### Non-commuting, non-generating graphs of groups

## Saul D. Freedman

University of St Andrews

Totally Disconnected Locally Compact Groups via Group Actions August 18 2021

The generating graph of a group G has vertices  $G \setminus \{1\}$ , with vertices x and y joined if and only if  $\langle x, y \rangle = G$ .

The generating graph of a group G has vertices  $G \setminus \{1\}$ , with vertices x and y joined if and only if  $\langle x, y \rangle = G$ .

**Example**:  $G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$ .

The generating graph of a group G has vertices  $G \setminus \{1\}$ , with vertices x and y joined if and only if  $\langle x, y \rangle = G$ .

**Example**:  $G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$ .



The generating graph of a group G has vertices  $G \setminus \{1\}$ , with vertices x and y joined if and only if  $\langle x, y \rangle = G$ .

**Example**:  $G = D_{12} = \langle a, b \mid a^6 = b^2 = 1, bab = a^{-1} \rangle$ .



The graph is not connected, but the non-isolated vertices form a connected component of diameter 2.

• The complete graph



- The complete graph
- The non-generating graph



- The complete graph
- The non-generating graph
- The commuting graph



- The complete graph
- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron & Kuzma):
   x ~ y ↔ their preimages in every central extension commute



- The complete graph
- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron & Kuzma):
   x ~ y ↔ their preimages in every central extension commute
- The enhanced power graph:
   x ∼ y ⇔ ⟨x, y⟩ is cyclic



- The complete graph
- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron & Kuzma):
   x ~ y ↔ their preimages in every central extension commute
- The enhanced power graph:
   x ∼ y ⇔ ⟨x, y⟩ is cyclic
- The power graph:  $x \sim y \iff x \in \langle y \rangle$  or  $y \in \langle x \rangle$



- The complete graph
- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron & Kuzma):
   x ~ y ↔ their preimages in every central extension commute
- The enhanced power graph:
   x ∼ y ⇔ ⟨x, y⟩ is cyclic
- The power graph:  $x \sim y \iff x \in \langle y \rangle$  or  $y \in \langle x \rangle$

The generating graph is the difference between the first two graphs. We will consider the next difference.

#### Definition

#### Definition

The non-commuting, non-generating graph of G, denoted  $\Gamma(G)$ , has vertices  $G \setminus Z(G)$ , with vertices x and y joined if and only if:  $xy \neq yx$  and  $\langle x, y \rangle \neq G$ .



1. Start with the generating graph of *G*.

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.
- 4. Remove vertices from Z(G).

#### Definition



- 1. Start with the generating graph of *G*.
- 2. Take the complement of the graph.
- 3. Remove edges between vertices that commute.
- 4. Remove vertices from Z(G).

The generating graph of a non-abelian finite simple group is connected with diameter 2.

The generating graph of a non-abelian finite simple group is connected with diameter 2.

#### Theorem (Burness, Guralnick & Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2.

The generating graph of a non-abelian finite simple group is connected with diameter 2.

#### Theorem (Burness, Guralnick & Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2.

**Our questions**: When is  $\Gamma(G)$  connected? What are the diameters of the connected components of  $\Gamma(G)$ ?

The generating graph of a non-abelian finite simple group is connected with diameter 2.

#### Theorem (Burness, Guralnick & Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2.

**Our questions**: When is  $\Gamma(G)$  connected? What are the diameters of the connected components of  $\Gamma(G)$ ?

Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

The generating graph of a non-abelian finite simple group is connected with diameter 2.

#### Theorem (Burness, Guralnick & Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2.

**Our questions**: When is  $\Gamma(G)$  connected? What are the diameters of the connected components of  $\Gamma(G)$ ?

Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:

### Connectedness and diameter

**Our questions**: When is  $\Gamma(G)$  connected? What are the diameters of the connected components of  $\Gamma(G)$ ?

Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:



Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:

$$x \sim y \implies y \sim x^{-1}$$



Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:

$$x \sim y \implies y \sim x^{-1}$$



Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$



### Connectedness and diameter

**Our questions**: When is  $\Gamma(G)$  connected? What are the diameters of the connected components of  $\Gamma(G)$ ?

Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$

$$x \sim y \implies x \sim xy \sim y.$$



Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:

$$x \sim y \implies y \sim x^{-1} \implies |x| = 2.$$
$$x \sim y \implies x \sim xy \sim y.$$
$$|x| = |y| = |xy| = 2 \implies xy = yx.$$



Since the vertices of  $\Gamma(G)$  are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of  $\Gamma(G)$  has diameter 1:







## Graphs with no edges

Suppose that G is non-abelian.

