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k-closure of a permutation group
Wielandt(1969)

Ω a set, G 6 Sym(Ω).

Then for each integer k ≥ 1, we have that G acts on Ωk via

(ω1, ω2, . . . , ωk)g = (ωg
1 , ω

g
2 , . . . , ω

g
k ).

The k-closure G (k) of G is the largest subgroup of Sym(Ω) with
the same set of orbits on Ωk as G .

• If G has orbits Ω1,Ω2, . . . ,Ωt on Ω then

G (1) = Sym(Ω1)× Sym(Ω2)× · · · × Sym(Ωt).



2-closure

Let ∆1,∆2, . . . ,∆t be the orbits of G on Ω2 (the orbitals of G ).

The orbital digraphs of G are the digraphs Γi with vertex set Ω
and arc set ∆i .

We have G 6 Aut(Γi ) for each i .

Note that Γi is a graph if and only if ∆i is self-paired, that is,
(α, β) ∈ ∆i if and only if (β, α) ∈ ∆i .

• G (2) =
t⋂

i=1

Aut(Γi )

• G is 2-transitive on Ω if and only if G (2) = Sym(Ω).



k-closed permutation groups

Sym(Ω) > G (1) > G (2) > G (3) > · · · > G

We say that G is k-closed if G = G (k).

If Γ is a graph or digraph then Aut(Γ) is 2-closed.



Question

Which 2-closed groups are not the automorphism group
of a graph or digraph?



Bases

Wielandt: If k > 2 and there exists α1, . . . , αk−1 ∈ Ω such that
Gα1,α2,...,αk−1

= 1 then G is k-closed.

• If |Ω| = n then G is n-closed.

• Any semiregular permutation group1 is 2-closed.

1acts freely



Cayley graphs and digraphs

Let Γ be a Cayley graph or digraph for a group G . Then G acts
regularly2 as a group of automorphisms of Γ.

If Γ is a graph we say that Γ is a GRR for G if Aut(Γ) ∼= G .

If Γ is a digraph we say that Γ is a DRR for G is Aut(Γ) ∼= G .

2acts transitively and freely



GRRs

Hetzel (1976), Godsil (1981): The only groups without a GRR are

• abelian groups of exponent greater than 2.

• generalised dicyclic groups.

• C 2
2 , C 3

2 , C 4
2 , S3, D8, D10, A4, Q8 × C3, Q8 × C4.

• 4 other groups

These are 2-closed groups that are not the automorphism group of
a graph.



DRRs

Babai (1980): The only groups without a DRR are C 2
2 , C 3

2 , C 4
2 , C 2

3

and Q8.

These are 2-closed groups that are not the automorphism group of
a digraph.



Question

Are there any 2-closed groups that are not regular and not the
automorphism group of a graph or digraph?



Small rank

The rank of G 6 Sym(Ω) is the number of orbits that it has on Ω2.

This is also the number of orbits of Gω on Ω.

Rank of G is at least 2 as ∆0 = {(ω, ω) | ω ∈ Ω} is G -invariant.

G has rank 2 if and only if G is 2-transitive.

The only 2-closed group of rank 2 on n points is Sn, this is the
automorphism group of Kn.



Rank 3

Let G be 2-closed and rank 3 with orbitals ∆0,∆1 and ∆2.

Then Aut(Γ1) fixes ∆1 (the set of arcs) and ∆2 (the set of
non-arcs).

Thus Aut(Γ)1 has the same orbitals as G and so G = Aut(Γ1).



Rank 4

Theorem (Giudici-Morgan-Zhou): Let G be a finite 2-closed
primitive permutation group of rank 4 that is not the
automorphism group of a graph or digraph. Then one of the
following holds:

• G lies in one of 2 infinite families.

• G is one of 7 groups of degree 25, 64, 81, 81, 169, 625, 2401.

• G 6 AΓL(1, pd).



Hamming graphs

H(2, n) is the graph with vertex set ∆2 where |∆| = n and two
vertices are adjacent if they differ in precisely one coordinate.

Automorphism group is Sn o S2.

Lemma: Let G0 6 GL(V ) preserve the decomposition
V = V1 ⊕ V2 such that dim(V1) = dim(V2) and
B = (V1 ∪ V2)\{0} is an orbit of G0. Then the orbital graph for
G = V o G0 arising from B is isomorphic to H(2, |V1|).

Since V = V1 ⊕ V2, elements can be identified with (v1, v2),
v1 ∈ V1, v2 ∈ V2.



Family 1

V = X ⊗ Y where X , Y have dimensions 2 and m over GF(3).

Let G = V o (D8 ◦GL(m, 3)) where D8 fixes the decomposition
X = 〈x1〉 ⊕ 〈x2〉.

Now V = V1 ⊕ V2 where V1 = 〈x1〉 ⊗ Y and V2 = 〈x2〉 ⊗ Y .

Also V = W1 ⊕W2 where W1 = 〈x1 + x2〉 ⊗ Y and
W2 = 〈x1 − x2〉 ⊗ Y .

G0 which has orbits

{0}, (V1 ∪ V2)\{0}, (W1 ∪W2)\{0}, V \(B1 ∪ B2 ∪ {0})

Γ1
∼= Γ2

∼= H(2, 3m).

