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The generating graph of a group

The generating graph of a group G has vertices G \ {1}, with vertices x
and y joined if and only if 〈x , y〉 = G .

Example: G = D12 = 〈a, b | a6 = b2 = 1, bab = a−1〉.

a2 a a5

a3

b a2b

ab

a4b

a5ba3b

a4

The graph is not connected, but the non-isolated vertices form a
connected component of diameter 2.
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A hierarchy of graphs defined on G \ {1}

The complete graph

The non-generating graph

The commuting graph

The deep commuting graph
(defined by Cameron & Kuzma):
x ∼ y ⇐⇒ their preimages in
every central extension commute

The enhanced power graph:
x ∼ y ⇐⇒ 〈x , y〉 is cyclic

The power graph:
x ∼ y ⇐⇒ x ∈ 〈y〉 or y ∈ 〈x〉

The generating graph is the difference between the first two graphs. We
will consider the next difference.
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The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G , denoted Γ(G ), has
vertices G \ Z (G ), with vertices x and y joined if and only if:
xy 6= yx and 〈x , y〉 6= G .

a2 a a5

a3

b a2b

ab

a4b

a5ba3b

a4

1. Start with the generating graph
of G .

2. Take the complement of the
graph.

3. Remove edges between vertices
that commute.

4. Remove vertices from Z (G ).
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Connectedness and diameter

Theorem (Breuer, Guralnick & Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected
with diameter 2.

Theorem (Burness, Guralnick & Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is
connected with diameter at most 2.

Our questions: When is Γ(G ) connected? What are the diameters of the
connected components of Γ(G )?

Since the vertices of Γ(G ) are the non-central elements of G , the graph is
empty if and only if G is abelian.

We can show that no connected component of Γ(G ) has diameter 1:
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x y

Suppose that x and y are vertices in
such a component.

x ∼ y =⇒ y ∼ x−1 =⇒ |x | = 2.

x ∼ y =⇒ x ∼ xy ∼ y .

|x | = |y | = |xy | = 2 =⇒ xy = yx .

A contradiction.
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Graphs with no edges

Suppose that G is non-abelian.

Γ(G ) has no edges ⇐⇒ the elements of each non-generating pair
commute.

This is equivalent to the property that every proper subgroup of G is
abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and
Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order
is divisible by two primes.

The infinite case is still open, but well-known examples are the Tarski
monsters, infinite simple groups where the order of every proper nontrivial
subgroup is a fixed prime p.

Ol’shanskĭı showed in 1982 that a Tarski monster exists for each prime
p > 1075.
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The minimal size of a generating set

Let d be the minimum size of a generating set for G .

The generating graph of G is only interesting if d = 2.

The same is true for Γ(G ):

If d = 1, then G is cyclic and hence abelian, and so Γ(G ) has no vertices.

If d > 3, then G has no generating pairs. Hence Γ(G ) is the
non-commuting graph of G (with vertices G \ Z (G )).
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The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

a2 a a5

b a2b

ab

a4b

a5ba3b

a4

If x , y ∈ G \ Z (G ), then CG (x) < G
and CG (y) < G .

The union of two proper subgroups
of G is a proper subset of G , so
∃hx ,y ∈ G \ (CG (x) ∪ CG (y)).

(x , hx ,y , y) is a path in the graph.

We are therefore only interested in Γ(G ) when G is 2-generated and
non-abelian.

8 / 18



The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

a2 a a5

b a2b

ab

a4b

a5ba3b

a4

If x , y ∈ G \ Z (G ), then CG (x) < G
and CG (y) < G .

The union of two proper subgroups
of G is a proper subset of G , so
∃hx ,y ∈ G \ (CG (x) ∪ CG (y)).

(x , hx ,y , y) is a path in the graph.

We are therefore only interested in Γ(G ) when G is 2-generated and
non-abelian.

8 / 18



The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

a2 a a5

b a2b

ab

a4b

a5ba3b

a4

If x , y ∈ G \ Z (G ), then CG (x) < G
and CG (y) < G .

The union of two proper subgroups
of G is a proper subset of G , so
∃hx ,y ∈ G \ (CG (x) ∪ CG (y)).

(x , hx ,y , y) is a path in the graph.

We are therefore only interested in Γ(G ) when G is 2-generated and
non-abelian.

8 / 18



The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

a2 a a5

b a2b

ab

a4b

a5ba3b

a4

If x , y ∈ G \ Z (G ), then CG (x) < G
and CG (y) < G .

The union of two proper subgroups
of G is a proper subset of G , so
∃hx ,y ∈ G \ (CG (x) ∪ CG (y)).

(x , hx ,y , y) is a path in the graph.