## Graphs with no edges

Suppose that G is non-abelian.

 $\Gamma(G)$  has no edges  $\iff$  the elements of each non-generating pair commute.

## Graphs with no edges

Suppose that G is non-abelian.

 $\Gamma(G)$  has no edges  $\iff$  the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

## Graphs with no edges

Suppose that G is non-abelian.

 $\Gamma(G)$  has no edges  $\iff$  the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

## Graphs with no edges

Suppose that G is non-abelian.

 $\Gamma(G)$  has no edges  $\iff$  the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Such a group is either a *p*-group or a non-nilpotent group whose order is divisible by two primes.

Suppose that G is non-abelian.

 $\Gamma(G)$  has no edges  $\iff$  the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order is divisible by two primes.

The infinite case is still open, but well-known examples are the Tarski monsters, infinite simple groups where the order of every proper nontrivial subgroup is a fixed prime p.

Suppose that G is non-abelian.

 $\Gamma(G)$  has no edges  $\iff$  the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order is divisible by two primes.

The infinite case is still open, but well-known examples are the Tarski monsters, infinite simple groups where the order of every proper nontrivial subgroup is a fixed prime p.

Ol'shanskiĭ showed in 1982 that a Tarski monster exists for each prime  $\rho > 10^{75}.$ 

The generating graph of G is only interesting if d = 2.

The generating graph of G is only interesting if d = 2.

The same is true for  $\Gamma(G)$ :

The generating graph of G is only interesting if d = 2.

The same is true for  $\Gamma(G)$ :

If d = 1, then G is cyclic and hence abelian, and so  $\Gamma(G)$  has no vertices.

The generating graph of G is only interesting if d = 2.

The same is true for  $\Gamma(G)$ :

If d = 1, then G is cyclic and hence abelian, and so  $\Gamma(G)$  has no vertices.

If  $d \ge 3$ , then G has no generating pairs. Hence  $\Gamma(G)$  is the non-commuting graph of G (with vertices  $G \setminus Z(G)$ ).

### Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

### Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.



#### Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.



If  $x, y \in G \setminus Z(G)$ , then  $C_G(x) < G$ and  $C_G(y) < G$ .

### Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.



If  $x, y \in G \setminus Z(G)$ , then  $C_G(x) < G$ and  $C_G(y) < G$ .

The union of two proper subgroups of *G* is a proper subset of *G*, so  $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$ 

### Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.



If  $x, y \in G \setminus Z(G)$ , then  $C_G(x) < G$ and  $C_G(y) < G$ .

The union of two proper subgroups of *G* is a proper subset of *G*, so  $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$ 

 $(x, h_{x,y}, y)$  is a path in the graph.

### Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.



If  $x, y \in G \setminus Z(G)$ , then  $C_G(x) < G$ and  $C_G(y) < G$ .

The union of two proper subgroups of *G* is a proper subset of *G*, so  $\exists h_{x,y} \in G \setminus (C_G(x) \cup C_G(y)).$ 

 $(x, h_{x,y}, y)$  is a path in the graph.

We are therefore only interested in  $\Gamma(G)$  when G is 2-generated and non-abelian.

### Let $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ; $\alpha, \beta \in \Omega$ , $\alpha \neq \beta$ ; $J := G_\alpha \cap G_\beta$ .

Let  $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ;  $\alpha, \beta \in \Omega, \alpha \neq \beta$ ;  $J := G_\alpha \cap G_\beta$ . Assume  $n \ge 5$ ; otherwise,  $\Gamma(G)$  has no edges.

Let  $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ;  $\alpha, \beta \in \Omega, \alpha \neq \beta$ ;  $J := G_\alpha \cap G_\beta$ . Assume  $n \ge 5$ ; otherwise,  $\Gamma(G)$  has no edges.



