Group actions and power maps

C. R. E. Raja

Indian Statistical Institute, Bangalore.

17/18-08-2021

• Abbreviations: locally compact is abbreviated as Ic and totally disconnected locally compact is abbreviated as tdlc

- Abbreviations: locally compact is abbreviated as Ic and totally disconnected locally compact is abbreviated as tdlc
- For a lc group *G*, an automorphism of *G* would always mean bicontinuous automorphism.

- Abbreviations: locally compact is abbreviated as Ic and totally disconnected locally compact is abbreviated as tdlc
- For a lc group G, an automorphism of G would always mean bicontinuous automorphism.
- Group action: Suppose G and X are two lc groups. Action of G on X (by automorphisms) is a continuous map φ: G × X → X such that for each g ∈ G, φ_g(x) = φ(g, x) is an automorphism of X and g ↦ φ_g is a homomorphism of G.

- Abbreviations: locally compact is abbreviated as Ic and totally disconnected locally compact is abbreviated as tdlc
- For a lc group G, an automorphism of G would always mean bicontinuous automorphism.
- Group action: Suppose G and X are two lc groups. Action of G on X (by automorphisms) is a continuous map φ: G × X → X such that for each g ∈ G, φ_g(x) = φ(g, x) is an automorphism of X and g ↦ φ_g is a homomorphism of G.

(1) If $f: G \to GL(V)$ is a continuous homomorphism where V is a finite dimensional vector space over a local field, then $\phi(g, v) = f(g)v$ defines an action of G on V and these type of actions are known as linear action.

(1) If $f: G \to GL(V)$ is a continuous homomorphism where V is a finite dimensional vector space over a local field, then $\phi(g, v) = f(g)v$ defines an action of G on V and these type of actions are known as linear action. (2) If H is a closed subgroup of a lc group G, then H acts on G by

inner autormorphisms, that is $\phi(h,g) = hgh^{-1}$ for $h \in H$ and $g \in G$.

(1) If $f: G \to GL(V)$ is a continuous homomorphism where V is a finite dimensional vector space over a local field, then $\phi(g, v) = f(g)v$ defines an action of G on V and these type of actions are known as linear action.

(2) If H is a closed subgroup of a lc group G, then H acts on G by inner autormorphisms, that is $\phi(h,g) = hgh^{-1}$ for $h \in H$ and $g \in G$.

(3) If H is a closed normal subgroup of G, then G acts on H by inner autormorphisms (restricted to H).

Given an action of G on X by automorphism of X

Given an action of G on X by automorphism of X or simply take G to be a subgroup of automorphisms of X

Given an action of G on X by automorphism of X or simply take G to be a subgroup of automorphisms of X **Semidirect product** of G and X is denoted by $G \ltimes X$ and is defined to be $\{(g, x) \mid g \in G, x \in X\}$ with binary operation (g, x)(h, y) = (gh, x(gy)). Given an action of G on X by automorphism of X or simply take G to be a subgroup of automorphisms of X **Semidirect product** of G and X is denoted by $G \ltimes X$ and is defined to be $\{(g, x) | g \in G, x \in X\}$ with binary operation (g, x)(h, y) = (gh, x(gy)). $G \ltimes X$ is a also a lc group. Given an action of G on X by automorphism of X or simply take G to be a subgroup of automorphisms of X **Semidirect product** of G and X is denoted by $G \ltimes X$ and is defined to be $\{(g, x) \mid g \in G, x \in X\}$ with binary operation (g, x)(h, y) = (gh, x(gy)). $G \ltimes X$ is a also a lc group. G and X may be identified as closed subgroups of $G \ltimes X$ by the maps $g \mapsto (g, e)$ and $x \mapsto (e, x)$. Given an action of G on X by automorphism of X or simply take G to be a subgroup of automorphisms of X **Semidirect product** of G and X is denoted by $G \ltimes X$ and is defined to be $\{(g, x) \mid g \in G, x \in X\}$ with binary operation (g, x)(h, y) = (gh, x(gy)). $G \ltimes X$ is a also a lc group. G and X may be identified as closed subgroups of $G \ltimes X$ by the maps $g \mapsto (g, e)$ and $x \mapsto (e, x)$. X is a normal subgroup of $G \ltimes X$

- G tdlc group
- COS(G) the set of all compact open subgroups of G.

