Omega}:=\mathrm{i} \partial \bar{\partial}\left(\left(\prod_{j=1}^{s} \operatorname{lm} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right) \\
a \in \mathcal{O}_{K}: a^{*} \tilde{\Omega}=\tilde{\Omega} \\
u \in U: u^{*} \tilde{\Omega}=c_{u} \tilde{\Omega}, c_{u}=\left(\prod_{j=1}^{s} \sigma_{j}(u)\right)^{-1 / t}=\left|\sigma_{s+j}(u)\right|^{2}, \forall 1 \leq j \leq t
\end{gathered}
$$

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\begin{gathered}
\tilde{\Omega}:=\mathrm{i} \partial \bar{\partial}\left(\left(\prod_{j=1}^{s} \operatorname{lm} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right) \\
a \in \mathcal{O}_{K}: a^{*} \tilde{\Omega}=\tilde{\Omega} \\
u \in U: u^{*} \tilde{\Omega}=c_{u} \tilde{\Omega}, c_{u}=\left(\prod_{j=1}^{s} \sigma_{j}(u)\right)^{-1 / t}=\left|\sigma_{s+j}(u)\right|^{2}, \forall 1 \leq j \leq t
\end{gathered}
$$

- If $X(K, U)$ is loc. conf. Kähler, take a Kähler form

$$
\tilde{\Omega}:=a_{i j}(z) \sum_{i, j=1}^{s+t} d z_{i} \wedge d \bar{z}_{j}
$$

such that $\gamma^{*} \tilde{\Omega}=c_{\gamma} \tilde{\Omega}$

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\begin{gathered}
\tilde{\Omega}:=\mathrm{i} \partial \bar{\partial}\left(\left(\prod_{j=1}^{s} \operatorname{lm} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right) \\
a \in \mathcal{O}_{K}: a^{*} \tilde{\Omega}=\tilde{\Omega} \\
u \in U: u^{*} \tilde{\Omega}=c_{u} \tilde{\Omega}, c_{u}=\left(\prod_{j=1}^{s} \sigma_{j}(u)\right)^{-1 / t}=\left|\sigma_{s+j}(u)\right|^{2}, \forall 1 \leq j \leq t
\end{gathered}
$$

- If $X(K, U)$ is loc. conf. Kähler, take a Kähler form

$$
\tilde{\Omega}:=a_{i j}(z) \sum_{i, j=1}^{s+t} d z_{i} \wedge d \bar{z}_{j}
$$

such that $\gamma^{*} \tilde{\Omega}=c_{\gamma} \tilde{\Omega} \rightsquigarrow a_{i j}=$ constant, for $i, j \geq s+1$

- If $\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+i}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right|, \forall u \in U$, then take

$$
\begin{gathered}
\tilde{\Omega}:=\mathrm{i} \partial \bar{\partial}\left(\left(\prod_{j=1}^{s} \operatorname{lm} w_{j}\right)^{-1 / t}+\sum_{j=1}^{t}\left|z_{j}\right|^{2}\right) \\
a \in \mathcal{O}_{K}: a^{*} \tilde{\Omega}=\tilde{\Omega} \\
u \in U: u^{*} \tilde{\Omega}=c_{u} \tilde{\Omega}, c_{u}=\left(\prod_{j=1}^{s} \sigma_{j}(u)\right)^{-1 / t}=\left|\sigma_{s+j}(u)\right|^{2}, \forall 1 \leq j \leq t
\end{gathered}
$$

- If $X(K, U)$ is loc. conf. Kähler, take a Kähler form

$$
\tilde{\Omega}:=a_{i j}(z) \sum_{i, j=1}^{s+t} d z_{i} \wedge d \bar{z}_{j}
$$

such that $\gamma^{*} \tilde{\Omega}=c_{\gamma} \tilde{\Omega} \rightsquigarrow a_{i j}=$ constant, for $i, j \geq s+1$
$\Rightarrow c_{u}=\left|\sigma_{s+j}(u)\right|^{2}, 1 \leq j \leq t$.

Q: When is this numerical condition satisfied?

Q: When is this numerical condition satisfied?

- When $\mathrm{t}=1, X(K, U)$ always admits loc. conf. Kähler metrics!

Q: When is this numerical condition satisfied?

- When $\mathrm{t}=1, X(K, U)$ always admits loc. conf. Kähler metrics!
- Dubickas, Vuletescu: found several conditions for s and t, still no explicit example with $t \neq 1$

Q: When is this numerical condition satisfied?

- When $\mathrm{t}=1, X(K, U)$ always admits loc. conf. Kähler metrics!
- Dubickas, Vuletescu: found several conditions for s and t, still no explicit example with $t \neq 1$ $t>s$ there are no loc. conf. Kähler metrics on $X(K, U)$.

