Non-commuting, non-generating graphs of groups

Saul D. Freedman

University of St Andrews

Totally Disconnected Locally Compact Groups via Group Actions August 182021

The generating graph of a group

The generating graph of a group G has vertices $G \backslash\{1\}$, with vertices x and y joined if and only if $\langle x, y\rangle=G$.

The generating graph of a group

The generating graph of a group G has vertices $G \backslash\{1\}$, with vertices x and y joined if and only if $\langle x, y\rangle=G$.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

The generating graph of a group

The generating graph of a group G has vertices $G \backslash\{1\}$, with vertices x and y joined if and only if $\langle x, y\rangle=G$.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

The generating graph of a group

The generating graph of a group G has vertices $G \backslash\{1\}$, with vertices x and y joined if and only if $\langle x, y\rangle=G$.

Example: $G=D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.

The graph is not connected, but the non-isolated vertices form a connected component of diameter 2 .

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph

- The non-generating graph

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph

- The non-generating graph
- The commuting graph

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph
(ab)

- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron \& Kuzma): $x \sim y \Longleftrightarrow$ their preimages in every central extension commute

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph

(ab)

a $a^{4} b$

- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron \& Kuzma): $x \sim y \Longleftrightarrow$ their preimages in every central extension commute
- The enhanced power graph: $x \sim y \Longleftrightarrow\langle x, y\rangle$ is cyclic

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph

(ab)

- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron \& Kuzma): $x \sim y \Longleftrightarrow$ their preimages in every central extension commute
- The enhanced power graph: $x \sim y \Longleftrightarrow\langle x, y\rangle$ is cyclic
- The power graph:

$$
x \sim y \Longleftrightarrow x \in\langle y\rangle \text { or } y \in\langle x\rangle
$$

A hierarchy of graphs defined on $G \backslash\{1\}$

- The complete graph

(ab)

a $a^{4} b$

- The non-generating graph
- The commuting graph
- The deep commuting graph (defined by Cameron \& Kuzma): $x \sim y \Longleftrightarrow$ their preimages in every central extension commute
- The enhanced power graph: $x \sim y \Longleftrightarrow\langle x, y\rangle$ is cyclic
- The power graph:

$$
x \sim y \Longleftrightarrow x \in\langle y\rangle \text { or } y \in\langle x\rangle
$$

The generating graph is the difference between the first two graphs. We will consider the next difference.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.
3. Remove edges between vertices that commute.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.
3. Remove edges between vertices that commute.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.
3. Remove edges between vertices that commute.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.
3. Remove edges between vertices that commute.
4. Remove vertices from $Z(G)$.

The non-commuting, non-generating graph

Definition

The non-commuting, non-generating graph of G, denoted $\Gamma(G)$, has vertices $G \backslash Z(G)$, with vertices x and y joined if and only if: $x y \neq y x$ and $\langle x, y\rangle \neq G$.

1. Start with the generating graph of G.
2. Take the complement of the graph.
3. Remove edges between vertices that commute.
4. Remove vertices from $Z(G)$.

Connectedness and diameter

Theorem (Breuer, Guralnick \& Kantor, 2008)
The generating graph of a non-abelian finite simple group is connected with diameter 2.

Connectedness and diameter

Theorem (Breuer, Guralnick \& Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Burness, Guralnick \& Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2 .

Connectedness and diameter

Theorem (Breuer, Guralnick \& Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2.

Theorem (Burness, Guralnick \& Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2 .

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Connectedness and diameter

Theorem (Breuer, Guralnick \& Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2 .

Theorem (Burness, Guralnick \& Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2 .

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

Connectedness and diameter

Theorem (Breuer, Guralnick \& Kantor, 2008)

The generating graph of a non-abelian finite simple group is connected with diameter 2 .

Theorem (Burness, Guralnick \& Harper, 2021)

If the generating graph of a finite group has no isolated vertices, then it is connected with diameter at most 2 .

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :

Suppose that x and y are vertices in such a component.