- G tdlc group
- COS(G) the set of all compact open subgroups of G.

Following are results of Willis mostly from [Math. Ann. 1994]

- G tdlc group
- COS(G) the set of all compact open subgroups of G.

Following are results of Willis mostly from [Math. Ann. 1994] For each automorphism α , scale of α , denoted by $s(\alpha)$ is defined by

 $s(\alpha) = \min\{[U : U \cap \alpha(U)] \mid U \in \operatorname{COS}(G)\}$

and U which attains the minimum is called tidy subgroup of α .

- G tdlc group
- COS(G) the set of all compact open subgroups of G.

Following are results of Willis mostly from [Math. Ann. 1994] For each automorphism α , scale of α , denoted by $s(\alpha)$ is defined by

$s(\alpha) = \min\{[U : U \cap \alpha(U)] \mid U \in \operatorname{COS}(G)\}$

and U which attains the minimum is called tidy subgroup of α . For each $g \in G$, if α_g is the inner automorphism on G defined by g (recall, $\alpha_g(h) = ghg^{-1}$), then the scale of g, $s(g) = s(\alpha_g)$.

- G tdlc group
- COS(G) the set of all compact open subgroups of G.

Following are results of Willis mostly from [Math. Ann. 1994] For each automorphism α , scale of α , denoted by $s(\alpha)$ is defined by

$$s(\alpha) = \min\{[U : U \cap \alpha(U)] \mid U \in \operatorname{COS}(G)\}$$

and U which attains the minimum is called tidy subgroup of α . For each $g \in G$, if α_g is the inner automorphism on G defined by g (recall, $\alpha_g(h) = ghg^{-1}$), then the scale of g, $s(g) = s(\alpha_g)$.

Theorem [Wi-94]

- $s(\alpha) = 1 = s(\alpha^{-1})$ if and only if α fixes a compact open subgroup U, that is, $\alpha(U) = U$.
- $s(\alpha^n) = s(\alpha)^n$.
- the scale *s* is continuous on *G*.

Let G be a tdlc group.

æ

Let G be a tdlc group. For a $k \ge 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, \qquad g \in G.$$

Let G be a tdlc group. For a $k \ge 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, \qquad g \in G.$$

Aim: Structural conditions related to power map having dense image or surjective.

Let G be a tdlc group. For a $k \geq 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, \qquad g \in G.$$

Aim: Structural conditions related to power map having dense image or surjective. We first recall the following

Theorem [Wi-94]

If G is a tdlc group and $g_n^{k_n} o g$ a and $k_n o \infty$ as $n o \infty$, then s(g) = 1.

If $P_k(G)$ is dense in G, then for $g \in G$, using the continuity of P_k , we can find a sequence (g_n) in G such that $g_n^{k^n} \to g$.

If $P_k(G)$ is dense in G, then for $g \in G$, using the continuity of P_k , we can find a sequence (g_n) in G such that $g_n^{k^n} \to g$. Thus, s(g) = 1 If $P_k(G)$ is dense in G, then for $g \in G$, using the continuity of P_k , we can find a sequence (g_n) in G such that $g_n^{k^n} \to g$. Thus, s(g) = 1Therefore each $g \in G$ fixes a compact open subgroup. If $P_k(G)$ is dense in G, then for $g \in G$, using the continuity of P_k , we can find a sequence (g_n) in G such that $g_n^{k^n} \to g$. Thus, s(g) = 1Therefore each $g \in G$ fixes a compact open subgroup. Considering group actions we obtained If $P_k(G)$ is dense in G, then for $g \in G$, using the continuity of P_k , we can find a sequence (g_n) in G such that $g_n^{k^n} \to g$. Thus, s(g) = 1Therefore each $g \in G$ fixes a compact open subgroup. Considering group actions we obtained

Proposition [MaR-20]

If G as above acts on a tdlc group X, then each $g \in G$, fixes a compact open subgroup of X.

An automorphism α of a lc group X is called distal if e is not a limit point of $\{\alpha^n(x) \mid n \in \mathbb{Z}\}$ for any $x \in X \setminus \{e\}$. The following gives structural condition for linear actions by distal

maps.

An automorphism α of a lc group X is called distal if e is not a limit point of $\{\alpha^n(x) \mid n \in \mathbb{Z}\}$ for any $x \in X \setminus \{e\}$.

The following gives structural condition for linear actions by distal maps.

