The Alexander polynomial as a universal invariant

Rinat Kashaev
University of Geneva
Quantum Field Theories and Quantum Topology Beyond Semisimplicity
BIRS, Banff
2 November, 2021

Motivation for the universal quantum invariants

Introduced and studied (mostly in the context of finite dimensional or appropriately completed ∞ dimensional Hopf algebras) by Reshetikhin, Lawrence, Lee, Ohtsuki, Lyubashenko, Bruguières-Virelizier, Habiro, Virelizier, Murakami-Nagatomo, Willetts, ...

- For a given Hopf algebra, all quantum invariants (semisimple and non semisimple) are encoded into a single representation independent algebraic object.
- Potential for better revealing the geometrical and topological significance of quantum invariants.
Today: construction on the basis of the restricted dual of a Hopf algebra.

Features

- Generality: universal quantum knot invariants from any (finite or ∞ dimensional) Hopf algebra with invertible antipode.
- Purely algebraic, no input topology (completion) is needed.
- Does not apply to links.

Outline

1. Reshetikhin-Turaev construction for long knots from rigid R-matrices (no ribbon element is used)
2. Adjunction between algebras and coalgebras
3. Drinfeld's quantum double
4. The universal quantum knot invariants
5. The Hopf algebra B_{1} and its quantum double
6. The main result
7. Steps of the proof
8. Concluding remarks
9. Reshetikhin-Turaev construction for long knots from rigid R -matrices (no ribbon element is used)

An (oriented) long knot diagram D is a knot diagram in \mathbb{R}^{2} with two open ends called "in" and "out":

$$
D=\frac{\uparrow_{\text {out }}}{D_{\text {lin }}} \quad \text { Example: } \quad D=\bigcap
$$

The normalization of D is the long knot diagram \dot{D} obtained from D by the replacements

D is called normal if $D=\dot{D}$.
The building blocks of normal long knot diagrams: four types of segments $\uparrow, \downarrow, \curvearrowleft$ and eight types of crossings

Relation to closed oriented knot diagrams:

An R-matrix over a finite-dimensional vector space V is an invertible linear map $r: V \otimes V \rightarrow V \otimes V$ that satisfies the quantum Yang-Baxter relation

$$
\hat{r} \check{r} \hat{r}=\check{r} \hat{r} \check{r}, \quad \hat{r}:=r \otimes \mathrm{id} v, \check{r}:=\mathrm{id} v \otimes r .
$$

Let $B \subset V$ be a basis and $\left\{b^{*}\right\}_{b \in B} \subset V^{*}$ the dual basis defined by $\left\langle a^{*}, b\right\rangle=\left\langle a, b^{*}\right\rangle=\delta_{a, b}$. For any linear map $f: V \otimes V \rightarrow V \otimes V$, we associate its partial transpose
$\tilde{f}: V^{*} \otimes V \rightarrow V \otimes V^{*}, \quad \widetilde{f}\left(a^{*} \otimes b\right)=\sum_{c, d \in B}\left\langle a^{*} \otimes c^{*}, f(b \otimes d)\right\rangle c \otimes d^{*}$.
An R-matrix r is called rigid if the linear maps $\widetilde{r^{ \pm 1}}$ are invertible.

Let r be a rigid R-matrix over V with a basis B and D a normal long knot diagram with the set of edges E_{D} and the set of crossings C_{D}. A local state of D is a map $s: E_{D} \rightarrow B$. The Bolzmann weight of D in a state $s: \mathrm{W}_{s}(D)=\prod_{c \in C_{D}} \mathrm{~W}_{s}(c)$ with
and likewise for negative crossings with replacements $r \leftrightarrow r^{-1}$.

