Convergence of Smoothed Empirical Measures under
Wasserstein Distance

Yury Polyanskiy
Joint work Zeyu Jia, Adam Block, and Sasha Rakhlin

Massachusetts Institute of Technology

November 30, 2021



Smoothed Empirical Measures

o Empirical Measures: Given distribution P, the empirical measure
of Pis P, = %27:1 dx;, where X; ~ P;

@ Smoothed Empirical Measures: For given o, the smoothed
empirical measure is the convolution of empirical measure and
N(0,02):

P, * N'(0,0?).
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Feedforward DNN: Each layer Ty = fo(Ty—1)

Y X To=X T, T, T;
(Label) (Feature/lmage)  (InputLayer)  (Hidden Layer 1) (Hidden Layer?2) (Hidden Layer 3)

. 7,=Y
\\_ (Output Layer)

How to talk about I(Y; Ty) & I(X; Ty)?
@ Formally: these are (almost) indep of DNN weights if X is discrete
@ Practically: Should not bother about info at 107° scale...

© Our solution: add noise to neuron outputs
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Gaussian Smoothed Empirical W,

p-Wasserstein Distance: For two distributions P and @ on R9 and
p=>1

W,(P, Q) £ inf (B[ X — YI|P)"/"
infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

o Distribution P on R = i.i.d. Samples (X;)"_,

n
o Empirical distribution P, = 1 5™ 5.
=1

— Dependence on (n,d) of EW;(P,P,) < na (for cts. P, d > 3)

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any d, we have EW; (P x Ny, P, % Ny) < Op g (n_%)

provided P is K-subgaussian.




Convergence w.r.t. other distances?

@ Question: What about convergence of P, * N, — P x N, in other
distances? Namely:
o E[WZ(P,+N,, PxN,)| <?
o E[Dki(Pnx No||P % N;)] <?
o E[2(Pnx Ny ||P*N,)| <?



Convergence w.r.t. other distances?

@ Question: What about convergence of P, * N, — P x N, in other
distances? Namely:
o E[WZ(P,+N,, PxN,)| <?
o E[Dki(Pnx No||P % N;)] <?
o E[2(Pnx Ny ||P*N,)| <?

o Surprisingly, the answer is governed by the quantity /,2(X; X + o0 Z):

L2(X; Y) 2 X*(Px,v|[Px ® Py)



Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)
For any dimension d: If L,2(X;Y) < o0

E[5(P % Ny, P N;)] = %) 2
n

o€ {W227 DKLa Xz}

Otherwise, if L2(X;Y) = oo

Bl = o0 BIWEC LD (L= (3)




Convergence of smoothed empirical distributions

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

For any dimension d: If L,2(X;Y) < o0

E[0(P, % Ny, P« N,)] = e%(9) .

1
; 0 € {W227DKLaX2}

(For W2 also need to assume P is K-subgaussian with K < o.)

Otherwise, if L2(X;Y) = oo

EDC(- )] = oo, EWE( ). E[Dk(- )] = w (1) |

n

(For W2 also we use N with T < o).
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The result is interesting already in d =1

o Consider P = Ber(3). Then P, = Ber(3 + %)
@ Since % mass must travel distance-1, we have

E[W;(Bn, P)] 2

[EY
2 S

At the same time for arbitrarily small o >

E[WZ(P, * Ny, P x N)] = og(%)
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e Even for P = N(0,1) we have [Bobkov-Ledoux'16]:

log log n
E[WZ (B, P)] < 528"

@ while for any o > 0:
1
E[sz(Pn * Noy Px NG )| = OU(;)

(indeed, I2(X;Y) < oo for X ~ N)



2020 and 2021: When is /,2(X; Y) < 007

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

@ If Px has bounded support, then ,2(X;Y) < oo;
@ If Px is K-subgaussian with K < %, then L,2(X;Y) < oo;
Q IfK > 20, then |,2(X; Y) = oo for some K-subgaussian P.
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2020 and 2021: When is /,2(X; Y) < 007

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'20)

@ If Px has bounded support, then ,2(X;Y) < oo;
@ If Px is K-subgaussian with K < %, then L,2(X;Y) < oo;
Q IfK > 20, then |,2(X; Y) = oo for some K-subgaussian P.