Solvmanifold structure of OT-manifolds (Kasuya, 2012)

- Organize $\mathbb{H}^{s} \times \mathbb{C}^{t}$ as a Lie group:

Solvmanifold structure of OT-manifolds

 (Kasuya, 2012)- Organize $\mathbb{H}^{s} \times \mathbb{C}^{t}$ as a Lie group:

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t}
$$

$$
\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)
$$

Solvmanifold structure of OT-manifolds

 (Kasuya, 2012)- Organize $\mathbb{H}^{s} \times \mathbb{C}^{t}$ as a Lie group:

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t}
$$

$$
\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)
$$

$$
U \leq \mathcal{O}_{K}^{*,+}, \operatorname{pr}_{\mathbb{R}^{s}}(\ell(U)) \text { lattice of rank } s \text { in } \mathbb{R}^{s} .
$$

Solvmanifold structure of OT-manifolds (Kasuya, 2012)

- Organize $\mathbb{H}^{s} \times \mathbb{C}^{t}$ as a Lie group:

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t},
$$

$$
\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)
$$

$$
U \leq \mathcal{O}_{K}^{*,+}, \operatorname{pr}_{\mathbb{R}^{s}}(\ell(U)) \text { lattice of rank } s \text { in } \mathbb{R}^{s} .
$$

There exist real numbers $b_{k i}, c_{k i}, 1 \leq k \leq s, 1 \leq i \leq t$ s.t. for any $u \in U$:

$$
2 \log \left|\sigma_{s+i}(u)\right|=\sum_{k=1}^{s} b_{k i} \log \sigma_{k}(u)
$$

Solvmanifold structure of OT-manifolds (Kasuya, 2012)

- Organize $\mathbb{H}^{s} \times \mathbb{C}^{t}$ as a Lie group:

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t}
$$

$$
\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)
$$

$$
U \leq \mathcal{O}_{K}^{*,+}, \operatorname{pr}_{\mathbb{R}^{s}}(\ell(U)) \text { lattice of rank } s \text { in } \mathbb{R}^{s} .
$$

There exist real numbers $b_{k i}, c_{k i}, 1 \leq k \leq s, 1 \leq i \leq t$ s.t. for any $u \in U$:

$$
2 \log \left|\sigma_{s+i}(u)\right|=\sum_{k=1}^{s} b_{k i} \log \sigma_{k}(u)
$$

or equivalently, $\left|\sigma_{s+i}(u)\right|^{2}=\prod_{k=1}^{s}\left(\sigma_{k}(u)\right)^{b_{k i}}$.

Solvmanifold structure of OT-manifolds

 (Kasuya, 2012)- Organize $\mathbb{H}^{s} \times \mathbb{C}^{t}$ as a Lie group:

$$
\ell: \mathcal{O}_{K}^{*,+} \rightarrow \mathbb{R}^{s+t},
$$

$$
\ell(u)=\left(\log \sigma_{1}(u), \ldots, \log \sigma_{s}(u), 2 \log \left|\sigma_{s+1}(u)\right|, \ldots, 2 \log \left|\sigma_{s+t}(u)\right|\right)
$$

$$
U \leq \mathcal{O}_{K}^{*,+}, \operatorname{pr}_{\mathbb{R}^{s}}(\ell(U)) \text { lattice of rank } s \text { in } \mathbb{R}^{s} .
$$

There exist real numbers $b_{k i}, c_{k i}, 1 \leq k \leq s, 1 \leq i \leq t$ s.t. for any $u \in U$:

$$
2 \log \left|\sigma_{s+i}(u)\right|=\sum_{k=1}^{s} b_{k i} \log \sigma_{k}(u)
$$

or equivalently, $\left|\sigma_{s+i}(u)\right|^{2}=\prod_{k=1}^{s}\left(\sigma_{k}(u)\right)^{b_{k i}}$.

$$
\sigma_{s+i}(u)=\left(\prod_{k=1}^{s}\left(\sigma_{k}(u)\right)^{\frac{b_{k i}}{2}}\right) e^{\mathrm{i} \sum_{k=1}^{s} c_{k i} \log \sigma_{k}(u)}
$$

$$
\forall(w, z),\left(w^{\prime}, z^{\prime}\right) \in \mathbb{H}^{s} \times \mathbb{C}^{t}:
$$

$$
\forall(w, z),\left(w^{\prime}, z^{\prime}\right) \in \mathbb{H}^{s} \times \mathbb{C}^{t}:
$$

$$
(w, z) *\left(w^{\prime}, z^{\prime}\right)=\left(w^{1}, \ldots, w^{s}, z^{1}, \ldots, z^{t}\right)
$$

