Invariants of 4-manifolds from Khovanov-Rozansky link homology

Paul Wedrich MPIM / Uni Bonn

Joint work with Scott Morrison and Kevin Walker

BIRS, May 21st 2021

Motivation

How does Khovanov homology extend to other ambient manifolds?

Hints:

- Functoriality under link cobordisms in 4d.
- Rozansky&Willis invariants for nullhomologous links in $\#^k(S^1 \times S^2)$.
- Rasmussen: Kh sensitive to smooth surfaces in B⁴.

$$Kh(L) = Kh(B^4; L)$$

- 4-manifolds (with (link in) boundary) → chain complexes
- ullet 3-manifolds o dg categories

:

• point
$$\rightarrow$$
 some 4-category

Today: a few steps in this direction.

Starting in dimension 3...

Link invariants

The \mathfrak{gl}_N link polynomial P_N : {framed, oriented links} $o \mathbb{Z}[q^{\pm 1}]$:

$$P_N(\mathfrak{R}) - P_N(\mathfrak{R}) = (q - q^{-1})P_N(\mathfrak{R})$$

$$P_N(\mathfrak{H}) = q^N P_N(\mathfrak{f}), \quad P_N(L_1 \sqcup L_2) = P_N(L_1)P_N(L_2)$$

Higher categories

Ribbon category Rep $(U_q(\mathfrak{gl}_N))$, tangle invariants

Manifold invariants

The \mathfrak{gl}_N skein module for compact, oriented M^3 , $P \subset \partial M^3$:

$$\mathsf{Sk}_{N}(M^{3};P) := \frac{\mathbb{Z}[q^{\pm 1}]\langle \mathsf{framed}, \mathsf{ oriented tangles in } (M^{3},P)\rangle}{\langle \mathsf{isotopy}, \mathsf{ local relations in } B^{3} \hookrightarrow M^{3} \rangle}$$

Part of a 0123ε -dimensional TFT.

...upgrading to dimension 4

Khovanov–Rozansky 2004, Robert–Wagner+Ehrig–Tubbenhauer–W 2017:

Link invariants

The \mathfrak{gl}_N Khovanov–Rozansky link homology

 $\mathsf{KhR}_{\mathit{N}} \colon \{\mathsf{links}/\mathsf{link} \; \mathsf{cobordisms}\} o \mathsf{K}^{\mathit{b}}(\mathsf{gr}^{\mathbb{Z}}\mathsf{Vect}), \quad \chi_{\mathit{q}} \circ \mathsf{KhR}_{\mathit{N}} = P_{\mathit{N}}$

Morrison-Walker-W 2019:

Higher categories

A ribbon 2-category / a disk-like 4-category categorifying Rep $(U_q(\mathfrak{gl}_N))$.

Manifold invariants

A 'skein module' $S_N(W^4; L)$ for compact, oriented, smooth W^4 , $L \subset \partial W^4$. $S_N(B^4; L) \cong \operatorname{KhR}_N(L)$.

Part of a 01234ε -dimensional TFT?

Approaches

Some routes to Khovanov–Rozansky homology for (links in) 3-manifolds:

- Categorify Witten–Reshetikhin–Turaev invariants
 - Categorification at roots of unity
 - Categorification of tensor product reps
- Categorify skein modules
 - Via surgery
 - Via Heegaard splitting, categorified skein algebras
- ullet Extending Witten's model for Khovanov homology in \mathbb{R}^3
- Higher skein modules (this talk)
 - ullet Functorial tangle invariant o 4-category o skein module

Khovanov-Rozansky homology

$$\begin{cases} \text{links diagrams} \\ \text{movies of diagrams/m. moves} \end{cases} \xrightarrow{\qquad \qquad KhR_N \qquad } \mathcal{K}^b(\mathsf{gr}^\mathbb{Z}\mathsf{Vect})$$

$$\downarrow \cong \qquad \qquad \chi_q \qquad \downarrow$$

$$\begin{cases} \text{links embedded in } B^3 \\ \text{cobordisms in } B^3 \times I/\mathsf{isotopy} \end{cases} \xrightarrow{\qquad P_N \circ K_0 \qquad } \mathbb{Z}[q^{\pm 1}]$$

Defining KhR_N requires:

- the data of a chain complex for each link diagram (KhR04, RW17)
- the data of a chain map for every elementary movie (KhR04)
- movie move checks (Blanchet10, ETW17)
- \implies KhR_N can be considered as diagram-independent (MWW19).

Khovanov–Rozansky homology

Defining ranky requires.

- the data of a chain complex for each link diagram (KhR04, RW17)
- the data of a chain map for every elementary movie (KhR04)
- movie move checks (Blanchet10, ETW17)
- \implies KhR_N can be considered as diagram-independent (MWW19).

Functoriality in S^3

For $S_N(B^4; L) \cong KhR_N(L)$ we need KhR_N for links in $S^3 = B^3 \cup \{\infty\}$.

- links in S^3 generically avoid ∞ \implies same chain complexes
- link cobordisms in $S^3 \times I$ generically avoid $\infty \times I$ \implies same chain maps
- link cobordism isotopies in $S^3 \times I^2$ might intersect $\infty \times I^2$ transversely \implies a new movie move to check, non-local if viewed from B^3

Theorem (M.-W.-W. 2019)

 KhR_N is invariant under the sweeparound move, thus functorial in S^3 .

