2-closed groups and automorphism groups of digraphs

Michael Giudici

Centre for the Mathematics of Symmetry and Computation

joint work with Luke Morgan and Jin-Xin Zhou

TDLC Groups via Group Actions Banff August 2021

k-closure of a permutation group Wielandt(1969)

 Ω a set, $G \leq \text{Sym}(\Omega)$.

Then for each integer $k \ge 1$, we have that G acts on Ω^k via

$$(\omega_1, \omega_2, \ldots, \omega_k)^g = (\omega_1^g, \omega_2^g, \ldots, \omega_k^g).$$

The *k*-closure $G^{(k)}$ of G is the largest subgroup of Sym (Ω) with the same set of orbits on Ω^k as G.

• If G has orbits $\Omega_1, \Omega_2, \ldots, \Omega_t$ on Ω then

 $G^{(1)} = \operatorname{Sym}(\Omega_1) \times \operatorname{Sym}(\Omega_2) \times \cdots \times \operatorname{Sym}(\Omega_t).$

2-closure

Let $\Delta_1, \Delta_2, \dots, \Delta_t$ be the orbits of G on Ω^2 (the orbitals of G). The orbital digraphs of G are the digraphs Γ_i with vertex set Ω

and arc set Δ_i .

We have $G \leq \operatorname{Aut}(\Gamma_i)$ for each *i*.

Note that Γ_i is a graph if and only if Δ_i is self-paired, that is, $(\alpha, \beta) \in \Delta_i$ if and only if $(\beta, \alpha) \in \Delta_i$.

•
$$G^{(2)} = \bigcap_{i=1}^{t} \operatorname{Aut}(\Gamma_i)$$

• G is 2-transitive on Ω if and only if $G^{(2)} = \text{Sym}(\Omega)$.

k-closed permutation groups

$$\mathsf{Sym}(\Omega) \geqslant G^{(1)} \geqslant G^{(2)} \geqslant G^{(3)} \geqslant \cdots \geqslant G$$

We say that G is k-closed if $G = G^{(k)}$.

If Γ is a graph or digraph then Aut(Γ) is 2-closed.

Question

Which 2-closed groups are not the automorphism group of a graph or digraph?

Wielandt: If $k \ge 2$ and there exists $\alpha_1, \ldots, \alpha_{k-1} \in \Omega$ such that $G_{\alpha_1, \alpha_2, \ldots, \alpha_{k-1}} = 1$ then G is k-closed.

- If $|\Omega| = n$ then G is *n*-closed.
- Any semiregular permutation group¹ is 2-closed.

- Let Γ be a Cayley graph or digraph for a group G. Then G acts regularly² as a group of automorphisms of Γ .
- If Γ is a graph we say that Γ is a GRR for G if Aut $(\Gamma) \cong G$.
- If Γ is a digraph we say that Γ is a DRR for G is Aut $(\Gamma) \cong G$.

²acts transitively and freely

GRRs

Hetzel (1976), Godsil (1981): The only groups without a GRR are

- abelian groups of exponent greater than 2.
- generalised dicyclic groups.
- C_2^2 , C_2^3 , C_2^4 , S_3 , D_8 , D_{10} , A_4 , $Q_8 \times C_3$, $Q_8 \times C_4$.
- 4 other groups

These are 2-closed groups that are not the automorphism group of a graph.

Babai (1980): The only groups without a DRR are C_2^2 , C_2^3 , C_2^4 , C_3^2 and Q_8 .

These are 2-closed groups that are not the automorphism group of a digraph.

Question

Are there any 2-closed groups that are not regular and not the automorphism group of a graph or digraph?

Small rank

The rank of $G \leq \text{Sym}(\Omega)$ is the number of orbits that it has on Ω^2 . This is also the number of orbits of G_{ω} on Ω .

Rank of G is at least 2 as $\Delta_0 = \{(\omega, \omega) \mid \omega \in \Omega\}$ is G-invariant.

G has rank 2 if and only if G is 2-transitive.

The only 2-closed group of rank 2 on *n* points is S_n , this is the automorphism group of K_n .

- Let G be 2-closed and rank 3 with orbitals Δ_0, Δ_1 and Δ_2 . Then Aut(Γ_1) fixes Δ_1 (the set of arcs) and Δ_2 (the set of non-arcs).
- Thus $Aut(\Gamma)_1$ has the same orbitals as G and so $G = Aut(\Gamma_1)$.

