2-closed groups and automorphism groups of digraphs

Michael Giudici

Centre for the Mathematics of Symmetry and Computation

joint work with Luke Morgan and Jin-Xin Zhou

TDLC Groups via Group Actions Banff
August 2021

k-closure of a permutation group

Wielandt(1969)

Ω a set, $G \leqslant \operatorname{Sym}(\Omega)$.
Then for each integer $k \geq 1$, we have that G acts on Ω^{k} via

$$
\left(\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right)^{g}=\left(\omega_{1}^{g}, \omega_{2}^{g}, \ldots, \omega_{k}^{g}\right)
$$

The k-closure $G^{(k)}$ of G is the largest subgroup of $\operatorname{Sym}(\Omega)$ with the same set of orbits on Ω^{k} as G.

- If G has orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{t}$ on Ω then

$$
G^{(1)}=\operatorname{Sym}\left(\Omega_{1}\right) \times \operatorname{Sym}\left(\Omega_{2}\right) \times \cdots \times \operatorname{Sym}\left(\Omega_{t}\right) .
$$

2-closure

Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{t}$ be the orbits of G on Ω^{2} (the orbitals of G).
The orbital digraphs of G are the digraphs Γ_{i} with vertex set Ω and arc set Δ_{i}.

We have $G \leqslant \operatorname{Aut}\left(\Gamma_{i}\right)$ for each i.
Note that Γ_{i} is a graph if and only if Δ_{i} is self-paired, that is, $(\alpha, \beta) \in \Delta_{i}$ if and only if $(\beta, \alpha) \in \Delta_{i}$.

- $G^{(2)}=\bigcap_{i=1}^{t} \operatorname{Aut}\left(\Gamma_{i}\right)$
- G is 2 -transitive on Ω if and only if $G^{(2)}=\operatorname{Sym}(\Omega)$.

k-closed permutation groups

$$
\operatorname{Sym}(\Omega) \geqslant G^{(1)} \geqslant G^{(2)} \geqslant G^{(3)} \geqslant \cdots \geqslant G
$$

We say that G is k-closed if $G=G^{(k)}$.
If Γ is a graph or digraph then $\operatorname{Aut}(\Gamma)$ is 2 -closed.

Question

Which 2-closed groups are not the automorphism group of a graph or digraph?

Bases

Wielandt: If $k \geqslant 2$ and there exists $\alpha_{1}, \ldots, \alpha_{k-1} \in \Omega$ such that $G_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}}=1$ then G is k-closed.

- If $|\Omega|=n$ then G is n-closed.
- Any semiregular permutation group ${ }^{1}$ is 2 -closed.

Cayley graphs and digraphs

Let Γ be a Cayley graph or digraph for a group G. Then G acts regularly ${ }^{2}$ as a group of automorphisms of Γ.
If Γ is a graph we say that Γ is a GRR for G if $\operatorname{Aut}(\Gamma) \cong G$.
If Γ is a digraph we say that Γ is a DRR for G is $\operatorname{Aut}(\Gamma) \cong G$.

[^0]
GRRs

Hetzel (1976), Godsil (1981): The only groups without a GRR are

- abelian groups of exponent greater than 2.
- generalised dicyclic groups.
- $C_{2}^{2}, C_{2}^{3}, C_{2}^{4}, S_{3}, D_{8}, D_{10}, A_{4}, Q_{8} \times C_{3}, Q_{8} \times C_{4}$.
- 4 other groups

These are 2-closed groups that are not the automorphism group of a graph.

DRRs

Babai (1980): The only groups without a DRR are $C_{2}^{2}, C_{2}^{3}, C_{2}^{4}, C_{3}^{2}$ and Q_{8}.

These are 2-closed groups that are not the automorphism group of a digraph.

Question

Are there any 2-closed groups that are not regular and not the automorphism group of a graph or digraph?

Small rank

The rank of $G \leqslant \operatorname{Sym}(\Omega)$ is the number of orbits that it has on Ω^{2}.
This is also the number of orbits of G_{ω} on Ω.
Rank of G is at least 2 as $\Delta_{0}=\{(\omega, \omega) \mid \omega \in \Omega\}$ is G-invariant.
G has rank 2 if and only if G is 2-transitive.
The only 2 -closed group of rank 2 on n points is S_{n}, this is the automorphism group of K_{n}.

Rank 3

Let G be 2 -closed and rank 3 with orbitals Δ_{0}, Δ_{1} and Δ_{2}.
Then $\operatorname{Aut}\left(\Gamma_{1}\right)$ fixes Δ_{1} (the set of arcs) and Δ_{2} (the set of non-arcs).

Thus Aut $(\Gamma)_{1}$ has the same orbitals as G and so $G=\operatorname{Aut}\left(\Gamma_{1}\right)$.