$$
\begin{aligned}
& \forall(w, z),\left(w^{\prime}, z^{\prime}\right) \in \mathbb{H}^{s} \times \mathbb{C}^{t}: \\
& \qquad(w, z) *\left(w^{\prime}, z^{\prime}\right)=\left(w^{1}, \ldots, w^{s}, z^{1}, \ldots, z^{t}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
w^{i} & =\operatorname{Re} w_{i}+\operatorname{Im} w_{i} \cdot \operatorname{Re} w_{i}^{\prime}+\mathrm{i} \operatorname{Im} w_{i} \cdot \operatorname{Im} w_{i}^{\prime}, \quad 1 \leq i \leq s \\
z^{i} & =z_{i}+\left(\operatorname{Im} w_{1}\right)^{\frac{b_{1 i}}{2}} \ldots\left(\operatorname{Im} w_{s}\right)^{\frac{b_{s i}}{2}} e^{\mathrm{i} \sum_{k=1}^{s} c_{k i} \operatorname{Im} w_{k} z_{i}^{\prime}, \quad 1 \leq i \leq t .}
\end{aligned}
$$

$$
\begin{aligned}
& \forall(w, z),\left(w^{\prime}, z^{\prime}\right) \in \mathbb{H}^{s} \times \mathbb{C}^{t}: \\
& \qquad(w, z) *\left(w^{\prime}, z^{\prime}\right)=\left(w^{1}, \ldots, w^{s}, z^{1}, \ldots, z^{t}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
w^{i} & =\operatorname{Re} w_{i}+\operatorname{Im} w_{i} \cdot \operatorname{Re} w_{i}^{\prime}+\mathrm{i} \operatorname{Im} w_{i} \cdot \operatorname{Im} w_{i}^{\prime}, \quad 1 \leq i \leq s \\
z^{i} & =z_{i}+\left(\operatorname{Im} w_{1}\right)^{\frac{b_{1 i}}{2}} \ldots\left(\operatorname{Im} w_{s}\right)^{\frac{b_{s i}}{2}} e^{\mathrm{i} \sum_{k=1}^{s} c_{k i} \operatorname{Im} w_{k} z_{i}^{\prime}, \quad 1 \leq i \leq t .}
\end{aligned}
$$

We can represent

$$
X(K, U)=U \ltimes \mathcal{O}_{K} \backslash \mathbb{R}^{s} \ltimes_{\varphi}\left(\mathbb{R}^{s} \times \mathbb{C}^{t}\right)
$$

where

$$
\varphi\left(x_{1}, \ldots, x_{s}\right)=\left(\begin{array}{lllll}
\ddots & & & & \\
& e^{x_{i}} & & & \\
& & \ddots & & \\
& & & A_{j} & \\
& & & & \ddots
\end{array}\right)
$$

and

$$
A_{j}:=e^{\frac{1}{2} \sum_{k=1}^{s} b_{k j} x_{k}} \cdot e^{\mathrm{i} \sum_{k=1}^{s} c_{k j} x_{k}}
$$

General method to prove (non)-existence of special metrics on $\Gamma \backslash G$

General method to prove (non)-existence of special metrics on $\Gamma \backslash G$
Existence of special metric

General method to prove (non)-existence of special metrics on $\Gamma \backslash G$ Existence of special metric

Prove there exists a left-invariant one of this type

General method to prove (non)-existence of special metrics on $\Gamma \backslash G$

Existence of special metric

Prove there exists a left-invariant one of this type

Use the structure equations of \mathfrak{g}

General method to prove (non)-existence of special metrics on $\Gamma \backslash G$

Existence of special metric

Prove there exists a left-invariant one of this type

Use the structure equations of \mathfrak{g}

Find an explicit example

General method to prove (non)-existence of special metrics on $\Gamma \backslash G$

Existence of special metric

Prove there exists a left-invariant one of this type

Use the structure equations of \mathfrak{g}

Find an explicit example
Find a contradiction

Existence of left-invariant metrics

On $\Gamma \backslash G:$

Existence of left-invariant metrics

On $\Gamma \backslash G$:

- (Fino-Grantcharov, '04) If there exists a balanced metric on $\Gamma \backslash G$, there exists a left-invariant balanced metric Ω_{0}

Existence of left-invariant metrics

On $\Gamma \backslash G$:

- (Fino-Grantcharov, '04) If there exists a balanced metric on $\Gamma \backslash G$, there exists a left-invariant balanced metric Ω_{0}
- (Ugarte, '07) If there exists a pluriclosed metric on $\Gamma \backslash G$, there exists a left-invariant pluriclosed metric Ω_{0}

Definition

A metric Ω is balanced if $d \Omega^{n-1}=0$, equivalently, if $d^{*} \Omega=0$.

Averaging procedure

Averaging procedure
Theorem (Milnor, '76)
Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_{0}(X, Y)=\int_{\Gamma \backslash G} \Omega(X, Y) d$ vol, $\forall X, Y \in \mathfrak{g}$

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_{0}(X, Y)=\int_{\Gamma \backslash G} \Omega(X, Y) d$ vol, $\forall X, Y \in \mathfrak{g}$
- (Fino-Grantcharov)
Ω balanced $\Leftrightarrow \tilde{\Omega}(n-1, n-1)$ - positive closed form

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_{0}(X, Y)=\int_{\Gamma \backslash G} \Omega(X, Y) d$ vol, $\forall X, Y \in \mathfrak{g}$
- (Fino-Grantcharov)

$$
\Omega \text { balanced } \Leftrightarrow \tilde{\Omega}(n-1, n-1)-\text { positive closed form }
$$

If $d \tilde{\Omega}=0 \&(n-1, n-1)$-positive, define

$$
\tilde{\Omega}_{0}\left(X_{1}, \ldots, X_{2 n-2}\right)=\int_{\Gamma \backslash G} \tilde{\Omega}\left(X_{1}, \ldots, X_{2 n-2}\right) d \operatorname{vol}, X_{1}, \ldots, X_{2 n-2} \in \mathfrak{g}
$$

Averaging procedure

Theorem (Milnor, '76)

Any simply connected Lie group which admits a discrete subgroup with compact quotient is endowed with a bi-invariant volume form.