Theorem [CoG-74]

Let G be a subgroup of GL(V). Then the following are equivalent:

- each $\alpha \in G$ is distal on V.
- eigenvalues of each $\alpha \in G$ are of absolute value one.
- there is a *G*-invariant flag of subspaces $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$ such that all orbits of *G* in V_i/V_{i-1} are bounded.

necessary condition

Assumption

- V a finite-dimensional vector space over a non-Arichmedean local field F.
- G is a tdlc group for which
 - $P_K : G \to G$ is dense and
 - $\rho: G \to GL(V)$ is a continuous representation of G. Using the representation, we consider the action of G on V and obtain

necessary condition

Assumption

- V a finite-dimensional vector space over a non-Arichmedean local field F.
- G is a tdlc group for which
 - $P_K : G \to G$ is dense and
 - $\rho: G \to GL(V)$ is a continuous representation of G. Using the representation, we consider the action of G on V and obtain

Theorem [MaR-20]

There is a flag of subspaces with associated unipotent group U and a compact group L such that $\rho(G) \subset LU$ and the flag is L-invariant.

•
$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$$
 - flag of subspaces of V .

æ

æ

Groups associated to a flag

- $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$ flag of subspaces of V.
- Take $H = \{ \alpha \in GL(V) \mid \alpha(V_i) = V_i \text{ for all } i \}$ and $U = \{ \alpha \in GL(V) \mid \alpha(v) - v \in V_{i-1} \text{ for all } i \text{ and } v \in V_i \}.$

Groups associated to a flag

- $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$ flag of subspaces of V.
- Take $H = \{ \alpha \in GL(V) \mid \alpha(V_i) = V_i \text{ for all } i \}$ and $U = \{ \alpha \in GL(V) \mid \alpha(v) - v \in V_{i-1} \text{ for all } i \text{ and } v \in V_i \}.$
- U is called unipotent group associated to the flag and H is the invaraint group of the flag. U is a subgroup of H.

Groups associated to a flag

- $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$ flag of subspaces of V.
- Take $H = \{ \alpha \in GL(V) \mid \alpha(V_i) = V_i \text{ for all } i \}$ and $U = \{ \alpha \in GL(V) \mid \alpha(v) - v \in V_{i-1} \text{ for all } i \text{ and } v \in V_i \}.$
- U is called unipotent group associated to the flag and H is the invaraint group of the flag. U is a subgroup of H.
- $\beta \in H$ fixes V_i implies U is a normal subgroup of H.

Groups associated to a flag

- $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$ flag of subspaces of V.
- Take $H = \{ \alpha \in GL(V) \mid \alpha(V_i) = V_i \text{ for all } i \}$ and $U = \{ \alpha \in GL(V) \mid \alpha(v) - v \in V_{i-1} \text{ for all } i \text{ and } v \in V_i \}.$
- U is called unipotent group associated to the flag and H is the invaraint group of the flag. U is a subgroup of H.
- $\beta \in H$ fixes V_i implies U is a normal subgroup of H.
- The action of H on U is linear in the sense that there is a H-invariant central series $U_0 \subset U_1 \subset \cdots \subset U_n = U$ such that U_0 is trivial and each U_i/U_{i-1} is a vector space and corresponding H-action on U_i/U_{i-1} is linear.

In our case following result is useful

In our case following result is useful

Theorem [DaM-17]

Let *L* be a compact totally disconnected group and *N* be a nilpotent lc group. Suppose *L* acts on *N* and the action is linear over a field \mathbb{F} . If P_k is surjective on *L* and *k* is co-prime to the characteristic of \mathbb{F} , then P_k is surjective on $L \ltimes N$.

In our case following result is useful

Theorem [DaM-17]

Let *L* be a compact totally disconnected group and *N* be a nilpotent lc group. Suppose *L* acts on *N* and the action is linear over a field \mathbb{F} . If P_k is surjective on *L* and *k* is co-prime to the characteristic of \mathbb{F} , then P_k is surjective on $L \ltimes N$.