Rank 4

Theorem (Giudici-Morgan-Zhou): Let G be a finite 2-closed primitive permutation group of rank 4 that is not the automorphism group of a graph or digraph. Then one of the following holds:

- G lies in one of 2 infinite families.
- G is one of 7 groups of degree $25,64,81,81,169,625,2401$.
- $G \leqslant \mathrm{~A} \Gamma \mathrm{~L}\left(1, p^{d}\right)$.

Hamming graphs

$H(2, n)$ is the graph with vertex set Δ^{2} where $|\Delta|=n$ and two vertices are adjacent if they differ in precisely one coordinate.

Automorphism group is $S_{n} \backslash S_{2}$.
Lemma: Let $G_{0} \leqslant \operatorname{GL}(V)$ preserve the decomposition $V=V_{1} \oplus V_{2}$ such that $\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}\left(V_{2}\right)$ and $B=\left(V_{1} \cup V_{2}\right) \backslash\{0\}$ is an orbit of G_{0}. Then the orbital graph for $G=V \rtimes G_{0}$ arising from B is isomorphic to $H\left(2,\left|V_{1}\right|\right)$.
Since $V=V_{1} \oplus V_{2}$, elements can be identified with $\left(v_{1}, v_{2}\right)$, $v_{1} \in V_{1}, v_{2} \in V_{2}$.

Family 1

$V=X \otimes Y$ where X, Y have dimensions 2 and m over $\mathrm{GF}(3)$.
Let $G=V \rtimes\left(D_{8} \circ \mathrm{GL}(m, 3)\right)$ where D_{8} fixes the decomposition $X=\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle$.

Now $V=V_{1} \oplus V_{2}$ where $V_{1}=\left\langle x_{1}\right\rangle \otimes Y$ and $V_{2}=\left\langle x_{2}\right\rangle \otimes Y$.
Also $V=W_{1} \oplus W_{2}$ where $W_{1}=\left\langle x_{1}+x_{2}\right\rangle \otimes Y$ and $W_{2}=\left\langle x_{1}-x_{2}\right\rangle \otimes Y$.
G_{0} which has orbits
$\{0\}, \quad\left(V_{1} \cup V_{2}\right) \backslash\{0\}, \quad\left(W_{1} \cup W_{2}\right) \backslash\{0\}, \quad V \backslash\left(B_{1} \cup B_{2} \cup\{0\}\right)$
$\Gamma_{1} \cong \Gamma_{2} \cong H\left(2,3^{m}\right)$.
$\mathrm{GL}(2,3) \circ \mathrm{GL}(m, 2) \leqslant \operatorname{Aut}\left(\Gamma_{3}\right)_{0}$.

Family 2

$V=X \otimes Y$ where X, Y have dimensions 2 and m over GF(4).
Let $C_{3} w r S_{2} \leqslant \operatorname{GL}(2,4)$ preserve $X=\left\langle x_{1}\right\rangle \oplus\left\langle x_{2}\right\rangle$.
Let $G_{0}=\left(\left(C_{3} w r S_{2}\right) \circ \mathrm{GL}(m, 4)\right) \cdot 2 \leqslant \Gamma \mathrm{~L}(m, 4)$ and $G=V \rtimes G_{0}$.

Again $V=V_{1} \oplus V_{2}$ with $V_{1}=\left\langle x_{1}\right\rangle \otimes Y$ and $V_{2}=\left\langle x_{2}\right\rangle \otimes Y$.

Orbits of G_{0} are $B_{1}=\left(V_{1} \cup V_{2}\right) \backslash\{0\}$,
$\left.B_{2}=\left\langle x_{1}+x_{2}\right\rangle \otimes Y \cup\left\langle x_{1}+\lambda x_{2}\right\rangle \otimes Y \cup\left\langle x_{1}+\lambda^{2} x_{2}\right\rangle \otimes Y\right) \backslash\{0\}$ and $V \backslash\left(B_{1} \cup B_{2} \cup\{0\}\right)$.
$\Gamma_{1}=H\left(2,4^{m}\right)$
$(\operatorname{GL}(2,4) \circ \operatorname{GL}(m, 4)) .2 \leqslant \operatorname{Aut}\left(\Gamma_{3}\right)_{0}$

Family 2

Y is also $2 m$-dimensional over GF(2).
Let $u_{1}=x_{1}+x_{2}$ and $u_{2}=\lambda x_{1}+\lambda^{2} x_{2}$.
Then $V=\left\langle u_{1}, u_{2}\right\rangle_{\mathrm{GF}(2)} \otimes_{\mathrm{GF}(2)} Y$ and the simple tensors are the elements of B_{2}.

Thus $\operatorname{GL}(2,2) \circ \operatorname{GL}(2 m, 2) \leqslant \operatorname{Aut}\left(\Gamma_{2}\right)_{0}$.

Proof set up

G a 2-closed, rank 4 primitive group with orbitals $\Delta_{0}, \Delta_{1}, \Delta_{2}, \Delta_{3}$.
Γ_{i} is the graph with arc-set Δ_{i}, for $i=1,2,3$.
$n \geqslant 4095$.
$\operatorname{Aut}\left(\Gamma_{i}\right)$ is a rank 3 primitive group.