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :
Suppose that x and y are vertices in such a component.

$$
x \sim y \Longrightarrow y \sim x^{-1}
$$

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :
Suppose that x and y are vertices in such a component.

$$
x \sim y \Longrightarrow y \sim x^{-1}
$$

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :
Suppose that x and y are vertices in such a component.

$$
x \sim y \Longrightarrow y \sim x^{-1} \Longrightarrow|x|=2 .
$$

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :

Suppose that x and y are vertices in such a component.

$$
\begin{aligned}
& x \sim y \Longrightarrow y \sim x^{-1} \Longrightarrow|x|=2 \\
& x \sim y \Longrightarrow x \sim x y \sim y .
\end{aligned}
$$

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :
Suppose that x and y are vertices in such a component.

$$
\begin{aligned}
& x \sim y \Longrightarrow y \sim x^{-1} \Longrightarrow|x|=2 \\
& x \sim y \Longrightarrow x \sim x y \sim y \\
& |x|=|y|=|x y|=2 \Longrightarrow x y=y x
\end{aligned}
$$

Connectedness and diameter

Our questions: When is $\Gamma(G)$ connected? What are the diameters of the connected components of $\Gamma(G)$?

Since the vertices of $\Gamma(G)$ are the non-central elements of G, the graph is empty if and only if G is abelian.

We can show that no connected component of $\Gamma(G)$ has diameter 1 :

Suppose that x and y are vertices in such a component.

$$
\begin{aligned}
& x \sim y \Longrightarrow y \sim x^{-1} \Longrightarrow|x|=2 \\
& x \sim y \Longrightarrow x \sim x y \sim y \\
& |x|=|y|=|x y|=2 \Longrightarrow x y=y x
\end{aligned}
$$

A contradiction.

Graphs with no edges

Suppose that G is non-abelian.

Graphs with no edges

Suppose that G is non-abelian.
$\Gamma(G)$ has no edges \Longleftrightarrow the elements of each non-generating pair commute.

Graphs with no edges

Suppose that G is non-abelian.
$\Gamma(G)$ has no edges \Longleftrightarrow the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

Graphs with no edges

Suppose that G is non-abelian.
$\Gamma(G)$ has no edges \Longleftrightarrow the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Graphs with no edges

Suppose that G is non-abelian.
$\Gamma(G)$ has no edges \Longleftrightarrow the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order is divisible by two primes.

Graphs with no edges

Suppose that G is non-abelian.
$\Gamma(G)$ has no edges \Longleftrightarrow the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order is divisible by two primes.

The infinite case is still open, but well-known examples are the Tarski monsters, infinite simple groups where the order of every proper nontrivial subgroup is a fixed prime p.

Graphs with no edges

Suppose that G is non-abelian.
$\Gamma(G)$ has no edges \Longleftrightarrow the elements of each non-generating pair commute.

This is equivalent to the property that every proper subgroup of G is abelian. A group with this property is called minimal non-abelian.

The finite minimal non-abelian groups were classified by Miller and Moreno in 1903:

Such a group is either a p-group or a non-nilpotent group whose order is divisible by two primes.

The infinite case is still open, but well-known examples are the Tarski monsters, infinite simple groups where the order of every proper nontrivial subgroup is a fixed prime p.

Ol'shanskiĭ showed in 1982 that a Tarski monster exists for each prime $p>10^{75}$.

The minimal size of a generating set

Let d be the minimum size of a generating set for G.

The minimal size of a generating set

Let d be the minimum size of a generating set for G.
The generating graph of G is only interesting if $d=2$.

The minimal size of a generating set

Let d be the minimum size of a generating set for G.
The generating graph of G is only interesting if $d=2$.
The same is true for $\Gamma(G)$:

The minimal size of a generating set

Let d be the minimum size of a generating set for G.
The generating graph of G is only interesting if $d=2$.
The same is true for $\Gamma(G)$:
If $d=1$, then G is cyclic and hence abelian, and so $\Gamma(G)$ has no vertices.

The minimal size of a generating set

Let d be the minimum size of a generating set for G.
The generating graph of G is only interesting if $d=2$.
The same is true for $\Gamma(G)$:
If $d=1$, then G is cyclic and hence abelian, and so $\Gamma(G)$ has no vertices.
If $d \geqslant 3$, then G has no generating pairs. Hence $\Gamma(G)$ is the non-commuting graph of G (with vertices $G \backslash Z(G)$).

The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2 .

The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2 .

$$
\begin{aligned}
& \text { If } x, y \in G \backslash Z(G) \text {, then } C_{G}(x)<G \\
& \text { and } C_{G}(y)<G \text {. }
\end{aligned}
$$

The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If $x, y \in G \backslash Z(G)$, then $C_{G}(x)<G$ and $C_{G}(y)<G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x, y} \in G \backslash\left(C_{G}(x) \cup C_{G}(y)\right)$.