GL(2, 3) ◦GL(m, 2) 6 Aut(Γ3)0.



Family 2

V = X ⊗ Y where X , Y have dimensions 2 and m over GF(4).

Let C3 wr S2 6 GL(2, 4) preserve X = 〈x1〉 ⊕ 〈x2〉.

Let G0 = ((C3 wr S2) ◦GL(m, 4)).2 6 ΓL(m, 4) and G = V o G0.

Again V = V1 ⊕ V2 with V1 = 〈x1〉 ⊗ Y and V2 = 〈x2〉 ⊗ Y .

Orbits of G0 are B1 = (V1 ∪ V2)\{0},

B2 = 〈x1 + x2〉 ⊗ Y ∪ 〈x1 + λx2〉 ⊗ Y ∪ 〈x1 + λ2x2〉 ⊗ Y ) \ {0}

and V \(B1 ∪ B2 ∪ {0}).

Γ1 = H(2, 4m)

(GL(2, 4) ◦GL(m, 4)).2 6 Aut(Γ3)0



Family 2

Y is also 2m-dimensional over GF(2).

Let u1 = x1 + x2 and u2 = λx1 + λ2x2.

Then V = 〈u1, u2〉GF(2) ⊗GF(2) Y and the simple tensors are the
elements of B2.

Thus GL(2, 2) ◦GL(2m, 2) 6 Aut(Γ2)0.



Proof set up

G a 2-closed, rank 4 primitive group with orbitals ∆0,∆1,∆2,∆3.

Γi is the graph with arc-set ∆i , for i = 1, 2, 3.

n > 4095.

Aut(Γi ) is a rank 3 primitive group.



Rank 4 primitive groups
Cuypers (1989)

If G is a finite primitive rank 4 group on Ω then one of the
following holds:

1 G is affine.

2 G is almost simple.

3 PSL2(8)2 C G 6 G0 wr S2 with Ω = ∆2 where |∆| = 28.

4 T 3 C G 6 G0 o S3, and Ω = ∆3, and G0 is a 2-transitive group
on ∆ with socle T

5 soc(G ) = A5 × A5, and soc(G )ω = {(t, t) | t ∈ A5}.



Reduction

Cases 3, 4 and 5 are easily eliminated.

To eliminate Case 2, use

• Liebeck–Praeger–Saxl’s classification of primitive groups with
a common orbital and distinct socles, and

• Bamberg–Giudici–Liebeck–Praeger–Saxl’s classification of the
almost simple 3

2 -transitive groups.



Now G is an affine rank 4 group and for each i = 1, 2, 3 we have
that Aut(Γi ) is a rank 3 primitive group.

Again, G and Aut(Γi ) have a common orbital (namely ∆i ).

Two cases:

• soc(Aut(Γi )) = soc(G ) for all i .

• soc(Aut(Γi )) 6= soc(G ) for some i .

In first case G 6 AΓL(1, pd).

In second case, use LPS again to eliminate the possibility that
Aut(Γi ) is almost simple.

Then G0 preserves V = V1 ⊕ V2 and Γi = H(2, |V1|).

Do alot of comparing of the subdegrees of rank 3 primitive affine
groups from Liebeck to deduce that G is in one of our two families.



Small examples

• PrimitiveGroup(25,11). Here G = 52 : (D8.2). All three
nontrivial orbital graphs of G are isomorphic to H(2, 5).

• PrimitiveGroup(64,27). Here G = 26 : (31+2
+ : D8) has two

orbital graphs of valency 18 and one of valency 27. The first
two have automorphism group 26 : 3.A6.2. The orbital graph
of valency 27 has automorphism group 26.GO−(6, 2).

• PrimitiveGroup(81,77). Here G = 34 : (2× Q8) : A4 and has
two orbital graphs of valency 16 and one of valency 48. The
first two are Hamming graphs H(2, 9), while the latter has
automorphism group 34 : 21+4.GO+(4, 2).

• PrimitiveGroup(81,87). Here G = 34 : (GL(1, 3) o D8).2. Here
G has one orbital graph of valency 16 and two of valency 32.
The first is isomorphic to H(2, 9) while the automorphism
groups of the other two are isomorphic to
34 : 21+4.GO+(4, 2).



Small examples II

• PrimitiveGroup(169,41). Here G = 132 : (3× 3 : 8) which has
an orbital graph of valency 24 (the Hamming graph H(2, 13))
and two of valency 72. The latter both have automorphism
group 132 : 12 ◦ 21+2 : S3.

• PrimitiveGroup(625,547). Here G = 54 : 4.A6 which has an
orbital graph of valency 144 and two of valency 240. The
graph of valency 144 has 54 : 4.A6.2 as its automorphism
group. The two orbital graphs of valency 240 have
54 : 4 ◦ 21+4 Sp(4, 2).

• PrimitiveGroup(2401,991). Here G = 74 : C6 ◦ 21+4Ω−(4, 2)
which has two orbital graphs of valency 240 and one of
valency 1920. The first two have automorphism group
74 : C6 ◦ Sp(4, 3) while the last has automorphism group
74 : C6 ◦ 21+4GO−(4, 2).