Any two elements of  $G_{\alpha} \cong A_{n-1}$  generate a subgroup of  $G_{\alpha} < G$ .

Let  $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ;  $\alpha, \beta \in \Omega, \alpha \neq \beta$ ;  $J := G_\alpha \cap G_\beta$ . Assume  $n \ge 5$ ; otherwise,  $\Gamma(G)$  has no edges.



Any two elements of  $G_{\alpha} \cong A_{n-1}$ generate a subgroup of  $G_{\alpha} < G$ .

Hence the subgraph of  $\Gamma(G)$  induced by  $G_{\alpha} \setminus Z(G_{\alpha})$  is the non-commuting graph of  $G_{\alpha}$ , of diameter 2.

Let  $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ;  $\alpha, \beta \in \Omega$ ,  $\alpha \neq \beta$ ;  $J := G_\alpha \cap G_\beta$ . Assume  $n \ge 5$ ; otherwise,  $\Gamma(G)$  has no edges.



Any two elements of  $G_{\alpha} \cong A_{n-1}$ generate a subgroup of  $G_{\alpha} < G$ .

Hence the subgraph of  $\Gamma(G)$  induced by  $G_{\alpha} \setminus Z(G_{\alpha})$  is the non-commuting graph of  $G_{\alpha}$ , of diameter 2.

Let  $x \in G_{\alpha} \setminus (Z(G_{\alpha}) \cup J)$  and  $y \in G_{\beta} \setminus (Z(G_{\beta}) \cup J)$ .

Let  $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ;  $\alpha, \beta \in \Omega, \alpha \neq \beta$ ;  $J := G_\alpha \cap G_\beta$ . Assume  $n \ge 5$ ; otherwise,  $\Gamma(G)$  has no edges.



Any two elements of  $G_{\alpha} \cong A_{n-1}$ generate a subgroup of  $G_{\alpha} < G$ .

Hence the subgraph of  $\Gamma(G)$  induced by  $G_{\alpha} \setminus Z(G_{\alpha})$  is the non-commuting graph of  $G_{\alpha}$ , of diameter 2.

Let  $x \in G_{\alpha} \setminus (Z(G_{\alpha}) \cup J)$  and  $y \in G_{\beta} \setminus (Z(G_{\beta}) \cup J)$ .

 $A_{n-2} \cong J \underset{\max}{<} G_{\alpha} \text{ and } x \notin Z(G_{\alpha}) \implies C_J(x) < J.$ Similarly,  $C_J(y) < J.$ 

Let  $G := A_n \curvearrowright \Omega := \{1, \ldots, n\}$ ;  $\alpha, \beta \in \Omega$ ,  $\alpha \neq \beta$ ;  $J := G_\alpha \cap G_\beta$ . Assume  $n \ge 5$ ; otherwise,  $\Gamma(G)$  has no edges.



Any two elements of  $G_{\alpha} \cong A_{n-1}$ generate a subgroup of  $G_{\alpha} < G$ .

Hence the subgraph of  $\Gamma(G)$  induced by  $G_{\alpha} \setminus Z(G_{\alpha})$  is the non-commuting graph of  $G_{\alpha}$ , of diameter 2.

Let  $x \in G_{\alpha} \setminus (Z(G_{\alpha}) \cup J)$  and  $y \in G_{\beta} \setminus (Z(G_{\beta}) \cup J)$ .

 $A_{n-2} \cong J \underset{\max}{<} G_{\alpha} \text{ and } x \notin Z(G_{\alpha}) \implies C_J(x) < J.$ Similarly,  $C_J(y) < J.$ 

So there exists  $r_{x,y} \in J$  with  $(x, r_{x,y}, y)$  a path in  $\Gamma(G)$ .

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

(i) 
$$\exists$$
 non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  
 $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

- (i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .
- (ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y$ . So  $d(s, t) \leq 3$ .

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

- (i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .
- (ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y.$ So  $d(s, t) \leq 3$ .

**Ex. 1**:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$ 

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

- (i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .
- (ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y$ . So  $d(s, t) \leq 3$ .

**Ex. 1**:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$  $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$ 

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

- (i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .
- (ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y$ . So  $d(s, t) \leq 3$ .