Recall: X is K-subgaussian iff

E[e)\T(X—]E[X])] < e%QIP\H% VA € RY

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

@ If Px is K-subgaussian with K < o, then [,2(X;Y) < oo,
Q IfK > o, then IX2 (X;Y) = oo for some K-subgaussian P.

Closes entire range (except K = o).



l,2 < oo: proof idea (K < o)

@ When K < o, we write

2, (z—S
12(S; Y) = ESNP/ P (279 1,
R Eé,\/PC)OOQId(Z - 5)

where @2, (+) is the PDF of N(0,021y).



l,2 < oo: proof idea (K < o)

@ When K < o, we write

2, (z=S
IX2(5; Y) _ ESNP/ ¢U2Id( ) —dr — 1’
R Eé,\/PC)OOQId(Z - 5)

where @2, (+) is the PDF of N(0,021y).
@ Divide the domain of Es.p [ps into the following three parts:

Q A={[S]><1};
Q B={|[Sl2>1and [z S[]2 > || S|]2}:
Q C={llz—Sl2 < S|}

and proved Eg.p f]Rd in each parts is less than infinity.
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Pk = Coexp | —5pz ) for some constant cp, ¢ an

Po = 1_Zio:1Pk-

with r, = ¢



/

2 = 00 counter-example (K > o)

@ Choose the hard case

oo
P = podo + Z PkOrys
k=1

2
with r, = ¢ 1, pp = coexp (—;ﬁ) for some constant cp, ¢ and

po=1-— Ziozl Pk-
@ P is K-subgaussian.



/

2 = 00 counter-example (K > o)

@ Choose the hard case

oo
P = podo + Z PkOrys
k=1

with r, = ck—

2
L pk = cpexp (—;ﬁ) for some constant ¢, ¢ and
po=1-— Ziozl Pk-
@ P is K-subgaussian.

e When o < K, 4y, x N, for j # k hardly affect the density of P x N,
in comparison to d,, * N, if ¢ is chosen large enough.
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/

\» = 00 counter-example

@ WLOG, we assume o = 1;

@ /,2(S; Y) can be decomposed into

901 z—rk) 1

Y) dz — 1.
(5 Z/R o1(z — ) 1+Z#kpf¢120) i

Pk p1(z—rk)

gpl/ﬁ(z—rk)

@ When z is in a small neighborhood of ry, =)

lower bounded for all k.

is uniformly



l,» = 0o counter-example

@ WLOG, we assume o = 1;

@ /,2(S; Y) can be decomposed into

901 z—rk) 1

2(S;Y) Z/R ) R

1+Z7’£’<Pk9012 ry)

gpl/ﬁ(z—rk)

@ When z is in a small neighborhood of ry, =)

lower bounded for all k.

is uniformly

@ When z is in a small neighborhood of ry j # k we have

e1(z — 1)

oz =) < exp(—j/2).
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Summary for K-Subgaussian P

sup E[(S(]IDH*NU,P*NU>] = 777

PeSubG(K)
In All Dimensions:

e Wy and || - ||1v are always O (%)

o W3is O (%) orw (). But always O(

N~——~7

1
vn
o Dy is O (%) or w (). But always O (%)

° x?is O (%) or =00
Threshold: In all cases the alternative is governed by K < o vs K > o
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Question: When rate is w(1) does it switch to ﬁ right away? No!

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

In dimension d = 1 we have:

@ For any K-subgaussian distribution P, we have
~ K2
E [WE(Pn+ Ny, PxN,)] = O <n_2K202> .

@ There exists a K-subgaussian distribution P such that
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Convergence of Smoothed W2 Convergence in 1D

Question: When rate is w(1) does it switch to ﬁ right away? No!

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

In dimension d = 1 we have:

@ For any K-subgaussian distribution P, we have
~ K2
E [WE(Pn+ Ny, PxN,)] = O <n_2K202> .

