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Motivation for the universal quantum invariants
Introduced and studied (mostly in the context of finite dimensional
or appropriately completed ∞ dimensional Hopf algebras) by
Reshetikhin, Lawrence, Lee, Ohtsuki, Lyubashenko,
Bruguières–Virelizier, Habiro, Virelizier, Murakami–Nagatomo,
Willetts, . . .

I For a given Hopf algebra, all quantum invariants (semisimple
and non semisimple) are encoded into a single representation
independent algebraic object.

I Potential for better revealing the geometrical and topological
significance of quantum invariants.

Today: construction on the basis of the restricted dual of a Hopf
algebra.

Features
I Generality: universal quantum knot invariants from any (finite

or ∞ dimensional) Hopf algebra with invertible antipode.
I Purely algebraic, no input topology (completion) is needed.
I Does not apply to links.
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1. Reshetikhin–Turaev construction for long knots from
rigid R-matrices (no ribbon element is used)

An (oriented) long knot diagram D is a knot diagram in R2 with
two open ends called “in” and “out”:

D = D
out

in

Example : D =

The normalization of D is the long knot diagram Ḋ obtained
from D by the replacements 7→ , 7→ .

D is called normal if D = Ḋ.
The building blocks of normal long knot diagrams: four types of
segments , , , and eight types of crossings

, , , , , , ,

Relation to closed oriented knot diagrams: D 7→ D
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An R-matrix over a finite-dimensional vector space V is an
invertible linear map r : V ⊗ V → V ⊗ V that satisfies the
quantum Yang–Baxter relation

r̂ ř r̂ = ř r̂ ř , r̂ := r ⊗ idV , ř := idV ⊗r .

Let B ⊂ V be a basis and {b∗}b∈B ⊂ V ∗ the dual basis defined by
〈a∗, b〉 = 〈a, b∗〉 = δa,b. For any linear map f : V ⊗ V → V ⊗ V ,
we associate its partial transpose

f̃ : V ∗⊗V → V ⊗V ∗, f̃ (a∗⊗b) =
∑

c,d∈B
〈a∗⊗c∗, f (b⊗d)〉c⊗d∗.

An R-matrix r is called rigid if the linear maps r̃±1 are invertible.
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Let r be a rigid R-matrix over V with a basis B and D a normal
long knot diagram with the set of edges ED and the set of
crossings CD . A local state of D is a map s : ED → B. The
Bolzmann weight of D in a state s: Ws(D) =

∏
c∈CD

Ws(c) with

a b

c d

,
c a

d b

,
d c

b a

Ws7−−→ 〈c∗⊗d∗, r(a⊗b)〉,
b d

a c

Ws7−−→ 〈a⊗c∗,
(
r̃−1
)−1

(b⊗d∗)〉

and likewise for negative crossings with replacements r ↔ r−1.

Theorem
Let normal D have equal number of negative and positive
crossings. Then, the linear map Jr (D) : V → V defined by

〈b∗, Jr (D)a〉 = W∂s

(
D

b

a

)
:=

∑
{s : ED→B|s(in)=a, s(out)=b}

Ws(D)

is an invariant of the (oriented) long knot represented by D.
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2. Adjunction between algebras and coalgebras
The categories of algebras AlgK and coalgebras CogK over a field
K with two contravariant functors

(·)∗ : CogK → AlgK (dual (convolution) algebra)

and
(·)o : AlgK → CogK (restricted dual coalgebra)

(Ao ⊂ A∗ is generated by all matrix coefficients of all finite
dimensional representations of A).

HomAlgK(A,C ∗) ' HomCogK(C ,Ao) (adjunction)

The case of Hopf algebras: Ho is a Hopf algebra for any Hopf
algebra H.

Example

I C =
(
K[Z≥0], ∆(χn) =

∑n
k=0 χk ⊗ χn−k

)
⇒ C ∗ ' K[[x ]]

I H =
(
C[x ], ∆x = x ⊗ 1 + 1⊗ x

)
⇒ Ho ' H ⊗ C[C]
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3. Drinfeld’s quantum double

Let HopfK be the category of Hopf K-algebras with invertible
antipode. We have the contravariant endo-functor

(·)o : HopfK → HopfK (restricted dual)

Drinfeld’s quantum double of a Hopf algebra H ∈ ObHopfK is a
Hopf algebra D(H) ∈ ObHopfK determined (uniquely up to an
isomorphism) by the property that there are two Hopf algebra
inclusions