**Ex. 1**:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1^{\gamma_1=}, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$   $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$  $d := \deg(\langle x, y \rangle) = \#(\text{points moved by } x \text{ or } y) \leqslant 6.$ 

Let  $G := A_n$ ,  $n \ge 5$ . Then  $\Gamma(G)$  is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

- (i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .
- (ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y$ . So  $d(s, t) \leq 3$ .

**Ex. 1**:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1^{\gamma_1}, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$   $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$   $d := \deg(\langle x, y \rangle) = \#(\text{points moved by } x \text{ or } y) \leqslant 6.$  $d = n \implies d = 6, \langle x, y \rangle \text{ intransitive. So } \langle x, y \rangle < G \text{ and } x \sim y.$ 

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

(i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .

(ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y$ . So  $d(s, t) \leq 3$ .

**Ex.** 1:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1^{\gamma_1}, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$   $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$   $d := \deg(\langle x, y \rangle) = \#(\text{points moved by } x \text{ or } y) \leqslant 6.$   $d = n \implies d = 6, \langle x, y \rangle \text{ intransitive. So } \langle x, y \rangle < G \text{ and } x \sim y.$ **Ex.** 2:  $s = (\alpha_1, \ldots, \alpha_n) (n \text{ odd}).$ 

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

(i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .

(ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y.$ So  $d(s, t) \leq 3$ .

**Ex. 1**:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1^{\gamma_1}, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$   $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$   $d := \deg(\langle x, y \rangle) = \#(\text{points moved by } x \text{ or } y) \leqslant 6.$   $d = n \implies d = 6, \langle x, y \rangle \text{ intransitive. So } \langle x, y \rangle < G \text{ and } x \sim y.$  **Ex. 2**:  $s = (\alpha_1, \ldots, \alpha_n) (n \text{ odd}).$  $\exists v, w \in (S_n)_{\alpha_1} \text{ s.t. } s^v = s^{-1} \text{ and } s^w = s^i, i \in \{2, \ldots, n-2\}.$ 

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

(i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .

(ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y.$ So  $d(s, t) \leq 3$ .

**Ex. 1**:  $s := (\alpha_1, \alpha_2, \ldots)(\beta_1, \beta_2, \ldots), t := (\alpha_1^{\gamma_1}, \gamma_2, \ldots)(\delta_1, \ldots) \cdots (\theta_1, \ldots).$   $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$   $d := \deg(\langle x, y \rangle) = \#(\text{points moved by } x \text{ or } y) \leq 6.$   $d = n \implies d = 6, \langle x, y \rangle \text{ intransitive. So } \langle x, y \rangle < G \text{ and } x \sim y.$  **Ex. 2**:  $s = (\alpha_1, \ldots, \alpha_n) (n \text{ odd}).$   $\exists v, w \in (S_n)_{\alpha_1} \text{ s.t. } s^v = s^{-1} \text{ and } s^w = s^i, i \in \{2, \ldots, n-2\}.$ Choose  $x \in G \cap \{v, w, vw\} \neq \emptyset; s^{vw} = s^{-i} \neq s.$ 

**Strategy of proof**: Let  $s, t \in G$  be derangements. We show:

(i)  $\exists$  non-derangements  $x, y \in G$  s.t.  $s \sim x$  and  $t \sim y$ .  $d(x, y) \leq 2$ , so  $d(s, t) \leq 4$ .

(ii) s, t not n-cycles (e.g. if n is even)  $\implies \exists x, y \text{ s.t. } x \sim y$ . So  $d(s, t) \leq 3$ .

**Ex.** 1:  $s := (\alpha_1, \alpha_2, ...)(\beta_1, \beta_2, ...), t := (\alpha_1^{\gamma_1}, \gamma_2, ...)(\delta_1, ...) \cdots (\theta_1, ...).$  $x := (\alpha_1, \alpha_2)(\beta_1, \beta_2), y := (\alpha_1, \gamma_2, \delta_1) \implies s \sim x, t \sim y, xy \neq yx.$  $d := \deg(\langle x, y \rangle) = \#(\text{points moved by } x \text{ or } y) \leq 6.$  $d = n \implies d = 6$ ,  $\langle x, y \rangle$  intransitive. So  $\langle x, y \rangle < G$  and  $x \sim y$ . **Ex. 2**:  $s = (\alpha_1, ..., \alpha_n)$  (*n* odd).  $\exists v, w \in (S_n)_{\alpha_1}$  s.t.  $s^v = s^{-1}$  and  $s^w = s^i$ ,  $i \in \{2, ..., n-2\}$ . Choose  $x \in G \cap \{v, w, vw\} \neq \emptyset$ ;  $s^{vw} = s^{-i} \neq s$ .  $sx \neq xs$  and  $(s, x) \leq N_G(\langle s \rangle) < G \implies s \sim x$ .

## Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

### Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

## Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and (ii)  $x \in Z(M)$ .

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

If  $M \leq G$ , no:

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

If  $M \leq G$ , no:  $\langle x, y \rangle = G$  for each element  $y \notin M$ 

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

If  $M \leq G$ , no:  $\langle x, y \rangle = G$  for each element  $y \notin M$  $\implies G/Z(M)$  is cyclic  $\implies M/Z(M)$  is cyclic  $\implies M$  is abelian.

Suppose that G is non-abelian and 2-generated. A vertex x of  $\Gamma(G)$  is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element  $x \in G \setminus Z(G)$  is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

If  $M \leq G$ , no:  $\langle x, y \rangle = G$  for each element  $y \notin M$  $\implies G/Z(M)$  is cyclic  $\implies M/Z(M)$  is cyclic  $\implies M$  is abelian.

We'll revisit this question later.

More general than being nilpotent, but equivalent for finite groups.

More general than being nilpotent, but equivalent for finite groups.  $\Delta(G) := \Gamma(G) \setminus \{ \text{isolated vertices} \}.$ 

More general than being nilpotent, but equivalent for finite groups.





More general than being nilpotent, but equivalent for finite groups.



#### Theorem (Cameron, F. & Roney-Dougal, 2021)

Let G be a group with every maximal subgroup normal. Then  $\Delta(G)$  is either empty or connected with diameter 2 or 3. If  $\Delta(G)$  is connected with diameter 3, then  $\Delta(G) = \Gamma(G)$ .



#### Theorem (Cameron, F. & Roney-Dougal, 2021)

Let G be a group with every maximal subgroup normal. Then  $\Delta(G)$  is either empty or connected with diameter 2 or 3. If  $\Delta(G)$  is connected with diameter 3, then  $\Delta(G) = \Gamma(G)$ .

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and  $\Gamma(G)$ . We use the fact that G is the direct product of its Sylow subgroups.

Let A and B be arbitrary groups, with A non-abelian.

(i) If B is non-cyclic, then  $\Gamma(A \times B)$  is connected with diameter 2.

Let A and B be arbitrary groups, with A non-abelian.

(i) If B is non-cyclic, then  $\Gamma(A \times B)$  is connected with diameter 2.

(ii) If B is cyclic and  $\Gamma(A)$  is connected with diameter k, then  $\Gamma(A \times B)$  is connected with diameter at most k.

Let A and B be arbitrary groups, with A non-abelian.

(i) If B is non-cyclic, then  $\Gamma(A \times B)$  is connected with diameter 2.

(ii) If B is cyclic and  $\Gamma(A)$  is connected with diameter k, then  $\Gamma(A \times B)$  is connected with diameter at most k.

**Main idea of proof**: if  $\langle a_1, a_2 \rangle \neq A$  then  $\langle (a_1, b_1), (a_2, b_2) \rangle \neq A \times B$ , and if  $a_1a_2 \neq a_2a_1$ , then  $(a_1, b_1)(a_2, b_2) \neq (a_2, b_2)(a_1, b_1)$ .

Let A and B be arbitrary groups, with A non-abelian.

- (i) If B is non-cyclic, then  $\Gamma(A \times B)$  is connected with diameter 2.
- (ii) If B is cyclic and  $\Gamma(A)$  is connected with diameter k, then  $\Gamma(A \times B)$  is connected with diameter at most k.

Main idea of proof: if  $\langle a_1, a_2 \rangle \neq A$  then  $\langle (a_1, b_1), (a_2, b_2) \rangle \neq A \times B$ , and if  $a_1a_2 \neq a_2a_1$ , then  $(a_1, b_1)(a_2, b_2) \neq (a_2, b_2)(a_1, b_1)$ .