Rank 4

Theorem (Giudici-Morgan-Zhou): Let G be a finite 2-closed primitive permutation group of rank 4 that is not the automorphism group of a graph or digraph. Then one of the following holds:

- G lies in one of 2 infinite families.
- G is one of 7 groups of degree 25, 64, 81, 81, 169, 625, 2401.
- $G \leq A\Gamma L(1, p^d)$.

Hamming graphs

H(2, n) is the graph with vertex set Δ^2 where $|\Delta| = n$ and two vertices are adjacent if they differ in precisely one coordinate.

Automorphism group is $S_n \wr S_2$.

Lemma: Let $G_0 \leq \operatorname{GL}(V)$ preserve the decomposition $V = V_1 \oplus V_2$ such that dim $(V_1) = \operatorname{dim}(V_2)$ and $B = (V_1 \cup V_2) \setminus \{0\}$ is an orbit of G_0 . Then the orbital graph for $G = V \rtimes G_0$ arising from B is isomorphic to $H(2, |V_1|)$.

Since $V = V_1 \oplus V_2$, elements can be identified with (v_1, v_2) , $v_1 \in V_1$, $v_2 \in V_2$.

Family 1

 $V = X \otimes Y$ where X, Y have dimensions 2 and m over GF(3). Let $G = V \rtimes (D_8 \circ \operatorname{GL}(m, 3))$ where D_8 fixes the decomposition $X = \langle x_1 \rangle \oplus \langle x_2 \rangle$. Now $V = V_1 \oplus V_2$ where $V_1 = \langle x_1 \rangle \otimes Y$ and $V_2 = \langle x_2 \rangle \otimes Y$. Also $V = W_1 \oplus W_2$ where $W_1 = \langle x_1 + x_2 \rangle \otimes Y$ and $W_2 = \langle x_1 - x_2 \rangle \otimes Y$.

 G_0 which has orbits

 $\{0\}, \quad (V_1 \cup V_2) \setminus \{0\}, \quad (W_1 \cup W_2) \setminus \{0\}, \quad V \setminus (B_1 \cup B_2 \cup \{0\})$

$$\begin{split} &\Gamma_1 \cong \Gamma_2 \cong H(2, 3^m).\\ &\operatorname{GL}(2,3) \circ \operatorname{GL}(m,2) \leqslant \operatorname{Aut}(\Gamma_3)_0. \end{split}$$

Family 2

 $V = X \otimes Y$ where X, Y have dimensions 2 and m over GF(4). Let $C_3 \text{ wr } S_2 \leq \text{GL}(2, 4)$ preserve $X = \langle x_1 \rangle \oplus \langle x_2 \rangle$. Let $G_0 = ((C_3 \text{ wr } S_2) \circ \text{GL}(m, 4)).2 \leq \Gamma L(m, 4)$ and $G = V \rtimes G_0$.

Again $V = V_1 \oplus V_2$ with $V_1 = \langle x_1 \rangle \otimes Y$ and $V_2 = \langle x_2 \rangle \otimes Y$.

Orbits of G_0 are $B_1 = (V_1 \cup V_2) \setminus \{0\}$, $B_2 = \langle x_1 + x_2 \rangle \otimes Y \cup \langle x_1 + \lambda x_2 \rangle \otimes Y \cup \langle x_1 + \lambda^2 x_2 \rangle \otimes Y) \setminus \{0\}$ and $V \setminus (B_1 \cup B_2 \cup \{0\})$.

$$\begin{split} &\Gamma_1 = H(2,4^m) \\ &(\operatorname{GL}(2,4) \circ \operatorname{GL}(m,4)).2 \leqslant \operatorname{Aut}(\Gamma_3)_0 \end{split}$$

Y is also 2m-dimensional over GF(2).

Let
$$u_1 = x_1 + x_2$$
 and $u_2 = \lambda x_1 + \lambda^2 x_2$.

Then $V = \langle u_1, u_2 \rangle_{GF(2)} \otimes_{GF(2)} Y$ and the simple tensors are the elements of B_2 .

Thus $\operatorname{GL}(2,2) \circ \operatorname{GL}(2m,2) \leq \operatorname{Aut}(\Gamma_2)_0$.