@ There exists a K-subgaussian distribution P such that

o _(PrK2?
E [W22(Pn *N07P *Ng’)] =Q | n 2%k% | .

Proof ideas: 1. use optimal (quantile-quantile) coupling
2. use dyadic haircomb c/ex.
3. O(n~E)isin fact O(nE+<)



W2 Convergence in 1D: illustration
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Convergence of Smoothed KL Divergence
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Convergence of Smoothed KL Divergence

e [GGNWP20]: If & > K then

E [Dke(Po * N [P ¥ N,)] = O (n71)

@ When o < K, there exists a distribution P such that
E [Dki(Pp x N [P x N)] = w(nfl) )

(but O(n~%/?), as we know)

@ Question: What happens to KL rate when o < K?
From W22 we might guess the exponent in n drops.



Convergence of Smoothed KL Divergence when 0 < K

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

Suppose P is a d-dimensional K-subgaussian distribution, then:

n

E [Dir (Pn % N(0, %) ||P % N(0,0%14))] = O <('°g”)d+1> ‘




Convergence of Smoothed KL Divergence when 0 < K

Theorem (Jia-Block-Polyanskiy-Rakhlin'21)

Suppose P is a d-dimensional K-subgaussian distribution, then:

E [Dir (Pn % N(0, %) ||P % N(0,0%14))] = O <('°g”)d+1> ‘

n

o Recall that for K < o we know Dy, < O(%).

@ Thus, only a polylog(n) slowdown!



Implication: LSI non-existence

e T2 Transportation Inequality: If P x N, satisfies log-Sobolev
inequality with constant Cp,, then for any distribution Q

W2(Q,P % N,) < CpoDki(QP * Ny).

e [WW16] When K < o, P« N, satisfies log-Sobolev inequality.
Extends the case of compact-support in [Zim13].

e [WW16] also proposed open problem: when K > o, will P x N, also
satisfies log-Sobolev inequality?



Implication: LSI non-existence

e T2 Transportation Inequality: If P x N, satisfies log-Sobolev
inequality with constant Cp,, then for any distribution Q

W2(Q,P % N,) < CpoDki(QP * Ny).

e [WW16] When K < o, P« N, satisfies log-Sobolev inequality.
Extends the case of compact-support in [Zim13].

e [WW16] also proposed open problem: when K > o, will P x N, also
satisfies log-Sobolev inequality?

e Comparing results for KL divergence and (lower bd) for W:
d K-subgaussian P such that T2 transportation inequality does not
hold for P x N, 0 < K.

@ ... = when K > o no LSl is possible.



Summary of new results (2021)

I2(S;Y) < 00 vs = oo dichotomy: K < o vs K > 0.

For 1D cases: prove sharper lower and upper bounds on the
convergence rate under W22 distance.

Convergence in KL: O(%) vs O(%Og(”)) for K <ovs K>o.

Corollary: no LSI for P« N, when K > o (and P is a
K-subgaussian).



Summary of new results (2021)

I2(S;Y) < 00 vs = oo dichotomy: K < o vs K > 0.

For 1D cases: prove sharper lower and upper bounds on the
convergence rate under W22 distance.

Convergence in KL: O(%) vs O(%Og(”)) for K <ovs K>o.

Corollary: no LSI for P« N, when K > o (and P is a
K-subgaussian).

Thanks!
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W2 in 1D: Lower Bound Part

For any K > o > 0 and ¢ > 0, there exists some K-subgaussian
distribution P such that

E [WZ(Pn + No, P 5 N;)]

im inf — o R (e k)<




W2 in 1D: Lower Bound Part

@ When P, P, are both 1D distributions, we can write

W (Py % Ny, P+ Ny :/ Po(X)
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l:__l(F (x)) — x ? dx

where p, is PDF of P x N, and F,, Ir_,m are CDFs of
P, * Ny, Py x N,
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W2 in 1D: Lower Bound Part

@ When P, P, are both 1D distributions, we can write

W (Py % Ny, P+ Ny :/ Po(X)

—00

l:__l(F (x)) — x ? dx

where p, is PDF of P x N, and F,, Ii_,m are CDFs of
P, * Ny, Py x N,

o If Frp(z) > Fo(z + 2), then Vx € [z + 1,z + 2] we have
Fo(x) < Fo(z+2) < Fpo(z) < Fro(x —1). Hence

ﬁ,:;(FU(X)) — x| > 1.

o WP, * Ny, P*xNy)>P(X€E[z+1,2+2]), X~PxA,.