Example:

- $\Gamma(S_4)$  is connected with diameter 3.
- $\Gamma(S_4 \times C_2)$  is connected with diameter 2.
- $\Gamma(S_4 \times C_3)$  is connected with diameter 3.

Let A and B be arbitrary groups, with A non-abelian.

- (i) If B is non-cyclic, then  $\Gamma(A \times B)$  is connected with diameter 2.
- (ii) If B is cyclic and  $\Gamma(A)$  is connected with diameter k, then  $\Gamma(A \times B)$  is connected with diameter at most k.

#### Example:

- $\Gamma(S_4)$  is connected with diameter 3.
- $\Gamma(S_4 \times C_2)$  is connected with diameter 2.
- $\Gamma(S_4 \times C_3)$  is connected with diameter 3.

### Theorem (Crestani & Lucchini, 2013)

Let k be a positive integer. There exists an odd prime p and a positive integer n such that, excluding isolated vertices, the generating graph of  $(PSL(2, 2^p))^n$  is connected with diameter greater than k.

### Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3.

### Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3.

What about  $\Gamma(G)$ ?

### Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3.



What about  $\Gamma(G)$ ?

There exist 2-generated finite soluble groups G with maximal subgroups  $M_1, \ldots, M_n$ , where for all distinct i, j:  $M_i \cap M_j = Z(M_1) > Z(G)$ . For  $i \neq 1$ ,  $Z(M_i) = Z(G)$ .

### Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3.



What about  $\Gamma(G)$ ?

There exist 2-generated finite soluble groups G with maximal subgroups  $M_1, \ldots, M_n$ , where for all distinct i, j:  $M_i \cap M_j = Z(M_1) > Z(G)$ . For  $i \neq 1$ ,  $Z(M_i) = Z(G)$ .

Here,  $\Gamma(G)$  consists of two connected components, each of diameter 2:  $M_1 \setminus Z(M_1)$ , and everything else.

### Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3.



What about  $\Gamma(G)$ ?

There exist 2-generated finite soluble groups G with maximal subgroups  $M_1, \ldots, M_n$ , where for all distinct i, j:  $M_i \cap M_j = Z(M_1) > Z(G)$ . For  $i \neq 1$ ,  $Z(M_i) = Z(G)$ .

Here,  $\Gamma(G)$  consists of two connected components, each of diameter 2:  $M_1 \setminus Z(M_1)$ , and everything else.

We will call a group G a [2, 2]-group if  $\Gamma(G)$  consists of two connected components of diameter 2.



There exist 2-generated finite soluble groups G with maximal subgroups  $M_1, \ldots, M_n$ , where for all distinct i, j:  $M_i \cap M_j = Z(M_1) > Z(G)$ . For  $i \neq 1$ ,  $Z(M_i) = Z(G)$ .

Here,  $\Gamma(G)$  consists of two connected components, each of diameter 2:  $M_1 \setminus Z(M_1)$ , and everything else.

We will call a group G a [2, 2]-group if  $\Gamma(G)$  consists of two connected components of diameter 2.

#### Theorem (F., 2021+)

Let G be a finite soluble group. If G is not a [2,2]-group, then  $\Delta(G)$  is either empty or connected with diameter 2 or 3. If  $\Delta(G)$  is connected with diameter 3, then  $\Delta(G) = \Gamma(G)$ .

### Theorem (F., 2021+)

Let G be a finite insoluble group.

Let G be a finite insoluble group.

(i) If G/Z(G) has a proper non-cyclic quotient, then  $\Gamma(G)$  is connected with diameter 2 or 3.

Let G be a finite insoluble group.

- (i) If G/Z(G) has a proper non-cyclic quotient, then  $\Gamma(G)$  is connected with diameter 2 or 3.
- (ii) If Z(G) = 1 and G is not simple, then  $\Delta(G)$  is connected with diameter 2 or 3.

Let G be a finite insoluble group.

- (i) If G/Z(G) has a proper non-cyclic quotient, then  $\Gamma(G)$  is connected with diameter 2 or 3.
- (ii) If Z(G) = 1 and G is not simple, then  $\Delta(G)$  is connected with diameter 2 or 3.