The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If $x, y \in G \backslash Z(G)$, then $C_{G}(x)<G$ and $C_{G}(y)<G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x, y} \in G \backslash\left(C_{G}(x) \cup C_{G}(y)\right)$.
$\left(x, h_{x, y}, y\right)$ is a path in the graph.

The non-commuting graph of a group

Proposition (Abdollahi, Akbari, Maimani, 2006)

If G is a non-abelian group, then the non-commuting graph of G is connected with diameter 2.

If $x, y \in G \backslash Z(G)$, then $C_{G}(x)<G$ and $C_{G}(y)<G$.

The union of two proper subgroups of G is a proper subset of G, so $\exists h_{x, y} \in G \backslash\left(C_{G}(x) \cup C_{G}(y)\right)$.
$\left(x, h_{x, y}, y\right)$ is a path in the graph.

We are therefore only interested in $\Gamma(G)$ when G is 2-generated and non-abelian.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$. Assume $n \geqslant 5$; otherwise, $\Gamma(G)$ has no edges.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$. Assume $n \geqslant 5$; otherwise, $\Gamma(G)$ has no edges.

Any two elements of $G_{\alpha} \cong A_{n-1}$ generate a subgroup of $G_{\alpha}<G$.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$. Assume $n \geqslant 5$; otherwise, $\Gamma(G)$ has no edges.

Any two elements of $G_{\alpha} \cong A_{n-1}$ generate a subgroup of $G_{\alpha}<G$.

Hence the subgraph of $\Gamma(G)$ induced by $G_{\alpha} \backslash Z\left(G_{\alpha}\right)$ is the non-commuting graph of G_{α}, of diameter 2.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$. Assume $n \geqslant 5$; otherwise, $\Gamma(G)$ has no edges.

Any two elements of $G_{\alpha} \cong A_{n-1}$ generate a subgroup of $G_{\alpha}<G$.

Hence the subgraph of $\Gamma(G)$ induced by $G_{\alpha} \backslash Z\left(G_{\alpha}\right)$ is the non-commuting graph of G_{α}, of diameter 2.

Let $x \in G_{\alpha} \backslash\left(Z\left(G_{\alpha}\right) \cup J\right)$ and $y \in G_{\beta} \backslash\left(Z\left(G_{\beta}\right) \cup J\right)$.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$. Assume $n \geqslant 5$; otherwise, $\Gamma(G)$ has no edges.

Any two elements of $G_{\alpha} \cong A_{n-1}$ generate a subgroup of $G_{\alpha}<G$.

Hence the subgraph of $\Gamma(G)$ induced by $G_{\alpha} \backslash Z\left(G_{\alpha}\right)$ is the non-commuting graph of G_{α}, of diameter 2.

Let $x \in G_{\alpha} \backslash\left(Z\left(G_{\alpha}\right) \cup J\right)$ and $y \in G_{\beta} \backslash\left(Z\left(G_{\beta}\right) \cup J\right)$.
$A_{n-2} \cong J \underset{\max }{<} G_{\alpha}$ and $x \notin Z\left(G_{\alpha}\right) \Longrightarrow C_{J}(x)<J$.
Similarly, $C_{J}(y)<J$.

Alternating groups

Let $G:=A_{n} \curvearrowright \Omega:=\{1, \ldots, n\} ; \alpha, \beta \in \Omega, \alpha \neq \beta ; J:=G_{\alpha} \cap G_{\beta}$.
Assume $n \geqslant 5$; otherwise, $\Gamma(G)$ has no edges.

Any two elements of $G_{\alpha} \cong A_{n-1}$ generate a subgroup of $G_{\alpha}<G$.

Hence the subgraph of $\Gamma(G)$ induced by $G_{\alpha} \backslash Z\left(G_{\alpha}\right)$ is the non-commuting graph of G_{α}, of diameter 2.
Let $x \in G_{\alpha} \backslash\left(Z\left(G_{\alpha}\right) \cup J\right)$ and $y \in G_{\beta} \backslash\left(Z\left(G_{\beta}\right) \cup J\right)$.
$A_{n-2} \cong J \underset{\max }{<} G_{\alpha}$ and $x \notin Z\left(G_{\alpha}\right) \Longrightarrow C_{J}(x)<J$.
Similarly, $C_{J}(y)<J$.
So there exists $r_{x, y} \in J$ with $\left(x, r_{x, y}, y\right)$ a path in $\Gamma(G)$.