W2 in 1D: Lower Bound Part

@ Choose
P= Zco exp < 2K2> Ores

with r, = ck=1 for k > 1.



W2 in 1D: Lower Bound Part

@ Choose
P= Zcoexp ( 2K2> Sr, s

with re = ¢k 1 for k > 1.
oFor&:;—iand t=1/2(c+1)(k+1)and X ~Px N,
2 ’/3
P(X € [tr, t 2]) < —(t* — —c). —k_
(X € [try, tric +2]) exp( ( KC — ¢) 202),

i.e. 0y, in P determines the probability of P x A, within the interval
[tri, tri + 2].



W2 in 1D: Lower Bound Part

@ Berry-Esseen Theorem indicates that with certain probability
uniformly for all k, we have
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W2 in 1D: Lower Bound Part

@ Berry-Esseen Theorem indicates that with certain probability
uniformly for all k, we have

Foo(tre) — Fo(tre) = /2L,

- n

o Chosen n and k, we have F,, ,(try) — Fy(tri) > P(X € [try, try +2])
and hence

Fno(tri) > Fo(tri + 2).



W2 in 1D: Upper Bound Part

Suppose P is a 1D K-subgaussian random variable, i.e. for some C > 0,

2
P(IX| > x) < Cexp (—QXKQ> , x~P,

then for any o < K, e > 0 we have

E [WA(P * Ny, By Ny)] = O (,,—Mz“aﬁe) |




W2 in 1D: Upper Bound Part

@ Recall the formula

WP, * Ny, P x Ny) = /OO po(X) |Fra(Fs(x)) — x ’ dx.

—00




W2 in 1D: Upper Bound Part

@ Recall the formula

[e o]

Wg(Pn*Naap*Na):/ PJ(X)

—00

Frd(Folx)) — x|

Foa(Fo(x)) = x

n,o

2
@ For those x with large p,(x), one can show that )

is small and will decay with 1/p,(x).
FY(F,(x)) — x

n,o

2
@ For those x with small p,(x), one can show that ‘

is bounded with high probability.



W2 in 1D: Upper Bound Part

We divide x € R into the following two cases:
K2

Q ps(x)=0 (n_2f<2ff2 _E), indicating the density is small;

K2

Q p,(x) =9 <n_2f<2a2 _E>, indicating the density is large.



W2 in 1D: (When py(x) is large)
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@ p,(t) does not deviate too much from p,(x) for those t in a small
neighborhood of x.



W2 in 1D: (When p,(x) is large)

@ p,(t) does not deviate too much from p,(x) for those t in a small
neighborhood of x.

Suppose p, to be the density function of P x N'(0,52). If for some x and
1

a >0 we have p,(x) = exp (—%) then for any 0 we have

2o
1 (a+ |6] + 40)?
> S S ol e/
oo+ 8) 2 e (5L
1 max{0, a — |§| — 40}?
< — .
pO’(X + 6) = \/EO' exp < 202




W2 in 1D: (When p,(x) is large)

@ p,(t) does not deviate too much from p,(x) for those t in a small
neighborhood of x.

Suppose p, to be the density function of P x N'(0,52). If for some x and
a >0 we have py(x) = —2— exp (—%) then for any 0 we have

2o

1 o _(a+ 0] + 40)
\V2Tmo P 202

1 exp [ — max{0, a — |§| — 40}?
\V2ro 202 .