- (Ugarte) Let Ω be pluriclosed. Define $\Omega_{0}(X, Y)=\int_{\Gamma \backslash G} \Omega(X, Y) d$ vol, $\forall X, Y \in \mathfrak{g}$
- (Fino-Grantcharov)

$$
\Omega \text { balanced } \Leftrightarrow \tilde{\Omega}(n-1, n-1)-\text { positive closed form }
$$

If $d \tilde{\Omega}=0 \&(n-1, n-1)$-positive, define

$$
\tilde{\Omega}_{0}\left(X_{1}, \ldots, X_{2 n-2}\right)=\int_{\Gamma \backslash G} \tilde{\Omega}\left(X_{1}, \ldots, X_{2 n-2}\right) d \text { vol }, X_{1}, \ldots, X_{2 n-2} \in \mathfrak{g}
$$

- original averaging trick: Belgun, 2000, for IcK

Balanced and loc. conf. balanced metrics on $X(K, U)$

Theorem (-, 2020)

(1) An Oeljeklaus-Toma manifold $X(K, U)$ does not support balanced metrics.
(2) Any $X(K, U)$ admits a locally conformally balanced metric.

Balanced and loc. conf. balanced metrics on $X(K, U)$

Theorem (-, 2020)

(1) An Oeljeklaus-Toma manifold $X(K, U)$ does not support balanced metrics.
(2) Any $X(K, U)$ admits a locally conformally balanced metric.

Proof.

(1) The existence of a balanced metric $\rightsquigarrow \exists \Omega_{0}$ left-invariant balanced. Ω_{0} balanced $\Leftrightarrow \Omega(n-1, n-1)$-form positive \& $d \Omega=0$.
(2)

$$
\omega_{0}=\mathrm{i} \sum_{i=1}^{s} \frac{d w_{i} \wedge d \bar{w}_{i}}{\left(\operatorname{Im} w_{i}\right)^{2}}+\mathrm{i} \sum_{i=1}^{t} \prod_{k=1}^{s}\left(\operatorname{Im} w_{k}\right)^{-b_{k i}} d z_{i} \wedge d \bar{z}_{i}
$$

Balanced and loc. conf. balanced metrics on $X(K, U)$

Theorem (-, 2020)

(1) An Oeljeklaus-Toma manifold $X(K, U)$ does not support balanced metrics.
(2) Any $X(K, U)$ admits a locally conformally balanced metric.

Proof.

(1) The existence of a balanced metric $\rightsquigarrow \exists \Omega_{0}$ left-invariant balanced. Ω_{0} balanced $\Leftrightarrow \Omega(n-1, n-1)$-form positive \& $d \Omega=0$.
(2)

$$
\omega_{0}=\mathrm{i} \sum_{i=1}^{s} \frac{d w_{i} \wedge d \bar{w}_{i}}{\left(\operatorname{Im} w_{i}\right)^{2}}+\mathrm{i} \sum_{i=1}^{t} \prod_{k=1}^{s}\left(\operatorname{Im} w_{k}\right)^{-b_{k i}} d z_{i} \wedge d \bar{z}_{i}
$$

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)
 Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)

Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)

Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric
(2) $s \leq t$ and after possibly relabeling the embeddings,

$$
\begin{aligned}
& \left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1, \text { for any } u \in U, 1 \leq i \leq s \text { and } \\
& \left|\sigma_{s+j}(u)\right|=1, \text { for any } j>s .
\end{aligned}
$$

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)

Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric
(2) $s \leq t$ and after possibly relabeling the embeddings,

$$
\begin{aligned}
& \left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1, \text { for any } u \in U, 1 \leq i \leq s \text { and } \\
& \left|\sigma_{s+j}(u)\right|=1, \text { for any } j>s .
\end{aligned}
$$

Proof:

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)

Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric
(2) $s \leq t$ and after possibly relabeling the embeddings,

$$
\begin{aligned}
& \left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1, \text { for any } u \in U, 1 \leq i \leq s \text { and } \\
& \left|\sigma_{s+j}(u)\right|=1, \text { for any } j>s .
\end{aligned}
$$

Proof:

- " 2) $\Rightarrow(1)$ " Take:

$$
\tilde{\Omega}:=\mathrm{i}\left(\sum_{i=1}^{s}\left(\frac{d w_{i} \wedge d \bar{w}_{i}}{\left(\operatorname{Im} w_{i}\right)^{2}}+\operatorname{Im} w_{i} d z_{i} \wedge d \bar{z}_{i}\right)+\sum_{i>s} d z_{i} \wedge d \bar{z}_{i}\right) .
$$

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)

Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric
(2) $s \leq t$ and after possibly relabeling the embeddings,

$$
\begin{aligned}
& \left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1, \text { for any } u \in U, 1 \leq i \leq s \text { and } \\
& \left|\sigma_{s+j}(u)\right|=1, \text { for any } j>s .
\end{aligned}
$$

Proof:

- " 2) $\Rightarrow(1)$ " Take:
$\tilde{\Omega}:=\mathrm{i}\left(\sum_{i=1}^{s}\left(\frac{d w_{i} \wedge d \bar{w}_{i}}{\left(\operatorname{Im} w_{i}\right)^{2}}+\operatorname{Im} w_{i} d z_{i} \wedge d \bar{z}_{i}\right)+\sum_{i>s} d z_{i} \wedge d \bar{z}_{i}\right)$.
$\tilde{\Omega}$ is defined on $\mathbb{H}^{s} \times \mathbb{C}^{t}$, it is $U \ltimes \mathcal{O}_{K}$-invariant and $\partial \bar{\partial}$-closed

Pluriclosed metrics on Oeljeklaus-Toma manifolds

Theorem (-, 2020)

Let $X(K, U)$ be any OT-manifold of type (s, t). The following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric
(2) $s \leq t$ and after possibly relabeling the embeddings,

$$
\begin{aligned}
& \left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1, \text { for any } u \in U, 1 \leq i \leq s \text { and } \\
& \left|\sigma_{s+j}(u)\right|=1, \text { for any } j>s .
\end{aligned}
$$

Proof:

- " 2) $\Rightarrow(1)$ " Take:
$\tilde{\Omega}:=\mathrm{i}\left(\sum_{i=1}^{s}\left(\frac{d w_{i} \wedge d \bar{w}_{i}}{\left(\operatorname{Im} w_{i}\right)^{2}}+\operatorname{Im} w_{i} d z_{i} \wedge d \bar{z}_{i}\right)+\sum_{i>s} d z_{i} \wedge d \bar{z}_{i}\right)$.
$\tilde{\Omega}$ is defined on $\mathbb{H}^{s} \times \mathbb{C}^{t}$, it is $U \ltimes \mathcal{O}_{K}$-invariant and $\partial \bar{\partial}$-closed (also left-invariant!).
- " $(1) \Rightarrow(2)$ " Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_{0}$ left-invariant \& pluriclosed.
Take $\Omega_{0}:=\mathrm{i} \sum_{i, j=1}^{s+t} a_{i j} \omega_{i} \wedge \bar{\omega}_{j}$ a positive (1, 1)-form, $\partial \bar{\partial}$-closed
- " $(1) \Rightarrow(2)$ " Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_{0}$ left-invariant \& pluriclosed.
Take $\Omega_{0}:=\mathrm{i} \sum_{i, j=1}^{s+t} a_{i j} \omega_{i} \wedge \bar{\omega}_{j}$ a positive $(1,1)$-form, $\partial \bar{\partial}$-closed

$$
\Rightarrow \quad \ldots[\text { computations] } \ldots \Rightarrow
$$

- " $(1) \Rightarrow(2)$ " Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_{0}$ left-invariant \& pluriclosed.
Take $\Omega_{0}:=\mathrm{i} \sum_{i, j=1}^{s+t} a_{i j} \omega_{i} \wedge \bar{\omega}_{j}$ a positive $(1,1)$-form, $\partial \bar{\partial}$-closed

$$
\Rightarrow \quad \ldots[\text { computations] } \ldots \Rightarrow
$$

pluriclosed condition

- " $(1) \Rightarrow(2)$ " Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_{0}$ left-invariant \& pluriclosed.
Take $\Omega_{0}:=\mathrm{i} \sum_{i, j=1}^{s+t} a_{i j} \omega_{i} \wedge \bar{\omega}_{j}$ a positive (1, 1)-form, $\partial \bar{\partial}$-closed

$$
\Rightarrow \quad \ldots[\text { computations] } \ldots \Rightarrow
$$

pluriclosed condition
Question: When is this condition satisfied?

- " $(1) \Rightarrow(2)$ " Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_{0}$ left-invariant \& pluriclosed.
Take $\Omega_{0}:=\mathrm{i} \sum_{i, j=1}^{s+t} a_{i \overline{ }} \omega_{i} \wedge \bar{\omega}_{j}$ a positive (1, 1$)$-form, $\partial \bar{\partial}$-closed

$$
\Rightarrow \quad \ldots[\text { computations] } \ldots \Rightarrow
$$

pluriclosed condition
Question: When is this condition satisfied?