We are therefore only interested in Γ(G ) when G is 2-generated and
non-abelian.

8 / 18



The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

a2 a a5

b a2b

ab

a4b

a5ba3b

a4

If x , y ∈ G \ Z (G ), then CG (x) < G
and CG (y) < G .

The union of two proper subgroups
of G is a proper subset of G , so
∃hx ,y ∈ G \ (CG (x) ∪ CG (y)).

(x , hx ,y , y) is a path in the graph.

We are therefore only interested in Γ(G ) when G is 2-generated and
non-abelian.

8 / 18



The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is
connected with diameter 2.

a2 a a5

b a2b

ab

a4b

a5ba3b

a4

If x , y ∈ G \ Z (G ), then CG (x) < G
and CG (y) < G .

The union of two proper subgroups
of G is a proper subset of G , so
∃hx ,y ∈ G \ (CG (x) ∪ CG (y)).

(x , hx ,y , y) is a path in the graph.

We are therefore only interested in Γ(G ) when G is 2-generated and
non-abelian. 8 / 18



Alternating groups

Let G := An y Ω := {1, . . . , n}; α, β ∈ Ω, α 6= β; J := Gα ∩ Gβ.

Assume n > 5; otherwise, Γ(G ) has no edges.

Gα
J

Z (Gα)

Gβ

Z (Gβ)

Any two elements of Gα ∼= An−1
generate a subgroup of Gα < G .

Hence the subgraph of Γ(G ) induced
by Gα \ Z (Gα) is the non-commuting
graph of Gα, of diameter 2.

Let x ∈ Gα \ (Z (Gα) ∪ J) and
y ∈ Gβ \ (Z (Gβ) ∪ J).

An−2 ∼= J <
max

Gα and x /∈ Z (Gα) =⇒ CJ(x) < J.

Similarly, CJ(y) < J.

So there exists rx ,y ∈ J with (x , rx ,y , y) a path in Γ(G ).
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Alternating groups (ctd.)

Theorem (F., 2021+)

Let G := An, n > 5. Then Γ(G ) is connected with diameter at most 4 if n
is odd, and at most 3 if n is even.

Strategy of proof: Let s, t ∈ G be derangements. We show:

(i) ∃ non-derangements x , y ∈ G s.t. s ∼ x and t ∼ y .
d(x , y) 6 2, so d(s, t) 6 4.

(ii) s, t not n-cycles (e.g. if n is even) =⇒ ∃x , y s.t. x ∼ y .
So d(s, t) 6 3.

Ex. 1: s := (α1, α2, . . .)(β1, β2, . . .), t := (
γ1=
α1 , γ2, . . .)(δ1, . . .) · · · (θ1, . . .).

x := (α1, α2)(β1, β2), y := (α1, γ2, δ1) =⇒ s ∼ x , t ∼ y , xy 6= yx .

d := deg(〈x , y〉) = #(points moved by x or y) 6 6.

d = n =⇒ d = 6, 〈x , y〉 intransitive. So 〈x , y〉 < G and x ∼ y .
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Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of Γ(G ) is
isolated if and only if each maximal subgroup of G containing x also
centralises x .

An element x ∈ G \ Z (G ) is centralised by at most one maximal subgroup
of G .

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G ; and

(ii) x ∈ Z (M).

Question: If x is isolated, can M be non-abelian?

If M C6 G , no:
〈x , y〉 = G for each element y /∈ M
=⇒ G/Z (M) is cyclic =⇒ M/Z (M) is cyclic =⇒ M is abelian.

We’ll revisit this question later.
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Groups with every maximal subgroup normal

More general than being nilpotent, but equivalent for finite groups.

∆(G ) := Γ(G ) \ {isolated vertices}.

a2 a a5

b a2b

ab

a4b

a5ba3b

Γ(D12)

a4 a2

b a2b

ab

a4b

a5ba3b

∆(D12)

a4

Theorem (Cameron, F. & Roney-Dougal, 2021)

Let G be a group with every maximal subgroup normal. Then ∆(G ) is
either empty or connected with diameter 2 or 3. If ∆(G ) is connected with
diameter 3, then ∆(G ) = Γ(G ).
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Let G be a group with every maximal subgroup normal. Then ∆(G ) is
either empty or connected with diameter 2 or 3. If ∆(G ) is connected with
diameter 3, then ∆(G ) = Γ(G ).

For a finite nilpotent group G , we can prove a more precise relationship
between the structures of G and Γ(G ). We use the fact that G is the
direct product of its Sylow subgroups.
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Direct products of groups

Lemma (Cameron, F. & Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.

(i) If B is non-cyclic, then Γ(A× B) is connected with diameter 2.