Theorem

Let normal D have equal number of negative and positive crossings. Then, the linear map $J_{r}(D): V \rightarrow V$ defined by
is an invariant of the (oriented) long knot represented by D.
2. Adjunction between algebras and coalgebras

The categories of algebras $\mathbf{A l g}_{\mathbb{K}}$ and coalgebras $\mathbf{C o g}_{\mathbb{K}}$ over a field \mathbb{K} with two contravariant functors

$$
(\cdot)^{*}: \mathbf{C o g}_{\mathbb{K}} \rightarrow \mathbf{A l g}_{\mathbb{K}} \text { (dual (convolution) algebra) }
$$

and

$$
(\cdot)^{o}: \mathbf{A l g}_{\mathbb{K}} \rightarrow \mathbf{C o g}_{\mathbb{K}}(\text { restricted dual coalgebra })
$$

($A^{\circ} \subset A^{*}$ is generated by all matrix coefficients of all finite dimensional representations of A).

$$
\operatorname{Hom}_{\mathrm{Alg}_{\mathbb{K}}}\left(A, C^{*}\right) \simeq \operatorname{Hom}_{\operatorname{Cog}_{\mathbb{K}}}\left(C, A^{o}\right) \text { (adjunction) }
$$

The case of Hopf algebras: H° is a Hopf algebra for any Hopf algebra H.
Example

- $C=\left(\mathbb{K}\left[\mathbb{Z}_{\geq 0}\right], \Delta\left(\chi_{n}\right)=\sum_{k=0}^{n} \chi_{k} \otimes \chi_{n-k}\right) \Rightarrow C^{*} \simeq \mathbb{K}[[x]]$
- $H=(\mathbb{C}[x], \Delta x=x \otimes 1+1 \otimes x) \Rightarrow H^{\circ} \simeq H \otimes \mathbb{C}[\mathbb{C}]$

3. Drinfeld's quantum double

Let Hopf $_{\mathbb{K}}$ be the category of Hopf \mathbb{K}-algebras with invertible antipode. We have the contravariant endo-functor

$$
(\cdot)^{o}: \text { Hopf }_{\mathbb{K}} \rightarrow \text { Hopf }_{\mathbb{K}} \text { (restricted dual) }
$$

Drinfeld's quantum double of a Hopf algebra $H \in$ Ob Hopf $_{\mathbb{K}}$ is a Hopf algebra $D(H) \in \mathrm{Ob}_{\mathbf{H o p f}}^{\mathbb{K}}$ determined (uniquely up to an isomorphism) by the property that there are two Hopf algebra inclusions

$$
\imath: H \rightarrow D(H), \quad \jmath: H^{0, o p} \rightarrow D(H)
$$

such that $D(H)$ is generated by their images subject to the commutation relations, $\forall(x, f) \in H \times H^{\circ}$,

$$
(\jmath f) \imath x=\sum_{(x),(f)}\left\langle f_{(1)}, x_{(1)}\right\rangle\left\langle f_{(3)}, S\left(x_{(3)}\right)\right\rangle\left(\imath x_{(2)}\right) \jmath f_{(2)}
$$

The restricted dual $D(H)^{\circ}$ of the quantum double is a dual quasi-triangular Hopf algebra with the dual universal R-matrix

$$
\varrho: D(H)^{\circ} \otimes D(H)^{\circ} \rightarrow \mathbb{K}, \quad x \otimes y \mapsto\left\langle x, \jmath\left(\imath^{\circ} y\right)\right\rangle
$$

which (among other properties) satisfies the Yang-Baxter relation

$$
\varrho_{1,2} * \varrho_{1,3} * \varrho_{2,3}=\varrho_{2,3} * \varrho_{1,3} * \varrho_{1,2}
$$

in the convolution algebra $\left(\left(D(H)^{\circ}\right)^{\otimes 3}\right)^{*}$.
Let $\left\{e_{i}\right\}_{i \in I} \subset H$ be a linear basis and $\left\{e^{i}\right\}_{i \in I} \subset H^{*}$ the associated set of canonical (dual) linear forms. Then, the formal universal R-matrix

$$
R:=\sum_{i \in l} \jmath e^{i} \otimes \imath e_{i}
$$

is a formal conjugate of the dual universal R-matrix:

$$
\langle x \otimes y, R\rangle=\langle\varrho, x \otimes y\rangle \quad \forall x, y \in D(H)^{\circ} .
$$

4. The universal quantum knot invariants

For any finite-dimensional right co-module

$$
V \rightarrow V \otimes D(H)^{\circ}, \quad v \mapsto \sum_{(v)} v_{(0)} \otimes v_{(1)},
$$

one gets a rigid R-matrix

$$
r_{V}: V \otimes V \rightarrow V \otimes V, \quad u \otimes v \mapsto \sum_{(u),(v)} v_{(0)} \otimes u_{(0)}\left\langle\varrho, v_{(1)} \otimes u_{(1)}\right\rangle .
$$