Theorem (Dubickas, 2020)

For any $s \in \mathbb{N}^{*}$, there exists an Oeljeklaus-Toma manifold of type (s, s) satisfying $\sigma_{i}(u)\left|\sigma_{s+i}(u)\right|^{2}=1, \forall u \in U$. In particular, there exist pluriclosed OT-manifolds in any even complex dimension.

- " $(1) \Rightarrow(2)$ " Existence of Ω pluriclosed $\rightsquigarrow \exists \Omega_{0}$ left-invariant \& pluriclosed.
Take $\Omega_{0}:=\mathrm{i} \sum_{i, j=1}^{s+t} a_{i \overline{ }} \omega_{i} \wedge \bar{\omega}_{j}$ a positive (1, 1$)$-form, $\partial \bar{\partial}$-closed

$$
\Rightarrow \quad \ldots[\text { computations] } \ldots \Rightarrow
$$

pluriclosed condition
Question: When is this condition satisfied?

Theorem (Dubickas, 2020)

For any $s \in \mathbb{N}^{*}$, there exists an Oeljeklaus-Toma manifold of type (s, s) satisfying $\sigma_{i}(u)\left|\sigma_{s+i}(u)\right|^{2}=1, \forall u \in U$. In particular, there exist pluriclosed OT-manifolds in any even complex dimension. $b_{1}(X)=s=\frac{1}{2} \operatorname{dim}_{\mathbb{C}} X$

Theorem (D. Angella, A. Dubickas, -, J. Stelzig, '21)

An OT manifold of type (s, t) admits a pluriclosed metric if and only if $s=t$ and after possibly relabeling the embeddings, $\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1$, for any $u \in U, 1 \leq i \leq s$.

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\}
$$

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\} \Rightarrow \sigma_{1}(u)=\ldots=\sigma_{s}(u)
$$

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\} \Rightarrow \sigma_{1}(u)=\ldots=\sigma_{s}(u) \Rightarrow s=t=1 .
$$

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\} \Rightarrow \sigma_{1}(u)=\ldots=\sigma_{s}(u) \Rightarrow s=t=1 .
$$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold $X(K, U)$ admitting a pluriclosed metric has the following topological and complex properties:

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\} \Rightarrow \sigma_{1}(u)=\ldots=\sigma_{s}(u) \Rightarrow s=t=1 .
$$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold $X(K, U)$ admitting a pluriclosed metric has the following topological and complex properties:
(1) The third Betti number $b_{3}(X(K, U))=\binom{s}{3}+s$.

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\} \Rightarrow \sigma_{1}(u)=\ldots=\sigma_{s}(u) \Rightarrow s=t=1 .
$$

Theorem (-, 2020)

An Oeljeklaus-Toma manifold $X(K, U)$ admitting a pluriclosed metric has the following topological and complex properties:
(1) The third Betti number $b_{3}(X(K, U))=\binom{s}{3}+s$.
(2) $\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{2,1}(X)=s$

Topological obstructions for the existence of pluriclosed metrics on $X(K, U)$

Remark: The loc. conf. Kähler and pluriclosed conditions are incompatible unless $X(K, U)$ is a surface.

$$
\left.\begin{array}{l}
\left|\sigma_{s+1}(u)\right|=\ldots=\left|\sigma_{s+t}(u)\right| \\
\left|\sigma_{s+i}(u)\right|^{2} \sigma_{i}(u)=1
\end{array}\right\} \Rightarrow \sigma_{1}(u)=\ldots=\sigma_{s}(u) \Rightarrow s=t=1 .
$$

Theorem (-, 2020)
An Oeljeklaus-Toma manifold $X(K, U)$ admitting a pluriclosed metric has the following topological and complex properties:
(1) The third Betti number $b_{3}(X(K, U))=\binom{s}{3}+s$.
(2) $\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{2,1}(X)=s$

Proof.

Apply the number theoretical description of de Rham and Dolbeault cohomology (Istrati, -,2017, -,Toma, 2018)

Corollary

Let $X(K, U)$ be an OT manifold of complex dimension 4. Then the following are equivalent:
(1) $X(K, U)$ admits a pluriclosed metric
(2) $b_{3}(X(K, U))=2$
(3) $\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{2,1}=2$.

Theorem (Angella, Dubickas, -, Stelzig)
There are no astheno-Kähler metrics on $X(K, U)$.

Theorem (Angella, Dubickas, -, Stelzig)

There are no astheno-Kähler metrics on $X(K, U)$.

Definition

A metric Ω is called astheno-Kähler if $d d^{c} \Omega^{n-2}=0$.
Proof:

Theorem (Angella, Dubickas, -, Stelzig)

There are no astheno-Kähler metrics on $X(K, U)$.

Definition

A metric Ω is called astheno-Kähler if $d d^{c} \Omega^{n-2}=0$.
Proof: No averaging trick in the astheno-Kähler case!

Theorem (Angella, Dubickas, -, Stelzig)

There are no astheno-Kähler metrics on $X(K, U)$.