@ Therefore, is p,(x) is large, then P(X € [x — §,x + 4]) can be
showed to be large as well.

po(x +0) >

po(x +8) <




W2 in 1D: (When py(x) is large)

o The CDF between P x N(0,02) and P, * N'(0,02) can be upper
bounded uniformly.



W2 in 1D: (When p,(x) is large)

o The CDF between P x N(0,02) and P, * N'(0,02) can be upper
bounded uniformly.

Suppose F, I:_,,,,7 are CDF of P+ N'(0,02) and P, x N'(0,0?). Define

G(t):E (;—‘t—;D t€[0,1].

n

Then with probability at least 1 — 6,

|Fo(x) = Fon(X)l _ 16 | (217)

R VGFr)) B\




W2 in 1D: (When p,(x) is large)

@ One can show that when p,(x) is large,

FL(F,(x)) — X‘ is small.

n,o

Consider two 1D-distributions IP, Q. We denote the PDF of P as py(-),
and the CDFs of P,Q as Fp, Fq respectively. If for some o > 0 we have

2 SUPte[x—0,x+0] |Fp(t) — Fq(t)] <

a(t, 0) infte[x—a,x-‘,—a] pp(t)

)

then

[Fo A (Fo(1) — t] < aft,0).




W2 in 1D: (When p,(x) is small)



W2 in 1D: (When p,(x) is small)

e Given R > 0, then for V|x| < R, with high probability we have
Frd(Fo(x) - x| = O(R).

n,o



W2 in 1D: (When p,(x) is small)

e Given R > 0, then for V|x| < R, with high probability we have
Frd(Fo(x) - x| = O(R).

n,o

o P(IX| = R) < Cexp (—%);



W2 in 1D: (When py(x) is small)

e Given R > 0, then for V|x| < R, with high probability we have
Frd(Fo(x) - x| = O(R).
e P(IX|>R) < Cexp( 2K22)

@ For those |x| < R and p,(x) < €, the measure of the set of such x is
at most 2Re.



W2 in 1D: (When py(x) is small)

e Given R > 0, then for V|x| < R, with high probability we have
Frd(Fo(x) - x| = O(R).

e P(IX|>R) < Cexp( 2K22)

@ For those |x| < R and p,(x) < €, the measure of the set of such x is
at most 2Re.

@ If choosing R, e properly, one can also upper bounded the integral

__ K
over those x with small p,(x) with O (n K2—? ¢



KL-convergence: Proof Idea

@ The expected KL-divergence can be upper bounded using
Rényi-mutual information:



KL-convergence: Proof Idea

@ The expected KL-divergence can be upper bounded using
Rényi-mutual information:

We suppose (X, Y) ~ Px y, and its marginal distribution to be Px, Py,
respectively. We let P, to be an empirical version of Px generated with
n samples. Then for every 1 < X\ < 2, we have

1 log(1 + exp{(A —1)(I\(X; Y)—logn)}).

E[Dki(Py|x © PallPy)] <




KL-convergence: Proof Idea

@ The expected KL-divergence can be upper bounded using
Rényi-mutual information:

We suppose (X, Y) ~ Px y, and its marginal distribution to be Px, Py,
respectively. We let P, to be an empirical version of Px generated with
n samples. Then for every 1 < X\ < 2, we have

E[Dki(Py|x o PallPy)] < log(1 + exp{(A = 1)(IA(X; Y) —log n)}).

A—1

This lemma indicates a convergence rate of O (n_()‘_l)) provided
I(X;Y) < oo, where X ~ P, Z ~ N, are independent and Y = X + Z.



KL-convergence: Proof Idea

e /(X;Y) can be proved to be finite for any A < 2.



KL-convergence: Proof Idea

e /(X;Y) can be proved to be finite for any A < 2.

Suppose P is a d-dimensional K-subgaussian distribution and random
variables X ~ P, Z ~ N(0,0214) are independent to each other. We let
Y =X+ Z. Then forany o >0 and 1 < X\ < 2, there exists a positive
constant C only depending on P and K, o such that

1 C
h(X;Y) < N1 log <(2_)\)d+1)'
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