Proving the sweeparound move

- Reduce to the case of almost braid closures
- Compare front and back versions of

- Consider filtration by homological degree of extra crossings
- Front and back versions of R1, R2, R3 agree* in associated graded

Ribbon 2-category via KhR_N for tangles

$$\begin{cases} \text{tangle diagrams} \\ \text{movies of diagrams/m. moves} \end{cases} \xrightarrow{ \begin{bmatrix} - \end{bmatrix}_N } \mathcal{K}^b(N \textbf{Foam})$$

$$\downarrow \cong \qquad \qquad \chi_q \downarrow$$

$$\begin{cases} \text{tangles embedded in } B^3 \\ \text{cobordisms in } B^3 \times I/\text{isotopy} \end{cases} \xrightarrow{ RT_N \circ K_0 } \text{Rep}(U_q(\mathfrak{gl}_N))$$

Theorem (M.-W.-W. 2019)

∃ linear braided monoidal 2-category (Kapranov–Voevodsky, Baez–Neuchl, Day–Street, Crans) with duals (Barrett–Meusburger–Schaumann) with

- Objects: tangle boundary sequences
- 1-morphisms: Morse data for tangle diagrams
- 2-morphisms from T_1 to T_2 : $H^*Ch(NFoam)(\llbracket T_1 \rrbracket_N, \llbracket T_2 \rrbracket_N)$.

Towards TFT

Questions

Is this braided monoidal 2-category (or something similar) 4-dualizable and SO(4)-fixed in a suitable 5-category of E_2 2-categories? What is the role of the sweeparound move? Can this all be made homotopy-coherent?

 \implies a local 01234 ε -d oriented TFT via the cobordism hypothesis.

Proposed direct construction for the 4ε part (on the level of homology):

Theorem (M.-W.-W. 2019)

KhR_N controls a disk-like 4-category, determines $S_N(W^4; L)$ via the blob complex (Morrison–Walker 2010).

Rest of the talk: focus on degree zero blob homology $S_N^0(W^4; L)$.

A skein module for 4-manifolds

In analogy to

$$\mathsf{Sk}_{N}(M^{3};P) := \frac{\mathbb{Z}[q^{\pm 1}]\langle \mathsf{framed}, \mathsf{ oriented tangles in } (M^{3},P)\rangle}{\langle \ker RT_{N} \mathsf{ in } B^{3} \hookrightarrow M^{3} \rangle}$$

we would like to define $\mathcal{S}_N^0(W^4;L)$ as:

$$\frac{\mathbb{Z}\langle \text{framed, oriented surfaces in } (W^4, L)\rangle}{\langle \ker \llbracket - \rrbracket_{N} \text{ in } B^4 \hookrightarrow W^4 \rangle}$$

Problem: Want $S_N(B^4; L) \cong S_N^0(B^4; L) \cong \operatorname{KhR}_N(L)$, but this is not always spanned by images of cobordisms maps.

⇒ consider decorated framed, oriented surfaces.

Skeins

A lasagna filling of W^4 with a link $L \subset \partial W^4$ is the data of:

 B_i^4 : finitely many disjoint 4-balls in W^{4° L_i : input links in ∂B_i^4 Σ : f., o. surface in $(W^4 \setminus \sqcup_i B_i^4; L \sqcup_i L_i)$ $v_i \in \mathsf{KhR}_N(\partial B_i^4, L_i)$

Skein relations via lasagna algebra

Khovanov-Rozansky homology is an algebra for the lasagna operad

Note: A lasagna filling of (B^4, L) is a lasagna diagram D plus (v_1, \ldots, v_r) . \implies evaluates to $KhR_N(D)(v_1 \otimes \cdots \otimes v_r) \in KhR(\partial B^4, L)$.

Definition of $S_N^0(W^4; L)$

Definition

We define the $H_2(W^4, L) \times \mathbb{Z}_q \times \mathbb{Z}_{t}$ -graded abelian group

$$\mathcal{S}^0_{N}(W^4;L) := \mathbb{Z}\langle \mathsf{lasagna} \mathsf{ fillings of } (W^4,L)
angle / \sim$$

where the 'skein relations' \sim are generated by

with $v = KhR(D)(v_i \otimes \cdots \otimes v_i)$.

To finish, some examples

Example (B^4)

 $S_N(B^4; L) \cong S_N^0(B^4; L) \cong KhR(L)$ by construction.

Example $(B^3 \times S^1)$

 $S_2(B^3 \times S^1; L)$ is related to the Hochschild homology of Khovanov's arc algebra and to Rozansky's homology theory for links L in $S^2 \times S^1$.

Theorem (Manolescu-Neithalath 2020)

If W^4 is a 2-handle body with a single 0-handle, $L\subset S^3$ the attaching link of the 2-handles, then

$$S_N^0(W^4;\emptyset)\cong \underline{\mathsf{KhR}}_N(L)$$

where $\underline{\mathsf{KhR}}_{\mathcal{N}}(L)$ depends on $\mathsf{KhR}_{\mathcal{N}}$ of cables of L.

E.g. $\dim_q \left(\mathcal{S}_N^0(S^2 \times D^2; \emptyset, \alpha) \right) = \prod_{k=1}^{N-1} \frac{1}{1-q^{2k}}$, results for $\mathbb{C}P^2$ and $\overline{\mathbb{C}P^2}$.