Definition

A metric Ω is called astheno-Kähler if $d d^{c} \Omega^{n-2}=0$.
Proof: No averaging trick in the astheno-Kähler case! Build a semi-positive (2,2) form $d d^{c} \eta \geq 0$. Then if Ω is astheno-Kähler,

$$
0 \leq \int_{X} d d^{c} \eta \wedge \Omega^{n-2}=\ldots=\int_{X} \eta \wedge d d^{c} \Omega^{n-2}=0
$$

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$ $\left(=\left(x^{3}-\sqrt{2} x^{2}+(1+\sqrt{2}) x-1\right)\left(x^{3}+\sqrt{2} x^{2}+(1-\sqrt{2}) x-1\right)\right)$

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$ $\left(=\left(x^{3}-\sqrt{2} x^{2}+(1+\sqrt{2}) x-1\right)\left(x^{3}+\sqrt{2} x^{2}+(1-\sqrt{2}) x-1\right)\right)$
- 2 real roots $\alpha, \alpha^{\prime} \in\left(\frac{1}{2}, 1\right)$ and 4 complex roots $\beta, \beta_{1}, \bar{\beta}, \overline{\beta_{1}}$

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$ $\left(=\left(x^{3}-\sqrt{2} x^{2}+(1+\sqrt{2}) x-1\right)\left(x^{3}+\sqrt{2} x^{2}+(1-\sqrt{2}) x-1\right)\right)$
- 2 real roots $\alpha, \alpha^{\prime} \in\left(\frac{1}{2}, 1\right)$ and 4 complex roots $\beta, \beta_{1}, \bar{\beta}, \overline{\beta_{1}}$
- Take $K=\mathbb{Q}(\alpha) . \sigma_{1,2}: K \hookrightarrow \mathbb{R}, \sigma_{3,4,5,6}: K \hookrightarrow \mathbb{C}$

$$
\begin{array}{lll}
\sigma_{1}(\alpha)=\alpha, & \sigma_{2}(\alpha)=\alpha_{1}, & \sigma_{3}(\alpha)=\beta \\
\sigma_{4}(\alpha)=\bar{\beta}, & \sigma_{5}(\alpha)=\beta_{1}, & \sigma_{6}(\alpha)=\bar{\beta}_{1}
\end{array}
$$

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$ $\left(=\left(x^{3}-\sqrt{2} x^{2}+(1+\sqrt{2}) x-1\right)\left(x^{3}+\sqrt{2} x^{2}+(1-\sqrt{2}) x-1\right)\right)$
- 2 real roots $\alpha, \alpha^{\prime} \in\left(\frac{1}{2}, 1\right)$ and 4 complex roots $\beta, \beta_{1}, \bar{\beta}, \overline{\beta_{1}}$
- Take $K=\mathbb{Q}(\alpha) . \sigma_{1,2}: K \hookrightarrow \mathbb{R}, \sigma_{3,4,5,6}: K \hookrightarrow \mathbb{C}$

$$
\begin{array}{lll}
\sigma_{1}(\alpha)=\alpha, & \sigma_{2}(\alpha)=\alpha_{1}, & \sigma_{3}(\alpha)=\beta \\
\sigma_{4}(\alpha)=\bar{\beta}, & \sigma_{5}(\alpha)=\beta_{1}, & \sigma_{6}(\alpha)=\bar{\beta}_{1}
\end{array}
$$

- α is a unit and $\sigma_{1}(\alpha) \sigma_{3}(\alpha) \sigma_{4}(\alpha)=1$ and $\sigma_{2}(\alpha) \sigma_{5}(\alpha) \sigma_{6}(\alpha)=1$

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$ $\left(=\left(x^{3}-\sqrt{2} x^{2}+(1+\sqrt{2}) x-1\right)\left(x^{3}+\sqrt{2} x^{2}+(1-\sqrt{2}) x-1\right)\right)$
- 2 real roots $\alpha, \alpha^{\prime} \in\left(\frac{1}{2}, 1\right)$ and 4 complex roots $\beta, \beta_{1}, \bar{\beta}, \overline{\beta_{1}}$
- Take $K=\mathbb{Q}(\alpha) . \sigma_{1,2}: K \hookrightarrow \mathbb{R}, \sigma_{3,4,5,6}: K \hookrightarrow \mathbb{C}$

$$
\begin{array}{lll}
\sigma_{1}(\alpha)=\alpha, & \sigma_{2}(\alpha)=\alpha_{1}, & \sigma_{3}(\alpha)=\beta \\
\sigma_{4}(\alpha)=\bar{\beta}, & \sigma_{5}(\alpha)=\beta_{1}, & \sigma_{6}(\alpha)=\bar{\beta}_{1}
\end{array}
$$

- α is a unit and $\sigma_{1}(\alpha) \sigma_{3}(\alpha) \sigma_{4}(\alpha)=1$ and $\sigma_{2}(\alpha) \sigma_{5}(\alpha) \sigma_{6}(\alpha)=1$
- $1-\alpha$ is a unit since
$\prod_{i=1}^{6}\left(\sigma_{i}(1-\alpha)\right)=\prod_{i=1}^{6}\left(1-\sigma_{i}(\alpha)\right)=f(1)=1$.