Alternating groups (ctd.)

Theorem (F., 2021+)
Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Alternating groups (ctd.)

Theorem (F., 2021+)

Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.

Alternating groups (ctd.)

Theorem (F., 2021+)

Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.

Alternating groups (ctd.)

Theorem (F., 2021+)

Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.

Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\begin{array}{c}\gamma_{1}= \\ \alpha_{1}\end{array}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$.

Alternating groups (ctd.)

Theorem (F., 2021+)

Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.

Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\stackrel{\gamma_{1}}{\alpha_{1}}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$. $x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$.

Alternating groups (ctd.)

Theorem (F., 2021+)

Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.

Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\stackrel{\gamma_{1}}{\alpha_{1}}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$. $x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$. $d:=\operatorname{deg}(\langle x, y\rangle)=\#($ points moved by x or $y) \leqslant 6$.

Alternating groups (ctd.)

Theorem (F., 2021+)

Let $G:=A_{n}, n \geqslant 5$. Then $\Gamma(G)$ is connected with diameter at most 4 if n is odd, and at most 3 if n is even.

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.

Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\begin{array}{c}\gamma_{1}= \\ \alpha_{1}\end{array}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$. $x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$. $d:=\operatorname{deg}(\langle x, y\rangle)=\#($ points moved by x or $y) \leqslant 6$. $d=n \Longrightarrow d=6,\langle x, y\rangle$ intransitive. So $\langle x, y\rangle<G$ and $x \sim y$.

Alternating groups (ctd.)

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.
Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\begin{array}{c}\gamma_{1}= \\ \alpha_{1}\end{array}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$.
$x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$.
$d:=\operatorname{deg}(\langle x, y\rangle)=\#($ points moved by x or $y) \leqslant 6$.
$d=n \Longrightarrow d=6,\langle x, y\rangle$ intransitive. So $\langle x, y\rangle<G$ and $x \sim y$.
Ex. 2: $s=\left(\alpha_{1}, \ldots, \alpha_{n}\right)(n$ odd $)$.

Alternating groups (ctd.)

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.
Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\begin{array}{c}\gamma_{1}= \\ \alpha_{1}\end{array}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$.
$x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$.
$d:=\operatorname{deg}(\langle x, y\rangle)=\#($ points moved by x or $y) \leqslant 6$.
$d=n \Longrightarrow d=6,\langle x, y\rangle$ intransitive. So $\langle x, y\rangle<G$ and $x \sim y$.
Ex. 2: $s=\left(\alpha_{1}, \ldots, \alpha_{n}\right)(n$ odd $)$.
$\exists v, w \in\left(S_{n}\right)_{\alpha_{1}}$ s.t. $s^{v}=s^{-1}$ and $s^{w}=s^{i}, i \in\{2, \ldots, n-2\}$.

Alternating groups (ctd.)

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.
Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\begin{array}{c}\gamma_{1}= \\ \alpha_{1}\end{array}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$.
$x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$.
$d:=\operatorname{deg}(\langle x, y\rangle)=\#($ points moved by x or $y) \leqslant 6$.
$d=n \Longrightarrow d=6,\langle x, y\rangle$ intransitive. So $\langle x, y\rangle<G$ and $x \sim y$.
Ex. 2: $s=\left(\alpha_{1}, \ldots, \alpha_{n}\right)(n$ odd $)$.
$\exists v, w \in\left(S_{n}\right)_{\alpha_{1}}$ s.t. $s^{v}=s^{-1}$ and $s^{w}=s^{i}, i \in\{2, \ldots, n-2\}$.
Choose $x \in G \cap\{v, w, v w\} \neq \varnothing ; s^{v w}=s^{-i} \neq s$.

Alternating groups (ctd.)