Contd.,

We obtain the following

Theorem [MaR-20]

Let \mathbb{F} be a non-Archimedean local field and G be a group with a linear representation $\rho: G \to \operatorname{GL}(d, \mathbb{F})$. Suppose that P_k is dense in G for some k > 1. Then we have the following:

- There exists a compact group L ⊂ GL(d, F) and a split unipotent algebraic group U ⊂ GL(d, F) normalized by L such that L ∩ U is trivial, ρ(G) ⊂ LU and ρ(G)U is dense in LU. Moreover, P_k is surjective on LU/U ≃ L.
- If k is co-prime to the characteristic of \mathbb{F} , then P_k is surjective on LU.
- If the characteristic p of \mathbb{F} divides k, then $\rho(G)$ is finite.

In the case of characteristic of \mathbb{F} not dividing k, considering the residual characteristic and obtain the following:

In the case of characteristic of \mathbb{F} not dividing k, considering the residual characteristic and obtain the following:

Theorem [MaR-19]

- If the residual characteristic p of F divides k, then L is finite, that is ρ(G) is contained in a finite extension of a split unipotent algebraic group U and P_k is dense in ρ(G) ∩ U.
- If the residual characteristic p of 𝔅 divides k and the characteristic of 𝔅 is zero (resp., positive), then ρ(G) is a finite extension of a split unipotent algebraic group (resp., finite).

Corollaries

We [MaR-19] also obtain following interesting corollaries

Corollaries

We [MaR-19] also obtain following interesting corollaries

• Any compactly generated group linear group over \mathbb{F} for which P_k is dense is compact.

Assume that \mathbb{E} is a global field and H is a linear group over \mathbb{E} such that P_k is surjective on H for some k > 1.

- If the characteristic of E is 0, then H contains an unipotent normal subgroup of finite index (see [Ch-09] for related results).
- If the characteristic of E is p > 0, then H is locally finite, that is any finitely generated subgroup of H is finite.
- If the characteristic p of \mathbb{E} divides k, then H is finite.
- If P_k is surjective on H for all k ≥ 1, then either H is a unipotent group or H is trivial depending on characteristic of E is 0 or positive.

Algebraic groups

Assume that \mathbb{F} is a non-Archimedean local field and G is an algebraic group defined over \mathbb{F} : *p*-adic algebraic group case is considered in [Ch-09].

Theorem [Mar-20]

Let $R_{us,\mathbb{F}}(G)$ be the \mathbb{F} -split unipotent radical of G. Suppose that the characteristic of \mathbb{F} does not divide k. Then the following are equivalent:

- (a) P_k is dense in $G(\mathbb{F})$;
- (b) $G(\mathbb{F})/R_{us,\mathbb{F}}(G)(\mathbb{F})$ is compact and P_k is surjective on $G(\mathbb{F})/R_{us,\mathbb{F}}(G)(\mathbb{F})$;

(c) P_k is surjective in $G(\mathbb{F})$.

Suppose the residual characteristic of \mathbb{F} divides k. Then density of P_k on $G(\mathbb{F})$ implies that $G(\mathbb{F})$ is a finite extension of a split unipotent group. In addition if characteristic of \mathbb{F} is positive, then $G(\mathbb{F})$ is finite.

Theorem [MaR-19]

- If P_k is surjective on G(𝔅) and H is an algebraic subgroup of G defined over 𝔅, then P_k is surjective on H(𝔅).
- If H is a closed (not necessarily algebraic) normal subgroup in G(𝔅) and P_k is dense in H as well as in G(𝔅)/H, then P_k is surjective on G(𝔅)
- Suppose P_k is surjective on G(𝔅) for all k ∈ 𝔅. Then G(𝔅) is unipotent. In addition if characteristic of 𝔅 is positive, then G(𝔅) = {e}.

[Ch-09] Chatterjee, P. On the power maps, orders and exponentiality of p-adic algebraic groups. *J. Reine Angew. Math.* (2009), no. 629, 201 - 220.

[CoG-74] Conze, J-P. and Guivarc'h, Y. Remarques sur la distalité dans les espaces vectoriels. (French) *C. R. Acad. Sci. Paris Sér.* 278 (1974), 1083–1086.

[DaM-17] Dani, S. G. and Mandal, A. On the surjectivity of the power maps of a class of solvable groups. *J. Group Theory* 20 (2017), no. 6, 1089–1101

[MaR-19] A. Mandal and C. R. E. Raja, Group actions and power maps for groups over non-Archimedean local fields, preprint.

[Wi-96] Willis, G.A. The structure of totally disconnected locally compact groups *Math. Ann.* 300 (1994), 341–363.

Thanks for your attention!!!

æ