The universal quantum invariant of long knots $Z_{H}(K)$ associated to a Hopf algebra $H \in O b \operatorname{Hopf}_{\mathbb{K}}$ takes its values in the convolution algebra $\left(D(H)^{\circ}\right)^{*}$ such that

$$
J_{r_{V}}(K) v=\sum_{(v)} v_{(0)}\left\langle Z_{H}(K), v_{(1)}\right\rangle \quad \forall v \in V
$$

where $J_{r_{V}}(K) \in \operatorname{End}(V)$ is the invariant of long knots associated to the rigid R -matrix r_{V}.

5. The Hopf algebra B_{1} and its quantum double

$\mathrm{B}_{1}=\mathbb{C}\left[a^{ \pm 1}, b\right]$ with the co-products

$$
\Delta(a)=a \otimes a, \quad \Delta(b)=a \otimes b+b \otimes 1
$$

It is the algebra of regular functions on the affine linear algebraic group

$$
\operatorname{Aff}_{1}(\mathbb{C}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{C}_{\neq 0}, b \in \mathbb{C}\right\}
$$

The group structure of $\operatorname{Aff}_{1}(\mathbb{C})$ induces a commutative but non co-commutative Hopf algebra structure of B_{1}.

The restricted dual $B_{1}^{o, o p}$ is composed of two Hopf sub-algebras: the group algebra $\mathbb{C}\left[A f f_{1}(\mathbb{C})\right]$ generated by grouplike elements

$$
\left\{\chi_{u, v} \mid(u, v) \in \mathbb{C} \times \mathbb{C}_{\neq 0}\right\}, \quad \chi_{u, v} \chi_{u^{\prime}, v^{\prime}}=\chi_{u+v u^{\prime}, v v^{\prime}}
$$

and the universal enveloping algebra $U\left({\operatorname{Lie~} \operatorname{Aff}_{1}(\mathbb{C})}^{(}\right)$generated by primitive elements ψ and ϕ satisfying $\phi \psi-\psi \phi=\phi$.

Interaction between $\mathbb{C}\left[\operatorname{Aff}_{1}(\mathbb{C})\right]$ and $U\left(\operatorname{Lie~Aff}_{1}(\mathbb{C})\right)$ in $B_{1}^{o, \text { op }}$

$$
\left[\chi_{u, v}, \psi\right]=u \phi \chi_{u, v}, \quad \chi_{u, v} \phi=v \phi \chi_{u, v} \quad \forall(u, v) \in \mathbb{C} \times \mathbb{C}_{\neq 0}
$$

Pairing between $\mathrm{B}_{1}^{o, o p}$ and $\mathrm{B}_{1}, p=p(a, b) \in \mathbb{C}\left[a^{ \pm 1}, b\right]=\mathrm{B}_{1}$

$$
\left\langle\chi_{u, v}, p\right\rangle=p\left(\frac{1}{v}, \frac{u}{v}\right), \quad\langle\psi, p\rangle=\frac{\partial p}{\partial a}(1,0), \quad\langle\phi, p\rangle=\frac{\partial p}{\partial b}(1,0)
$$

Interaction between B_{1} and $\mathrm{B}_{1}^{o, o p}$ in $D\left(\mathrm{~B}_{1}\right)$

$$
[\psi, b]=b, \quad[\phi, b]=1-a, \quad \chi_{u, v}^{-1} b \chi_{u, v}=b v+(a-1) u
$$

and a is a grouplike central element.

Remark

- The center $\mathcal{Z}\left(D\left(\mathrm{~B}_{1}\right)\right)$ is generated by the elements a and $c:=\phi b+(a-1) \psi$.
- The Heisenberg relation $[\phi, b]=1-a$ with central a implies that, in any irreducible finite dim. representation of $D\left(\mathrm{~B}_{1}\right)$, one has $a=1$. In general, $a-1$ should be nilpotent.
- The (formal) universal R-matrix

$$
R=(1 \otimes a)^{\psi \otimes 1} e^{\phi \otimes b}=\sum_{m, n \geq 0} \frac{1}{n!}\binom{\psi}{m} \phi^{n} \otimes(a-1)^{m} b^{n}
$$

trivialises to $e^{\phi \otimes b}$ at $a=1$ with commuting ϕ and b. Thus, there are no non-trivial invariants from irreps.