Strategy of proof: Let $s, t \in G$ be derangements. We show:
(i) \exists non-derangements $x, y \in G$ s.t. $s \sim x$ and $t \sim y$. $d(x, y) \leqslant 2$, so $d(s, t) \leqslant 4$.
(ii) s, t not n-cycles (e.g. if n is even) $\Longrightarrow \exists x, y$ s.t. $x \sim y$. So $d(s, t) \leqslant 3$.
Ex. 1: $s:=\left(\alpha_{1}, \alpha_{2}, \ldots\right)\left(\beta_{1}, \beta_{2}, \ldots\right), t:=\left(\begin{array}{c}\gamma_{1}= \\ \alpha_{1}\end{array}, \gamma_{2}, \ldots\right)\left(\delta_{1}, \ldots\right) \cdots\left(\theta_{1}, \ldots\right)$.
$x:=\left(\alpha_{1}, \alpha_{2}\right)\left(\beta_{1}, \beta_{2}\right), y:=\left(\alpha_{1}, \gamma_{2}, \delta_{1}\right) \Longrightarrow s \sim x, t \sim y, x y \neq y x$.
$d:=\operatorname{deg}(\langle x, y\rangle)=\#($ points moved by x or $y) \leqslant 6$.
$d=n \Longrightarrow d=6,\langle x, y\rangle$ intransitive. So $\langle x, y\rangle<G$ and $x \sim y$.
Ex. 2: $s=\left(\alpha_{1}, \ldots, \alpha_{n}\right)(n$ odd $)$.
$\exists v, w \in\left(S_{n}\right)_{\alpha_{1}}$ s.t. $s^{v}=s^{-1}$ and $s^{w}=s^{i}, i \in\{2, \ldots, n-2\}$.
Choose $x \in G \cap\{v, w, v w\} \neq \varnothing ; s^{v w}=s^{-i} \neq s$.
$s x \neq x s$ and $\langle s, x\rangle \leqslant N_{G}(\langle s\rangle)<G \Longrightarrow s \sim x$.

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
If $M \lessgtr G$, no:

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
If $M \leqslant G$, no:
$\langle x, y\rangle=G$ for each element $y \notin M$

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
If $M \leqslant G$, no:
$\langle x, y\rangle=G$ for each element $y \notin M$
$\Longrightarrow G / Z(M)$ is cyclic $\Longrightarrow M / Z(M)$ is cyclic $\Longrightarrow M$ is abelian.

Isolated vertices

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if each maximal subgroup of G containing x also centralises x.

An element $x \in G \backslash Z(G)$ is centralised by at most one maximal subgroup of G.

Hence x is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
If $M \preccurlyeq G$, no:
$\langle x, y\rangle=G$ for each element $y \notin M$
$\Longrightarrow G / Z(M)$ is cyclic $\Longrightarrow M / Z(M)$ is cyclic $\Longrightarrow M$ is abelian.
We'll revisit this question later.

Groups with every maximal subgroup normal

More general than being nilpotent, but equivalent for finite groups.

Groups with every maximal subgroup normal

More general than being nilpotent, but equivalent for finite groups.
$\Delta(G):=\Gamma(G) \backslash\{$ isolated vertices $\}$.

Groups with every maximal subgroup normal

More general than being nilpotent, but equivalent for finite groups.
$\Delta(G):=\Gamma(G) \backslash\{$ isolated vertices $\}$.

Groups with every maximal subgroup normal

More general than being nilpotent, but equivalent for finite groups. $\Delta(G):=\Gamma(G) \backslash\{$ isolated vertices $\}$.

Theorem (Cameron, F. \& Roney-Dougal, 2021)
Let G be a group with every maximal subgroup normal. Then $\Delta(G)$ is either empty or connected with diameter 2 or 3 . If $\Delta(G)$ is connected with diameter 3, then $\Delta(G)=\Gamma(G)$.

Groups with every maximal subgroup normal

Theorem (Cameron, F. \& Roney-Dougal, 2021)

Let G be a group with every maximal subgroup normal. Then $\Delta(G)$ is either empty or connected with diameter 2 or 3 . If $\Delta(G)$ is connected with diameter 3, then $\Delta(G)=\Gamma(G)$.

For a finite nilpotent group G, we can prove a more precise relationship between the structures of G and $\Gamma(G)$. We use the fact that G is the direct product of its Sylow subgroups.

Direct products of groups

Lemma (Cameron, F. \& Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2 .

Direct products of groups

Lemma (Cameron, F. \& Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2 .
(ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Direct products of groups

Lemma (Cameron, F. \& Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2 .
(ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Main idea of proof: if $\left\langle a_{1}, a_{2}\right\rangle \neq A$ then $\left\langle\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\rangle \neq A \times B$, and if $a_{1} a_{2} \neq a_{2} a_{1}$, then $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \neq\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)$.