(iii) If G is simple, then  $\Gamma(G)$  is connected with diameter at most 5.

Let G be a finite insoluble group.

- (i) If G/Z(G) has a proper non-cyclic quotient, then  $\Gamma(G)$  is connected with diameter 2 or 3.
- (ii) If Z(G) = 1 and G is not simple, then  $\Delta(G)$  is connected with diameter 2 or 3.

(iii) If G is simple, then  $\Gamma(G)$  is connected with diameter at most 5.



$$|M_1|$$
 and  $|M_2|$  even,  $|a| = |b| = 2$ 

Let G be a finite insoluble group.

- (i) If G/Z(G) has a proper non-cyclic quotient, then  $\Gamma(G)$  is connected with diameter 2 or 3.
- (ii) If Z(G) = 1 and G is not simple, then  $\Delta(G)$  is connected with diameter 2 or 3.

(iii) If G is simple, then  $\Gamma(G)$  is connected with diameter at most 5.

Let *H* be a central extension of *G*. If Z(G) = 1 and  $\Gamma(G)$  is connected with diameter *k*, then  $\Gamma(H)$  is connected with diameter at most *k*.

Let G be a finite insoluble group.

- (i) If G/Z(G) has a proper non-cyclic quotient, then  $\Gamma(G)$  is connected with diameter 2 or 3.
- (ii) If Z(G) = 1 and G is not simple, then  $\Delta(G)$  is connected with diameter 2 or 3.

(iii) If G is simple, then  $\Gamma(G)$  is connected with diameter at most 5.

Let *H* be a central extension of *G*. If Z(G) = 1 and  $\Gamma(G)$  is connected with diameter *k*, then  $\Gamma(H)$  is connected with diameter at most *k*.

**Question**: Is there a finite insoluble group G with  $\Delta(G) \neq \Gamma(G)$ ?

(i) x lies in a unique maximal subgroup M of G; and (ii)  $x \in Z(M)$ .

(i) x lies in a unique maximal subgroup M of G; and (ii)  $x \in Z(M)$ .

**Question**: If x is isolated, can M be non-abelian?

(i) x lies in a unique maximal subgroup M of G; and (ii)  $x \in Z(M)$ .

**Question**: If x is isolated, can M be non-abelian?

No finite insoluble group contains an abelian maximal subgroup.

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

No finite insoluble group contains an abelian maximal subgroup.

Hence if *M* cannot be non-abelian in the finite case, then every finite insoluble group *G* has  $\Delta(G) = \Gamma(G)$  connected with diameter at most 5.

(i) x lies in a unique maximal subgroup M of G; and
(ii) x ∈ Z(M).

**Question**: If x is isolated, can M be non-abelian?

No finite insoluble group contains an abelian maximal subgroup.

Hence if *M* cannot be non-abelian in the finite case, then every finite insoluble group *G* has  $\Delta(G) = \Gamma(G)$  connected with diameter at most 5.

Using results of Guralnick & Tracey (2021+): G finite and simple, x satisfies (i)  $\implies x \notin Z(M)$ . So  $\Delta(G) = \Gamma(G)$ .

# Finite simple groups

| G                                                               | $\operatorname{diam}(\Gamma(G))$ |
|-----------------------------------------------------------------|----------------------------------|
| $M_{11}, M_{12}, M_{22}, J_2$                                   | 2                                |
| M <sub>23</sub> , J <sub>1</sub>                                | 3                                |
| B, PSU(7, 2)                                                    | 4                                |
| Remaining sporadic groups (and ${}^{2}F_{4}(2)')$               | ≤ 4                              |
| $A_n$ ; <i>n</i> even                                           | ≤ 3                              |
| $A_n$ ; <i>n</i> odd                                            | ≤ 4                              |
| $\mathrm{PSL}(n,q),\mathrm{Sz}(q)$                              | ≤ 4                              |
| $G_2(q), {}^2G_2(q), {}^3D_4(q), F_4(q), E_8(q); q \text{ odd}$ | ≼ 4                              |
| Remaining finite simple groups                                  | ≤ 5                              |