ı : H → D(H),  : Ho,op → D(H)

such that D(H) is generated by their images subject to the
commutation relations, ∀(x , f ) ∈ H × Ho ,

(f )ıx =
∑

(x),(f )

〈f(1), x(1)〉〈f(3), S(x(3))〉(ıx(2))f(2)
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The restricted dual D(H)o of the quantum double is a dual
quasi-triangular Hopf algebra with the dual universal R-matrix

% : D(H)o ⊗ D(H)o → K, x ⊗ y 7→ 〈x , (ıoy)〉

which (among other properties) satisfies the Yang–Baxter relation

%1,2 ∗ %1,3 ∗ %2,3 = %2,3 ∗ %1,3 ∗ %1,2

in the convolution algebra ((D(H)o)⊗3)∗.
Let {ei}i∈I ⊂ H be a linear basis and {e i}i∈I ⊂ H∗ the associated
set of canonical (dual) linear forms. Then, the formal universal
R-matrix

R :=
∑
i∈I

e i ⊗ ıei

is a formal conjugate of the dual universal R-matrix:

〈x ⊗ y ,R〉 = 〈%, x ⊗ y〉 ∀x , y ∈ D(H)o .
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4. The universal quantum knot invariants
For any finite-dimensional right co-module

V → V ⊗ D(H)o , v 7→
∑
(v)

v(0) ⊗ v(1),

one gets a rigid R-matrix

rV : V ⊗ V → V ⊗ V , u ⊗ v 7→
∑

(u),(v)

v(0) ⊗ u(0)〈%, v(1) ⊗ u(1)〉.

The universal quantum invariant of long knots ZH(K )
associated to a Hopf algebra H ∈ ObHopfK takes its values in the
convolution algebra (D(H)o)∗ such that

JrV (K )v =
∑
(v)

v(0)〈ZH(K ), v(1)〉 ∀v ∈ V

where JrV (K ) ∈ End(V ) is the invariant of long knots associated
to the rigid R-matrix rV .
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5. The Hopf algebra B1 and its quantum double

B1 = C[a±1, b] with the co-products

∆(a) = a⊗ a, ∆(b) = a⊗ b + b ⊗ 1

It is the algebra of regular functions on the affine linear algebraic
group

Aff1(C) :=
{(

a b
0 1

)
| a ∈ C 6=0, b ∈ C

}
The group structure of Aff1(C) induces a commutative but non
co-commutative Hopf algebra structure of B1.
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The restricted dual Bo,op
1 is composed of two Hopf sub-algebras:

the group algebra C[Aff1(C)] generated by grouplike elements

{χu,v | (u, v) ∈ C× C 6=0} , χu,vχu′,v ′ = χu+vu′,vv ′ ,

and the universal enveloping algebra U(Lie Aff1(C)) generated by
primitive elements ψ and φ satisfying φψ − ψφ = φ.

Interaction between C[Aff1(C)] and U(Lie Aff1(C)) in Bo,op
1

[χu,v , ψ] = uφχu,v , χu,vφ = vφχu,v ∀(u, v) ∈ C× C 6=0

Pairing between Bo,op
1 and B1, p = p(a, b) ∈ C[a±1, b] = B1

〈χu,v , p〉 = p
(1

v
,
u

v

)
, 〈ψ, p〉 =

∂p

∂a
(1, 0), 〈φ, p〉 =

∂p

∂b
(1, 0)

12 / 20



Interaction between B1 and Bo,op
1 in D(B1)

[ψ, b] = b, [φ, b] = 1− a, χ−1
u,vbχu,v = bv + (a− 1)u

and a is a grouplike central element.

Remark

I The center Z(D(B1)) is generated by the elements a and
c := φb + (a− 1)ψ.

I The Heisenberg relation [φ, b] = 1− a with central a implies
that, in any irreducible finite dim. representation of D(B1),
one has a = 1. In general, a− 1 should be nilpotent.

I The (formal) universal R-matrix

R = (1⊗ a)ψ⊗1eφ⊗b =
∑

m,n≥0

1

n!

