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Overview



This talk is about local actions of groups acting on trees

Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of)
Perm gp induced by action of StabG(v) on neighbours of v

Examples: Consider T3

• Aut (T3)

Local action at v is S3

• S3 ≤ Stab(v)

Local action at v is S3

Local action at w is Id
(for w 6= v)
• Q: Local action C3?
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Example: Suppose G ≤ Aut (T3) has all local actions ∼= C3.

Q: How “close” to Aut (T3) can G be?

A: Not very — our specified local actions “collide” to restrict G
• StabG(v) induces C3 on neighbours of v
• So StabG(v, w) fixes all neighbours of v . . .
• . . . and all neighbours of w
• etc. Hence StabG(v, w) is trivial and G is discrete

Moral: choice of local
action can severely
restrict global behaviour
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Main tool for groups acting on trees is Bass–Serre Theory

• Bass–Serre Theory is of limited use when constructing non-discrete
groups needed in the theory of locally compact groups
(more later)
• An emergent idea of local-to-global universal groups is more useful

in this situation
• Our theory of local action diagrams is a local-to-global complement

to Bass–Serre Theory
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Groups acting on infinite trees



Primary tool: Bass–Serre Theory
Graph of groups (G,Γ) is a graph Γ “decorated” with groups:
• Each P ∈ V Γ is decorated with a group GP (vertex groups)
• Each Y ∈ AΓ is decorated with a group GY (edge groups)
• GY = GY for all Y ∈ AΓ

(and a monomorphism GY → Gt(Y ) is specified for all Y ∈ AΓ)

Bass–Serre Structure Theorem. Suppose Gy T without inversion.
~ There is a graph of groups Γ associated to (T,G), and G can be

identified with the fundamental group of Γ.
} Conversely, given a graph of groups Γ, its fundamental group Π acts

on a tree T in such a way that its associated graph of groups is Γ.

Remarks:

~ Decomposition — works well for locally compact groups
} Construction — problems arise if you want to specify the

action . . .
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E.g. StabG(v) = C2WrC3 at each vertex v
• Bass–Serre says take G = StabG(v) ∗StabG(v,w) StabG(w) for

adjacent v, w
• We’ve already seen desired action is impossible

Moral: For Bass–Serre to construct what you want, you already need
to know that your desired stabiliser arises as a stabiliser of an e.g.
almost transitive subgroup of Aut (T )

Local-to-global constructions avoid this. We have a local-to-global
complement to Bass–Serre theory
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Groups in S

• For Gy T let G+ := 〈pointwise stabilisers in G of edges in T 〉

Theorem. (Tits, ’70) Suppose T is an infinite tree and G ≤ AutT has
Property (P). If G does not preserve any nonempty proper subtree, nor
fix any end, then G+ is abstractly simple.

Corollary. If n ∈ N≥3 then (AutTn)+ ∈ S and is nonlinear.
(Note: Serre already knew (AutTn)+ was topologically simple)

Flawed plan to generate groups in S from Gy T

• Use Bass–Serre to find “large” (i.e. nondiscrete) subgroups of
AutTn with Property (P) and apply theorem

Breakthrough:
• Local-to-global universal groups
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Theory of local action diagrams (lads)
• Analogous to Bass–Serre Theory for ‘local actions’
• Gives a general way of completely describing and classifying closed

subgroups of AutT with Property (P) (call such groups (P)-closed)
• A connected graph Γ

• For each arc a of Γ, a nonempty set Xa (called the colour set of a).
• ∀v ∈ V Γ, a group G(v) (called the local action at v) with the following

properties:

• Write Xv :=
⊔
a∈o−1(v)Xa

(disjoint union)
• G(v) ≤ Sym(Xv) is closed
• Sets Xa are the orbits of
G(v) on Xv
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o−1(v)
∈ Sym(Xπ(v))

• g ∈ AutπT lies in U(T,∆) iff ∀v ∈ V T
the local action of g at v lies in G(π(v)).

• Choice of T doesn’t matter,
results in perm. iso. universal groups.

Write U(∆) for the universal group
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3. For a tree T and G ≤ AutT , there is a lad ∆ associated to (T,G) and T can be
arc-coloured to be a ∆-tree T

Proof idea: pick representative vertices in T and use their arcs in T as the colours in ∆
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(cf graph of groups of an amalgamated free product)

• Properties of G ≤c AutT with Property (P) can be read directly from ∆
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Remarks
• All possible local action diagrams arise
• Examples:

• Burger–Mozes framework: Γ is a single vertex with a set of loops, each
of which is its own reverse

(cf graph of groups of an HNN extension)
• Box product framework: Γ has two vertices and no loops.

(cf graph of groups of an amalgamated free product)

• Properties of G ≤c AutT with Property (P) can be read directly from ∆

For example:

Proper nonempty invariant subtrees and fixed ends of G
(arise from non-empty “strongly confluent partial orientations” of ∆)

Hence: simplicity of G+



Thank you

Papers to read for more info:
• Marc Burger & Shahar Mozes, ‘Groups acting on trees: from local to global

structure’, Publications mathématiques de l’I.H.É.S. (2000)

• Colin D. Reid, Simon M. Smith with an appendix by Stephan Tornier, ‘Groups
acting on trees with Tits’ independence property (P)’, arXiv:2002.11766

• Simon M. Smith, ‘A product for permutation groups and topological groups’,
Duke Math. J. (2017)

• Stephan Tornier, ‘Groups Acting on Trees With Prescribed Local Action’,
arXiv:2002.09876
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Appendix: Proofs for local
action diagrams



Theory of local action diagrams (lads)
Outline of argument:

• Γ := T\G, with quotient map π
• ∀v ∈ V Γ fix v∗ ∈ V T s.t. π(v∗) = v

• ∀a ∈ AΓ s.t. v = o(a),

Xa := {b ∈ o−1(v∗) : π(b) = a}

• Xv is union of these Xa

• G(v) is closure of the permutation
group induced by StabG(v∗) y Xv

• Finally arc-colour T to form a ∆-tree:
• ∀w ∈ V T choose gw ∈ G s.t.
gww = w∗

• ∀b ∈ o−1(w) set L(b) := gwb.
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there are more than just the Burger-Mozes groups.
• Stephan Tornier has an appendix in our paper where he uses GAP to find all

(up to conjugacy) (P)-closed groups on Td the d-regular tree, for d ≤ 5.
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