Rank 4 primitive groups

Cuypers (1989)

If G is a finite primitive rank 4 group on Ω then one of the following holds:
(1) G is affine.
(2) G is almost simple.
(3) $\mathrm{PSL}_{2}(8)^{2} \triangleleft G \leqslant G_{0}$ wr S_{2} with $\Omega=\Delta^{2}$ where $|\Delta|=28$.
(4) $T^{3} \triangleleft G \leqslant G_{0} \backslash S_{3}$, and $\Omega=\Delta^{3}$, and G_{0} is a 2-transitive group on Δ with socle T
(5) $\operatorname{soc}(G)=A_{5} \times A_{5}$, and $\operatorname{soc}(G)_{\omega}=\left\{(t, t) \mid t \in A_{5}\right\}$.

Reduction

Cases 3, 4 and 5 are easily eliminated.
To eliminate Case 2, use

- Liebeck-Praeger-Saxl's classification of primitive groups with a common orbital and distinct socles, and
- Bamberg-Giudici-Liebeck-Praeger-Saxl's classification of the almost simple $\frac{3}{2}$-transitive groups.

Now G is an affine rank 4 group and for each $i=1,2,3$ we have that $\operatorname{Aut}\left(\Gamma_{i}\right)$ is a rank 3 primitive group.

Again, G and $\operatorname{Aut}\left(\Gamma_{i}\right)$ have a common orbital (namely $\left.\Delta_{i}\right)$.

Two cases:

- $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right)\right)=\operatorname{soc}(G)$ for all i.
- $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right)\right) \neq \operatorname{soc}(G)$ for some i.

In first case $G \leqslant \mathrm{~A} \Gamma \mathrm{~L}\left(1, p^{d}\right)$.
In second case, use LPS again to eliminate the possibility that Aut $\left(\Gamma_{i}\right)$ is almost simple.

Then G_{0} preserves $V=V_{1} \oplus V_{2}$ and $\Gamma_{i}=H\left(2,\left|V_{1}\right|\right)$.
Do alot of comparing of the subdegrees of rank 3 primitive affine groups from Liebeck to deduce that G is in one of our two families.

Small examples

- PrimitiveGroup $(25,11)$. Here $G=5^{2}:\left(D_{8} .2\right)$. All three nontrivial orbital graphs of G are isomorphic to $H(2,5)$.
- PrimitiveGroup $(64,27)$. Here $G=2^{6}:\left(3_{+}^{1+2}: D_{8}\right)$ has two orbital graphs of valency 18 and one of valency 27 . The first two have automorphism group $2^{6}: 3 . A_{6} .2$. The orbital graph of valency 27 has automorphism group $2^{6} . \mathrm{GO}^{-}(6,2)$.
- PrimitiveGroup $(81,77)$. Here $G=3^{4}:\left(2 \times Q_{8}\right): A_{4}$ and has two orbital graphs of valency 16 and one of valency 48. The first two are Hamming graphs $H(2,9)$, while the latter has automorphism group $3^{4}: 2^{1+4} . \mathrm{GO}^{+}(4,2)$.
- PrimitiveGroup $(81,87)$. Here $G=3^{4}:\left(G L(1,3)\right.$ 乙 $\left.D_{8}\right) .2$. Here G has one orbital graph of valency 16 and two of valency 32. The first is isomorphic to $H(2,9)$ while the automorphism groups of the other two are isomorphic to $3^{4}: 2^{1+4} \cdot \mathrm{GO}^{+}(4,2)$.

Small examples II

- PrimitiveGroup $(169,41)$. Here $G=13^{2}:(3 \times 3: 8)$ which has an orbital graph of valency 24 (the Hamming graph $H(2,13)$) and two of valency 72 . The latter both have automorphism group $13^{2}: 12 \circ 2^{1+2}: S_{3}$.
- PrimitiveGroup $(625,547)$. Here $G=5^{4}: 4 . A_{6}$ which has an orbital graph of valency 144 and two of valency 240 . The graph of valency 144 has $5^{4}: 4 . A_{6} .2$ as its automorphism group. The two orbital graphs of valency 240 have $5^{4}: 4 \circ 2^{1+4} \operatorname{Sp}(4,2)$.
- PrimitiveGroup $(2401,991)$. Here $G=7^{4}: C_{6} \circ 2^{1+4} \Omega^{-}(4,2)$ which has two orbital graphs of valency 240 and one of valency 1920. The first two have automorphism group $7^{4}: C_{6} \circ \operatorname{Sp}(4,3)$ while the last has automorphism group
$7^{4}: C_{6} \circ 2^{1+4} \mathrm{GO}^{-}(4,2)$.

[^0]: ${ }^{2}$ acts transitively and freely