Proof set up

G a 2-closed, rank 4 primitive group with orbitals $\Delta_0, \Delta_1, \Delta_2, \Delta_3$. Γ_i is the graph with arc-set Δ_i , for i = 1, 2, 3. $n \ge 4095$.

Aut(Γ_i) is a rank 3 primitive group.

Rank 4 primitive groups Cuypers (1989)

If G is a finite primitive rank 4 group on Ω then one of the following holds:

- 1 G is affine.
- 2 G is almost simple.
- **3** $\operatorname{PSL}_2(8)^2 \triangleleft G \leqslant G_0 \text{ wr } S_2 \text{ with } \Omega = \Delta^2 \text{ where } |\Delta| = 28.$
- **④** $T^3 ⊲ G ≤ G_0 ≥ S_3$, and $Ω = Δ^3$, and G_0 is a 2-transitive group on Δ with socle *T*
- **5** $\operatorname{soc}(G) = A_5 \times A_5$, and $\operatorname{soc}(G)_{\omega} = \{(t, t) \mid t \in A_5\}.$

Reduction

Cases 3, 4 and 5 are easily eliminated.

To eliminate Case 2, use

- Liebeck–Praeger–Saxl's classification of primitive groups with a common orbital and distinct socles, and
- Bamberg–Giudici–Liebeck–Praeger–Saxl's classification of the almost simple ³/₂-transitive groups.

Now G is an affine rank 4 group and for each i = 1, 2, 3 we have that Aut(Γ_i) is a rank 3 primitive group.

Again, G and Aut(Γ_i) have a common orbital (namely Δ_i).

Two cases:

- $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)) = \operatorname{soc}(G)$ for all *i*.
- $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)) \neq \operatorname{soc}(G)$ for some *i*.

In first case $G \leq A\Gamma L(1, p^d)$.

In second case, use LPS again to eliminate the possibility that $Aut(\Gamma_i)$ is almost simple.

Then G_0 preserves $V = V_1 \oplus V_2$ and $\Gamma_i = H(2, |V_1|)$.

Do alot of comparing of the subdegrees of rank 3 primitive affine groups from Liebeck to deduce that G is in one of our two families.

Small examples

- PrimitiveGroup(25,11). Here G = 5² : (D₈.2). All three nontrivial orbital graphs of G are isomorphic to H(2,5).
- PrimitiveGroup(64,27). Here $G = 2^6 : (3^{1+2}_+ : D_8)$ has two orbital graphs of valency 18 and one of valency 27. The first two have automorphism group $2^6 : 3.A_6.2$. The orbital graph of valency 27 has automorphism group $2^6.\text{GO}^-(6,2)$.
- PrimitiveGroup(81,77). Here $G = 3^4 : (2 \times Q_8) : A_4$ and has two orbital graphs of valency 16 and one of valency 48. The first two are Hamming graphs H(2,9), while the latter has automorphism group $3^4 : 2^{1+4}.$ GO⁺(4,2).
- PrimitiveGroup(81,87). Here G = 3⁴ : (GL(1,3) ≥ D₈).2. Here G has one orbital graph of valency 16 and two of valency 32. The first is isomorphic to H(2,9) while the automorphism groups of the other two are isomorphic to 3⁴ : 2¹⁺⁴.GO⁺(4,2).

Small examples II

- PrimitiveGroup(169,41). Here $G = 13^2 : (3 \times 3 : 8)$ which has an orbital graph of valency 24 (the Hamming graph H(2,13)) and two of valency 72. The latter both have automorphism group $13^2 : 12 \circ 2^{1+2} : S_3$.
- PrimitiveGroup(625,547). Here $G = 5^4 : 4.A_6$ which has an orbital graph of valency 144 and two of valency 240. The graph of valency 144 has $5^4 : 4.A_6.2$ as its automorphism group. The two orbital graphs of valency 240 have $5^4 : 4 \circ 2^{1+4} \operatorname{Sp}(4, 2)$.
- PrimitiveGroup(2401,991). Here $G = 7^4 : C_6 \circ 2^{1+4}\Omega^-(4,2)$ which has two orbital graphs of valency 240 and one of valency 1920. The first two have automorphism group $7^4 : C_6 \circ \operatorname{Sp}(4,3)$ while the last has automorphism group $7^4 : C_6 \circ 2^{1+4} \operatorname{GO}^-(4,2)$.