Direct products of groups

Lemma (Cameron, F. \& Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2 .
(ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Main idea of proof: if $\left\langle a_{1}, a_{2}\right\rangle \neq A$ then $\left\langle\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\rangle \neq A \times B$, and if $a_{1} a_{2} \neq a_{2} a_{1}$, then $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \neq\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)$.

Example:

- $\Gamma\left(S_{4}\right)$ is connected with diameter 3.
- $\Gamma\left(S_{4} \times C_{2}\right)$ is connected with diameter 2 .
- $\Gamma\left(S_{4} \times C_{3}\right)$ is connected with diameter 3 .

Direct products of groups

Lemma (Cameron, F. \& Roney-Dougal, 2021)

Let A and B be arbitrary groups, with A non-abelian.
(i) If B is non-cyclic, then $\Gamma(A \times B)$ is connected with diameter 2 .
(ii) If B is cyclic and $\Gamma(A)$ is connected with diameter k, then $\Gamma(A \times B)$ is connected with diameter at most k.

Example:

- $\Gamma\left(S_{4}\right)$ is connected with diameter 3 .
- $\Gamma\left(S_{4} \times C_{2}\right)$ is connected with diameter 2.
- $\Gamma\left(S_{4} \times C_{3}\right)$ is connected with diameter 3 .

Theorem (Crestani \& Lucchini, 2013)

Let k be a positive integer. There exists an odd prime p and a positive integer n such that, excluding isolated vertices, the generating graph of $\left(\operatorname{PSL}\left(2,2^{p}\right)\right)^{n}$ is connected with diameter greater than k.

Finite soluble groups

Theorem (Lucchini, 2017)
Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3 .

Finite soluble groups

Theorem (Lucchini, 2017)
Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3 .

What about $\Gamma(G)$?

Finite soluble groups

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3 .

What about $\Gamma(G)$?

There exist 2-generated finite soluble groups G with maximal subgroups M_{1}, \ldots, M_{n}, where for all distinct i, j : $M_{i} \cap M_{j}=Z\left(M_{1}\right)>Z(G)$.
For $i \neq 1, Z\left(M_{i}\right)=Z(G)$.

Finite soluble groups

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3 .

What about $\Gamma(G)$?

There exist 2-generated finite soluble groups G with maximal subgroups M_{1}, \ldots, M_{n}, where for all distinct i, j : $M_{i} \cap M_{j}=Z\left(M_{1}\right)>Z(G)$.
For $i \neq 1, Z\left(M_{i}\right)=Z(G)$.
Here, $\Gamma(G)$ consists of two connected components, each of diameter 2 : $M_{1} \backslash Z\left(M_{1}\right)$, and everything else.

Finite soluble groups

Theorem (Lucchini, 2017)

Let G be a 2-generated finite soluble group. Excluding isolated vertices, the generating graph of G is connected with diameter 2 or 3 .

What about $\Gamma(G)$?

There exist 2-generated finite soluble groups G with maximal subgroups M_{1}, \ldots, M_{n}, where for all distinct i, j : $M_{i} \cap M_{j}=Z\left(M_{1}\right)>Z(G)$.
For $i \neq 1, Z\left(M_{i}\right)=Z(G)$.
Here, $\Gamma(G)$ consists of two connected components, each of diameter 2 : $M_{1} \backslash Z\left(M_{1}\right)$, and everything else.
We will call a group G a [2, 2]-group if $\Gamma(G)$ consists of two connected components of diameter 2 .

Finite soluble groups

There exist 2-generated finite soluble groups G with maximal subgroups M_{1}, \ldots, M_{n}, where for all distinct i, j : $M_{i} \cap M_{j}=Z\left(M_{1}\right)>Z(G)$.
For $i \neq 1, Z\left(M_{i}\right)=Z(G)$.
Here, $\Gamma(G)$ consists of two connected components, each of diameter 2 : $M_{1} \backslash Z\left(M_{1}\right)$, and everything else.

We will call a group G a [2, 2]-group if $\Gamma(G)$ consists of two connected components of diameter 2.