(
ψ

m

)
φn ⊗ (a− 1)mbn

trivialises to eφ⊗b at a = 1 with commuting φ and b. Thus,
there are no non-trivial invariants from irreps.
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6. The main result

Theorem
The universal quantum invariant of a long knot K associated to
the Hopf algebra B1 is of the form

ZB1(K ) = (∆K (a))−1 ∈ C[[a− 1]] ⊂ (D(B1)o)∗

where ∆K (t) is the (canonically normalised) Alexander polynomial
of K.
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7. Steps of the proof
(a) The determinantal formula

Theorem (Kaufmann–Saleur, 1991)

Let a knot K be the closure of a braid β ∈ Bn and
ψn(β) ∈ GLn(Z[t±1]) the image of β under the unrestricted Burau
representation. Let β̂n be obtained from ψn(β) by throwing away
the n-th column and the n-th row. Then,

∆K (t) = t
1−n−g(β)

2 det(In−1 − β̂n)

where Ik denotes the identity k × k matrix and g : Bn → Z is the
group homomorphism that sends the Artin generators to 1.
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(b) Coherent states and the Gaussian integration formula

Hn ⊂ L2(Cn, µn) the Hilbert sub-space of holomorphic functions

〈f |g〉 :=

∫
Cn

f (z)g(z) dµn(z),
dµn
dλ2n

(z) =
1

πn
e−‖z‖

2

Schrödinger’s coherent states ϕu ∈ Hn, ϕu(z) = eu
>z , u ∈ Cn.

Reproducing property

〈ϕū|f 〉 =

∫
Cn

ϕu(z̄)f (z) dµn(z) = f (u) ∀f ∈ Hn

An ⊂ Hn the subspace generated by products of coherent states
and polynomials.
Gaussian integration formula (z∗ := z̄>)∫

Cn

ev
∗z+z∗u+z∗Mz dµn(z) =

ev
∗W−1u

det(W )
, W := In −M
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(c) Representations of D(B1) in A1[[~]]

Homomorphism of algebras ρλ : D(B1)→ End(A1[[~]])

(a, b, φ, ψ) 7→
(

1 + ~,
∂

∂z
, ~z , λ− z

∂

∂z

)
, χu,v f (z) = e~uz f (vz),

ρ⊗2
λ (R) = (1 + ~)λρ⊗2

0 (R) ∈ End(A1)⊗2[[~]],

ρ⊗2
0 (R) = (1 + ~)

−z0
∂
∂z0 e

~z0
∂
∂z1 =

∑
m,n≥0

~m+n

n!

(
−z0

∂
∂z0

m

)(
z0

∂

∂z1

)n
Action of r := ρ⊗2

0 (R)P on the coherent states

rϕv = ϕUv , U :=

( ~
1+~

1
1+~

1 0

)
=

(
1− t t

1 0

)
, t :=

1

1 + ~
,

This is the building block of the Burau representation of the braid
groups.
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(d) Weight functions

v0 v1

w0 w1
Ws7−−→ 〈ϕw0,w1 |r |ϕv0,v1〉 = ew

∗Uv

v0 v1

w0 w1
Ws7−−→ 〈ϕw0,w1 |r−1|ϕv0,v1〉 = ew

∗U−1v

w

v
,

v

w
,

w v
, w v Ws7−−→ ew̄v

W∂s

( v w )
=

∫
C
e

( w̄ ū )
(

1−t t
1 0

)
( v
u )

dµ1(u) = ew̄v

W∂s

( v w )
=

∫
C
e

( w̄ ū )
(

0 1
t−1 1−t−1

)
( v
u )

dµ1(u) = tew̄v
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(e) Final calculation

Dβ = Dβ = β
. . .

. . .

. . .

with the writhe g(Dβ) = g(β) + n − 1 ∈ 2Z and the Burau matrix

ψn(β) =
(
β̂n bβ
cβ dβ

)
,

W∂s

(
Dβ

w

v

)
=

∫
Cn−1

e( u∗ w̄ )ψn(β)( u
v ) dµn−1(u)

=
ew̄dβv+w̄cβ(In−1−β̂n)−1bβv

det(In−1 − β̂n)
=

ew̄v

det(In−1 − β̂n)

provided dβ + cβ(In−1 − β̂n)−1bβ = 1
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8: Concluding remarks

I B1 admits a q-deformation to a quantum group
Bq ' BUq(sl2) with Uq(sl2) ⊂ D(Bq) so that the colored
Jones polynomials are contained in the universal invariant
ZBq(K ).

I The case of roots of unity qN = 1, qk 6= 1, 0 < k < N. In this
case, B1 ⊂ Bq with a 7→ aN , b 7→ bN . Based on the results of
Habiro, Willetts, and Brown–Dimofte–Geer, one expects that
the universal invariant is of the form ZBq(K ) = ADOK (z,q)

∆K (aN)

(work in progress with Shamil Shakirov).

I The case N = 1, seen as a limit q → 1, provides a conceptual
interpretation for the Melvin–Morton–Rozansky conjecture
proven by Bar-Nathan and Garoufalidis.
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