An example

An example when $s=2$ (Matei Toma):

- Take the irreducible polynomial $f(x)=x^{6}+2 x^{3}-x^{2}-2 x+1$

$$
\left(=\left(x^{3}-\sqrt{2} x^{2}+(1+\sqrt{2}) x-1\right)\left(x^{3}+\sqrt{2} x^{2}+(1-\sqrt{2}) x-1\right)\right)
$$

- 2 real roots $\alpha, \alpha^{\prime} \in\left(\frac{1}{2}, 1\right)$ and 4 complex roots $\beta, \beta_{1}, \bar{\beta}, \overline{\beta_{1}}$
- Take $K=\mathbb{Q}(\alpha) . \sigma_{1,2}: K \hookrightarrow \mathbb{R}, \sigma_{3,4,5,6}: K \hookrightarrow \mathbb{C}$

$$
\begin{array}{lll}
\sigma_{1}(\alpha)=\alpha, & \sigma_{2}(\alpha)=\alpha_{1}, & \sigma_{3}(\alpha)=\beta \\
\sigma_{4}(\alpha)=\bar{\beta}, & \sigma_{5}(\alpha)=\beta_{1}, & \sigma_{6}(\alpha)=\bar{\beta}_{1}
\end{array}
$$

- α is a unit and $\sigma_{1}(\alpha) \sigma_{3}(\alpha) \sigma_{4}(\alpha)=1$ and $\sigma_{2}(\alpha) \sigma_{5}(\alpha) \sigma_{6}(\alpha)=1$
- $1-\alpha$ is a unit since
$\prod_{i=1}^{6}\left(\sigma_{i}(1-\alpha)\right)=\prod_{i=1}^{6}\left(1-\sigma_{i}(\alpha)\right)=f(1)=1$.
- $\left(1-\sigma_{1}(\alpha)\right)\left(1-\sigma_{3}(\alpha)\right)\left(1-\sigma_{4}(\alpha)\right)=1$ and
$\left(1-\sigma_{2}(\alpha)\right)\left(1-\sigma_{5}(\alpha)\right)\left(1-\sigma_{6}(\alpha)\right)=1$

Can we take $U=\langle\alpha, 1-\alpha\rangle$?

Can we take $U=\langle\alpha, 1-\alpha\rangle$?
We need to check first that $\left(\log \sigma_{1}(\alpha), \log \sigma_{2}(\alpha)\right)$ and
$\left(\log \left(1-\sigma_{1}(\alpha)\right), \log \left(1-\sigma_{2}(\alpha)\right)\right)$ are linearly independent over \mathbb{R}.

Can we take $U=\langle\alpha, 1-\alpha\rangle$?
We need to check first that $\left(\log \sigma_{1}(\alpha), \log \sigma_{2}(\alpha)\right)$ and $\left(\log \left(1-\sigma_{1}(\alpha)\right), \log \left(1-\sigma_{2}(\alpha)\right)\right)$ are linearly independent over \mathbb{R}. If not, they would be proportional:

$$
C=\frac{\log (1-\alpha)}{\log \alpha}=\frac{\log \left(1-\alpha_{1}\right)}{\log \alpha_{1}}
$$

Can we take $U=\langle\alpha, 1-\alpha\rangle$?
We need to check first that $\left(\log \sigma_{1}(\alpha), \log \sigma_{2}(\alpha)\right)$ and $\left(\log \left(1-\sigma_{1}(\alpha)\right), \log \left(1-\sigma_{2}(\alpha)\right)\right)$ are linearly independent over \mathbb{R}. If not, they would be proportional:

$$
C=\frac{\log (1-\alpha)}{\log \alpha}=\frac{\log \left(1-\alpha_{1}\right)}{\log \alpha_{1}}
$$

This is impossible: $x \mapsto \frac{\log (1-x)}{\log x}$ is strictly increasing on $\left(\frac{1}{2}, 1\right)$ and $\alpha \neq \alpha_{1}$.

Can we take $U=\langle\alpha, 1-\alpha\rangle$?
We need to check first that $\left(\log \sigma_{1}(\alpha), \log \sigma_{2}(\alpha)\right)$ and $\left(\log \left(1-\sigma_{1}(\alpha)\right), \log \left(1-\sigma_{2}(\alpha)\right)\right)$ are linearly independent over \mathbb{R}. If not, they would be proportional:

$$
C=\frac{\log (1-\alpha)}{\log \alpha}=\frac{\log \left(1-\alpha_{1}\right)}{\log \alpha_{1}}
$$

This is impossible: $x \mapsto \frac{\log (1-x)}{\log x}$ is strictly increasing on $\left(\frac{1}{2}, 1\right)$ and $\alpha \neq \alpha_{1} . X(K, U) \rightsquigarrow$ the first example in complex dimension 4 of pluriclosed OT manifold.

Thank you very much for your attention!