6. The main result

Theorem
The universal quantum invariant of a long knot K associated to the Hopf algebra B_{1} is of the form

$$
Z_{\mathrm{B}_{1}}(K)=\left(\Delta_{K}(a)\right)^{-1} \in \mathbb{C}[[a-1]] \subset\left(D\left(\mathrm{~B}_{1}\right)^{o}\right)^{*}
$$

where $\Delta_{K}(t)$ is the (canonically normalised) Alexander polynomial of K.

7. Steps of the proof

(a) The determinantal formula

Theorem (Kaufmann-Saleur, 1991)
Let a knot K be the closure of a braid $\beta \in B_{n}$ and $\psi_{n}(\beta) \in \mathrm{GL}_{n}\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)$ the image of β under the unrestricted Burau representation. Let $\hat{\beta}_{n}$ be obtained from $\psi_{n}(\beta)$ by throwing away the n-th column and the n-th row. Then,

$$
\Delta_{K}(t)=t^{\frac{1-n-\mathrm{g}(\beta)}{2}} \operatorname{det}\left(I_{n-1}-\hat{\beta}_{n}\right)
$$

where I_{k} denotes the identity $k \times k$ matrix and $g: B_{n} \rightarrow \mathbb{Z}$ is the group homomorphism that sends the Artin generators to 1 .
(b) Coherent states and the Gaussian integration formula
$H^{n} \subset L^{2}\left(\mathbb{C}^{n}, \mu_{n}\right)$ the Hilbert sub-space of holomorphic functions

$$
\langle f \mid g\rangle:=\int_{\mathbb{C}^{n}} \overline{f(z)} g(z) \mathrm{d} \mu_{n}(z), \quad \frac{\mathrm{d} \mu_{n}}{\mathrm{~d} \lambda_{2 n}}(z)=\frac{1}{\pi^{n}} e^{-\|z\|^{2}}
$$

Schrödinger's coherent states $\varphi_{u} \in H^{n}, \varphi_{u}(z)=e^{u^{\top} z}, u \in \mathbb{C}^{n}$. Reproducing property

$$
\left\langle\varphi_{\bar{u}} \mid f\right\rangle=\int_{\mathbb{C}^{n}} \varphi_{u}(\bar{z}) f(z) \mathrm{d} \mu_{n}(z)=f(u) \quad \forall f \in H^{n}
$$

$A^{n} \subset H^{n}$ the subspace generated by products of coherent states and polynomials.
Gaussian integration formula $\left(z^{*}:=\bar{z}^{\top}\right)$

$$
\int_{\mathbb{C}^{n}} e^{v^{*} z+z^{*} u+z^{*} M z} \mathrm{~d} \mu_{n}(z)=\frac{e^{v^{*} W^{-1} u}}{\operatorname{det}(W)}, \quad W:=I_{n}-M
$$

(c) Representations of $D\left(\mathrm{~B}_{1}\right)$ in $A^{1}[[\hbar]]$

Homomorphism of algebras $\rho_{\lambda}: D\left(\mathrm{~B}_{1}\right) \rightarrow \operatorname{End}\left(A^{1}[[\hbar]]\right)$

$$
\begin{aligned}
& (a, b, \phi, \psi) \mapsto\left(1+\hbar, \frac{\partial}{\partial z}, \hbar z, \lambda-z \frac{\partial}{\partial z}\right), \quad \chi_{u, v} f(z)=e^{\hbar u z} f(v z), \\
& \rho_{\lambda}^{\otimes 2}(R)=(1+\hbar)^{\lambda} \rho_{0}^{\otimes 2}(R) \in \operatorname{End}\left(A^{1}\right)^{\otimes 2}[[\hbar]], \\
& \rho_{0}^{\otimes 2}(R)=(1+\hbar)^{-z_{0} \frac{\partial}{\partial z_{0}}} e^{\hbar z_{0} \frac{\partial}{\partial z_{1}}}=\sum_{m, n \geq 0} \frac{\hbar^{m+n}}{n!}\binom{-z_{0} \frac{\partial}{\partial z_{0}}}{m}\left(z_{0} \frac{\partial}{\partial z_{1}}\right)^{n}
\end{aligned}
$$