Theorem (F., 2021+)

Let G be a finite soluble group. If G is not a [2,2]-group, then $\Delta(G)$ is either empty or connected with diameter 2 or 3 . If $\Delta(G)$ is connected with diameter 3, then $\Delta(G)=\Gamma(G)$.

Finite insoluble groups

Theorem (F., 2021+)
Let G be a finite insoluble group.

Finite insoluble groups

Theorem (F., 2021+)
Let G be a finite insoluble group.
(i) If $G / Z(G)$ has a proper non-cyclic quotient, then $\Gamma(G)$ is connected with diameter 2 or 3 .

Finite insoluble groups

Theorem (F., 2021+)
Let G be a finite insoluble group.
(i) If $G / Z(G)$ has a proper non-cyclic quotient, then $\Gamma(G)$ is connected with diameter 2 or 3 .
(ii) If $Z(G)=1$ and G is not simple, then $\Delta(G)$ is connected with diameter 2 or 3 .

Finite insoluble groups

Theorem (F., 2021+)

Let G be a finite insoluble group.
(i) If $G / Z(G)$ has a proper non-cyclic quotient, then $\Gamma(G)$ is connected with diameter 2 or 3 .
(ii) If $Z(G)=1$ and G is not simple, then $\Delta(G)$ is connected with diameter 2 or 3 .
(iii) If G is simple, then $\Gamma(G)$ is connected with diameter at most 5 .

Finite insoluble groups

Theorem (F., 2021+)

Let G be a finite insoluble group.
(i) If $G / Z(G)$ has a proper non-cyclic quotient, then $\Gamma(G)$ is connected with diameter 2 or 3 .
(ii) If $Z(G)=1$ and G is not simple, then $\Delta(G)$ is connected with diameter 2 or 3 .
(iii) If G is simple, then $\Gamma(G)$ is connected with diameter at most 5 .

$$
\left|M_{1}\right| \text { and }\left|M_{2}\right| \text { even, }|a|=|b|=2
$$

Finite insoluble groups

Theorem (F., 2021+)

Let G be a finite insoluble group.
(i) If $G / Z(G)$ has a proper non-cyclic quotient, then $\Gamma(G)$ is connected with diameter 2 or 3 .
(ii) If $Z(G)=1$ and G is not simple, then $\Delta(G)$ is connected with diameter 2 or 3 .
(iii) If G is simple, then $\Gamma(G)$ is connected with diameter at most 5 .

Let H be a central extension of G. If $Z(G)=1$ and $\Gamma(G)$ is connected with diameter k, then $\Gamma(H)$ is connected with diameter at most k.

Finite insoluble groups

Theorem (F., 2021+)

Let G be a finite insoluble group.
(i) If $G / Z(G)$ has a proper non-cyclic quotient, then $\Gamma(G)$ is connected with diameter 2 or 3 .
(ii) If $Z(G)=1$ and G is not simple, then $\Delta(G)$ is connected with diameter 2 or 3 .
(iii) If G is simple, then $\Gamma(G)$ is connected with diameter at most 5 .

Let H be a central extension of G. If $Z(G)=1$ and $\Gamma(G)$ is connected with diameter k, then $\Gamma(H)$ is connected with diameter at most k.

Question: Is there a finite insoluble group G with $\Delta(G) \neq \Gamma(G)$?

Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?

Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
No finite insoluble group contains an abelian maximal subgroup.

Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
No finite insoluble group contains an abelian maximal subgroup.
Hence if M cannot be non-abelian in the finite case, then every finite insoluble group G has $\Delta(G)=\Gamma(G)$ connected with diameter at most 5 .

Isolated vertices, revisited

Suppose that G is non-abelian and 2-generated. A vertex x of $\Gamma(G)$ is isolated if and only if:
(i) x lies in a unique maximal subgroup M of G; and
(ii) $x \in Z(M)$.

Question: If x is isolated, can M be non-abelian?
No finite insoluble group contains an abelian maximal subgroup.
Hence if M cannot be non-abelian in the finite case, then every finite insoluble group G has $\Delta(G)=\Gamma(G)$ connected with diameter at most 5 .

Using results of Guralnick \& Tracey (2021+):
G finite and simple, x satisfies $(i) \Longrightarrow x \notin Z(M)$. So $\Delta(G)=\Gamma(G)$.