(ii) If B is cyclic and Γ(A) is connected with diameter k, then Γ(A× B)
is connected with diameter at most k .

Main idea of proof: if 〈a1, a2〉 6= A then 〈(a1, b1), (a2, b2)〉 6= A× B, and
if a1a2 6= a2a1, then (a1, b1)(a2, b2) 6= (a2, b2)(a1, b1).

Example:

Γ(S4) is connected with diameter 3.

Γ(S4 × C2) is connected with diameter 2.

Γ(S4 × C3) is connected with diameter 3.
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Example:
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Γ(S4 × C3) is connected with diameter 3.

Theorem (Crestani & Lucchini, 2013)

Let k be a positive integer. There exists an odd prime p and a positive
integer n such that, excluding isolated vertices, the generating graph of
(PSL(2, 2p))n is connected with diameter greater than k.
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Finite soluble groups

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices,
the generating graph of G is connected with diameter 2 or 3.

What about Γ(G )?

There exist 2-generated finite soluble
groups G with maximal subgroups
M1, . . . ,Mn, where for all distinct i , j :
Mi ∩Mj = Z (M1) > Z (G ).
For i 6= 1, Z (Mi ) = Z (G ).

Here, Γ(G ) consists of two connected
components, each of diameter 2:
M1 \ Z (M1), and everything else.

We will call a group G a [2, 2]-group if Γ(G ) consists of two connected
components of diameter 2.
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There exist 2-generated finite soluble
groups G with maximal subgroups
M1, . . . ,Mn, where for all distinct i , j :
Mi ∩Mj = Z (M1) > Z (G ).
For i 6= 1, Z (Mi ) = Z (G ).

Here, Γ(G ) consists of two connected
components, each of diameter 2:
M1 \ Z (M1), and everything else.

We will call a group G a [2, 2]-group if Γ(G ) consists of two connected
components of diameter 2.

Theorem (F., 2021+)

Let G be a finite soluble group. If G is not a [2, 2]-group, then ∆(G ) is
either empty or connected with diameter 2 or 3. If ∆(G ) is connected with
diameter 3, then ∆(G ) = Γ(G ).
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Finite insoluble groups

Theorem (F., 2021+)

Let G be a finite insoluble group.

(i) If G/Z (G ) has a proper non-cyclic quotient, then Γ(G ) is connected
with diameter 2 or 3.

(ii) If Z (G ) = 1 and G is not simple, then ∆(G ) is connected with
diameter 2 or 3.

(iii) If G is simple, then Γ(G ) is connected with diameter at most 5.

D2|ab|M1 M2

a bx y

|M1| and |M2| even, |a| = |b| = 2
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with diameter k , then Γ(H) is connected with diameter at most k .
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Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of Γ(G ) is
isolated if and only if:

(i) x lies in a unique maximal subgroup M of G ; and

(ii) x ∈ Z (M).

Question: If x is isolated, can M be non-abelian?

No finite insoluble group contains an abelian maximal subgroup.

Hence if M cannot be non-abelian in the finite case, then every finite
insoluble group G has ∆(G ) = Γ(G ) connected with diameter at most 5.

Using results of Guralnick & Tracey (2021+):
G finite and simple, x satisfies (i) =⇒ x /∈ Z (M). So ∆(G ) = Γ(G ).
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Finite simple groups

G diam(Γ(G ))

M11,M12,M22, J2 2

M23, J1 3

B,PSU(7, 2) 4

Remaining sporadic groups (and 2F4(2)′) 6 4

An; n even 6 3

An; n odd 6 4

PSL(n, q), Sz(q) 6 4

G2(q), 2G2(q), 3D4(q),F4(q),E8(q); q odd 6 4

Remaining finite simple groups 6 5

Question: Can these upper bounds be reduced?
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Some more infinite groups

Thompson’s group F = 〈x , y | [xy−1, x−1yx ] = [xy−1, x−2yx2] = 1〉 is an
infinite group with [F ,F ] an infinite simple group.

[F ,F ] is the unique minimal normal subgroup of F , and F/[F ,F ] ∼= Z2.

Using these facts, we can show that Γ(F ) is connected with diameter 2.

The infinite dihedral group D∞ is 〈a, b | a2 = b2 = 1〉.

Γ(D∞) consists of the isolated vertices ab and ba, plus a connected
component of diameter 2.

The free group on two generators F2 is 〈a, b | −〉 = 〈a, b | a∞ = b∞ = 1〉.

Γ(F2) is connected with diameter 2.

More generally, if G = 〈a, b | ar = bs = 1〉, with 2 6 r , s 6∞, then either
G = D∞ or Γ(G ) is connected with diameter 2.
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