Action of $r:=\rho_{0}^{\otimes 2}(R) P$ on the coherent states

$$
r \varphi_{v}=\varphi_{U v}, \quad U:=\left(\begin{array}{cc}
\frac{\hbar}{1+\hbar} & \frac{1}{1+\hbar} \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1-t & t \\
1 & 0
\end{array}\right), \quad t:=\frac{1}{1+\hbar}
$$

This is the building block of the Burau representation of the braid groups.
(d) Weight functions

$$
\overbrace{v_{0}}^{w_{0}} \xrightarrow{w_{1}}\left\langle\varphi_{w_{0}, w_{1}}\right| r^{-1}\left|\varphi_{v_{0}, v_{1}}\right\rangle=e^{w^{*} U^{-1} v}
$$

$$
\mathrm{W}_{\partial s}\left(\bigodot^{v}\right)=\int_{\mathbb{C}} e^{(\bar{w} \bar{u})\left(\begin{array}{cc}
1-t & t \\
1 & 0
\end{array}\right)\binom{v}{u}} \mathrm{~d} \mu_{1}(u)=e^{\bar{w} v}
$$

$$
\mathrm{W}_{\partial s}(\underbrace{v})=\int_{\mathbb{C}} e^{(\bar{w} \bar{u})\left(\begin{array}{c}
0 \\
t^{-1} \\
1-t^{-1}
\end{array}\right)\binom{v}{u}} \mathrm{~d} \mu_{1}(u)=t e^{\bar{w} v}
$$

(e) Final calculation

$$
D_{\beta}=\stackrel{\uparrow}{D_{\beta}}=\cdots
$$

with the writhe $g\left(D_{\beta}\right)=g(\beta)+n-1 \in 2 \mathbb{Z}$ and the Burau matrix $\psi_{n}(\beta)=\left(\begin{array}{cc}\hat{\beta}_{n} & b_{\beta} \\ c_{\beta} & d_{\beta}\end{array}\right)$,

$$
\begin{aligned}
\mathrm{W}_{\partial s}\left(\begin{array}{c}
\left.\stackrel{\substack{\hat{N}_{\beta} \\
\stackrel{v}{*}}}{\stackrel{\rightharpoonup}{v}}\right)= \\
\end{array}\right. & \int_{\mathbb{C}^{n-1}} e^{\left(u^{*} \bar{w}\right) \psi_{n}(\beta)\binom{u}{v}} \mathrm{~d} \mu_{n-1}(u) \\
& =\frac{e^{\bar{w} d_{\beta} v+\bar{w} c_{\beta}\left(I_{n-1}-\hat{\beta}_{n}\right)^{-1} b_{\beta} v}}{\operatorname{det}\left(I_{n-1}-\hat{\beta}_{n}\right)}=\frac{e^{\bar{w} v}}{\operatorname{det}\left(I_{n-1}-\hat{\beta}_{n}\right)}
\end{aligned}
$$

provided $d_{\beta}+c_{\beta}\left(I_{n-1}-\hat{\beta}_{n}\right)^{-1} b_{\beta}=1$

8: Concluding remarks

- B_{1} admits a q-deformation to a quantum group $\mathrm{B}_{q} \simeq B U_{q}(s / 2)$ with $U_{q}\left(s /_{2}\right) \subset D\left(\mathrm{~B}_{q}\right)$ so that the colored Jones polynomials are contained in the universal invariant $Z_{B_{q}}(K)$.
- The case of roots of unity $q^{N}=1, q^{k} \neq 1,0<k<N$. In this case, $\mathrm{B}_{1} \subset \mathrm{~B}_{q}$ with $a \mapsto a^{N}, b \mapsto b^{N}$. Based on the results of Habiro, Willetts, and Brown-Dimofte-Geer, one expects that the universal invariant is of the form $Z_{\mathrm{B}_{q}}(K)=\frac{A D O_{K}(z, q)}{\Delta_{K}\left(a^{N}\right)}$ (work in progress with Shamil Shakirov).
- The case $N=1$, seen as a limit $q \rightarrow 1$, provides a conceptual interpretation for the Melvin-Morton-Rozansky conjecture proven by Bar-Nathan and Garoufalidis.