Finite simple groups

G	$\operatorname{diam}(\Gamma(G))$
$\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{~J}_{2}$	2
$\mathrm{M}_{23}, \mathrm{~J}_{1}$	3
$\mathbb{B}, \mathrm{PSU}(7,2)$	4
Remaining sporadic groups (and $\left.{ }^{2} F_{4}(2)^{\prime}\right)$	$\leqslant 4$
$A_{n} ; n$ even	$\leqslant 3$
$A_{n} ; n$ odd	$\leqslant 4$
PSL $(n, q), \mathrm{Sz}(q)$	$\leqslant 4$
$G_{2}(q),{ }^{2} G_{2}(q),{ }^{3} D_{4}(q), F_{4}(q), E_{8}(q) ; q$ odd	$\leqslant 4$
Remaining finite simple groups	$\leqslant 5$

Finite simple groups

G	$\operatorname{diam}(\Gamma(G))$
$\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{~J}_{2}$	2
$\mathrm{M}_{23}, \mathrm{~J}_{1}$	3
$\mathbb{B}, \operatorname{PSU}(7,2)$	4
Remaining sporadic groups (and $\left.{ }^{2} F_{4}(2)^{\prime}\right)$	$\leqslant 4$
$A_{n} ; n$ even	$\leqslant 3$
$A_{n} ; n$ odd	$\leqslant 4$
PSL $(n, q), \mathrm{Sz}(q)$	$\leqslant 4$
$G_{2}(q),{ }^{2} G_{2}(q),{ }^{3} D_{4}(q), F_{4}(q), E_{8}(q) ; q$ odd	$\leqslant 4$
Remaining finite simple groups	$\leqslant 5$

Question: Can these upper bounds be reduced?

Some more infinite groups

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.
Using these facts, we can show that $\Gamma(F)$ is connected with diameter 2 .

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.
Using these facts, we can show that $\Gamma(F)$ is connected with diameter 2 .
The infinite dihedral group D_{∞} is $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$.

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.
Using these facts, we can show that $\Gamma(F)$ is connected with diameter 2 .
The infinite dihedral group D_{∞} is $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$.
$\Gamma\left(D_{\infty}\right)$ consists of the isolated vertices $a b$ and $b a$, plus a connected component of diameter 2 .

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.
Using these facts, we can show that $\Gamma(F)$ is connected with diameter 2.
The infinite dihedral group D_{∞} is $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$.
$\Gamma\left(D_{\infty}\right)$ consists of the isolated vertices $a b$ and $b a$, plus a connected component of diameter 2 .

The free group on two generators F_{2} is $\langle a, b \mid-\rangle=\left\langle a, b \mid a^{\infty}=b^{\infty}=1\right\rangle$.

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.
Using these facts, we can show that $\Gamma(F)$ is connected with diameter 2.
The infinite dihedral group D_{∞} is $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$.
$\Gamma\left(D_{\infty}\right)$ consists of the isolated vertices $a b$ and $b a$, plus a connected component of diameter 2 .

The free group on two generators F_{2} is $\langle a, b \mid-\rangle=\left\langle a, b \mid a^{\infty}=b^{\infty}=1\right\rangle$.
$\Gamma\left(F_{2}\right)$ is connected with diameter 2 .

Some more infinite groups

Thompson's group $F=\left\langle x, y \mid\left[x y^{-1}, x^{-1} y x\right]=\left[x y^{-1}, x^{-2} y x^{2}\right]=1\right\rangle$ is an infinite group with $[F, F]$ an infinite simple group.
$[F, F]$ is the unique minimal normal subgroup of F, and $F /[F, F] \cong \mathbb{Z}^{2}$.
Using these facts, we can show that $\Gamma(F)$ is connected with diameter 2.
The infinite dihedral group D_{∞} is $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$.
$\Gamma\left(D_{\infty}\right)$ consists of the isolated vertices $a b$ and $b a$, plus a connected component of diameter 2 .

The free group on two generators F_{2} is $\langle a, b \mid-\rangle=\left\langle a, b \mid a^{\infty}=b^{\infty}=1\right\rangle$.
$\Gamma\left(F_{2}\right)$ is connected with diameter 2 .
More generally, if $G=\left\langle a, b \mid a^{r}=b^{s}=1\right\rangle$, with $2 \leqslant r, s \leqslant \infty$, then either $G=D_{\infty}$ or $\Gamma(G)$ is connected with diameter 2.