# Finite simple groups

| G                                                               | $\operatorname{diam}(\Gamma(G))$ |
|-----------------------------------------------------------------|----------------------------------|
| $M_{11}, M_{12}, M_{22}, J_2$                                   | 2                                |
| M <sub>23</sub> , J <sub>1</sub>                                | 3                                |
| B, PSU(7, 2)                                                    | 4                                |
| Remaining sporadic groups (and ${}^{2}F_{4}(2)')$               | ≤ 4                              |
| $A_n$ ; <i>n</i> even                                           | ≤ 3                              |
| $A_n$ ; <i>n</i> odd                                            | ≪ 4                              |
| $\mathrm{PSL}(n,q),\mathrm{Sz}(q)$                              | ≪ 4                              |
| $G_2(q), {}^2G_2(q), {}^3D_4(q), F_4(q), E_8(q); q \text{ odd}$ | ≤ 4                              |
| Remaining finite simple groups                                  | ≤ 5                              |

Question: Can these upper bounds be reduced?

Thompson's group  $F = \langle x, y \mid [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

Thompson's group  $F = \langle x, y \mid [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Thompson's group  $F = \langle x, y \mid [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Using these facts, we can show that  $\Gamma(F)$  is connected with diameter 2.

Thompson's group  $F = \langle x, y \mid [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Using these facts, we can show that  $\Gamma(F)$  is connected with diameter 2.

The infinite dihedral group  $D_{\infty}$  is  $\langle a, b \mid a^2 = b^2 = 1 \rangle$ .

Thompson's group  $F = \langle x, y \mid [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Using these facts, we can show that  $\Gamma(F)$  is connected with diameter 2.

The infinite dihedral group  $D_{\infty}$  is  $\langle a, b \mid a^2 = b^2 = 1 \rangle$ .

 $\Gamma(D_{\infty})$  consists of the isolated vertices *ab* and *ba*, plus a connected component of diameter 2.

Thompson's group  $F = \langle x, y | [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Using these facts, we can show that  $\Gamma(F)$  is connected with diameter 2.

The infinite dihedral group  $D_{\infty}$  is  $\langle a, b \mid a^2 = b^2 = 1 \rangle$ .

 $\Gamma(D_{\infty})$  consists of the isolated vertices *ab* and *ba*, plus a connected component of diameter 2.

The free group on two generators  $F_2$  is  $\langle a, b \mid - \rangle = \langle a, b \mid a^{\infty} = b^{\infty} = 1 \rangle$ .

Thompson's group  $F = \langle x, y | [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Using these facts, we can show that  $\Gamma(F)$  is connected with diameter 2.

The infinite dihedral group  $D_{\infty}$  is  $\langle a, b \mid a^2 = b^2 = 1 \rangle$ .

 $\Gamma(D_{\infty})$  consists of the isolated vertices *ab* and *ba*, plus a connected component of diameter 2.

The free group on two generators  $F_2$  is  $\langle a, b \mid - \rangle = \langle a, b \mid a^{\infty} = b^{\infty} = 1 \rangle$ .

 $\Gamma(F_2)$  is connected with diameter 2.

Thompson's group  $F = \langle x, y | [xy^{-1}, x^{-1}yx] = [xy^{-1}, x^{-2}yx^2] = 1 \rangle$  is an infinite group with [F, F] an infinite simple group.

[F, F] is the unique minimal normal subgroup of F, and  $F/[F, F] \cong \mathbb{Z}^2$ .

Using these facts, we can show that  $\Gamma(F)$  is connected with diameter 2.

The infinite dihedral group  $D_{\infty}$  is  $\langle a, b \mid a^2 = b^2 = 1 \rangle$ .

 $\Gamma(D_{\infty})$  consists of the isolated vertices *ab* and *ba*, plus a connected component of diameter 2.

The free group on two generators  $F_2$  is  $\langle a, b \mid - \rangle = \langle a, b \mid a^{\infty} = b^{\infty} = 1 \rangle$ .

 $\Gamma(F_2)$  is connected with diameter 2.

More generally, if  $G = \langle a, b \mid a^r = b^s = 1 \rangle$ , with  $2 \leq r, s \leq \infty$ , then either  $G = D_{\infty}$  or  $\Gamma(G)$  is connected with diameter 2.