A local-to-global complement to Bass-Serre Theory

Simon M. Smith (All work joint with Colin Reid)

University of Lincoln

BIRS: tdlc groups via group actions 16th August 2021 **Overview**

This talk is about local actions of groups acting on trees Suppose G acts on T as a group of automorphisms

Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Suppose G acts on T as a group of automorphisms

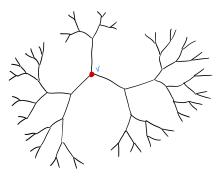
Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Examples: Consider T_3

Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Examples: Consider T_3

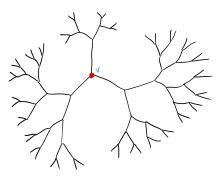


Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $\operatorname{Stab}_G(v)$ on neighbours of v

Examples: Consider T_3

• Aut (T_3)



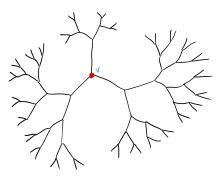
Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $\operatorname{Stab}_G(v)$ on neighbours of v

Examples: Consider T₃

• Aut (T_3)

Local action at v is S_3



Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $\operatorname{Stab}_G(v)$ on neighbours of v

Examples: Consider T_3

• Aut (T_3)

Local action at v is S_3

• $S_3 \leq \operatorname{Stab}(v)$



Suppose G acts on T as a group of automorphisms

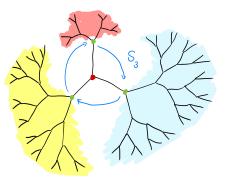
Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Examples: Consider T_3

• Aut (T_3)

Local action at v is S_3

• $S_3 \leq \operatorname{Stab}(v)$



Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

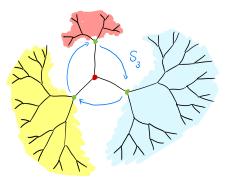
Examples: Consider T_3

• Aut (T_3)

Local action at v is S_3

• $S_3 \leq \operatorname{Stab}(v)$

Local action at v is S_3



Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Examples: Consider T_3

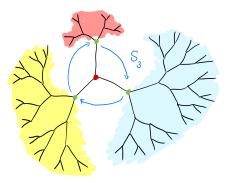
• Aut (T_3)

Local action at v is S_3

• $S_3 \leq \operatorname{Stab}(v)$

Local action at v is S_3

Local action at w is Id (for $w \neq v$)



Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Examples: Consider T_3

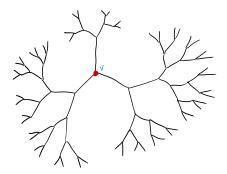
• Aut (T_3)

Local action at v is S_3

• $S_3 \leq \operatorname{Stab}(v)$

Local action at v is S_3

Local action at w is Id (for $w \neq v$)



Suppose G acts on T as a group of automorphisms

Local action of G at vertex v: (closure of) Perm gp induced by action of $Stab_G(v)$ on neighbours of v

Examples: Consider T_3

• Aut (T_3)

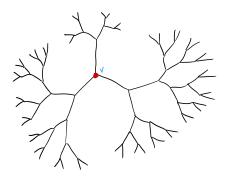
Local action at v is S_3

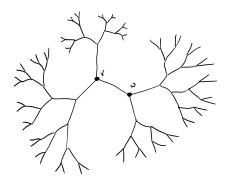
• $S_3 \leq \operatorname{Stab}(v)$

Local action at v is S_3

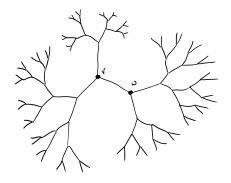
Local action at w is ld (for $w \neq v$)

• Q: Local action C₃?



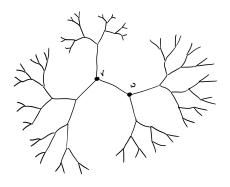


Q: How "close" to $Aut(T_3)$ can G be?

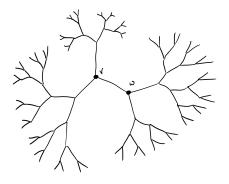


Q: How "close" to $Aut(T_3)$ can G be?

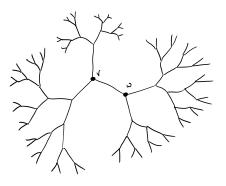
A: Not very — our specified local actions "collide" to restrict G



- Q: How "close" to $Aut(T_3)$ can G be?
- A: Not very our specified local actions "collide" to restrict G
 - $\operatorname{Stab}_G(v)$ induces C_3 on neighbours of v

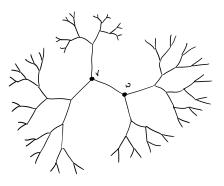


- Q: How "close" to $Aut(T_3)$ can G be?
- A: Not very our specified local actions "collide" to restrict G
 - $\operatorname{Stab}_G(v)$ induces C_3 on neighbours of v
 - So $\operatorname{Stab}_G(v, w)$ fixes all neighbours of $v \dots$



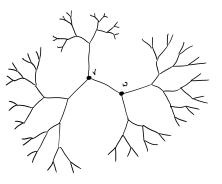
Example: Suppose $G \leq Aut(T_3)$ has all local actions $\cong C_3$.

- Q: How "close" to $Aut(T_3)$ can G be?
- A: Not very our specified local actions "collide" to restrict G
 - $\operatorname{Stab}_G(v)$ induces C_3 on neighbours of v
 - So $\operatorname{Stab}_G(v, w)$ fixes all neighbours of $v \dots$
 - \ldots and all neighbours of w



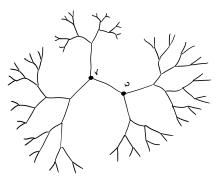
Example: Suppose $G \leq Aut(T_3)$ has all local actions $\cong C_3$.

- Q: How "close" to $Aut(T_3)$ can G be?
- A: Not very our specified local actions "collide" to restrict G
 - $\operatorname{Stab}_G(v)$ induces C_3 on neighbours of v
 - So $\operatorname{Stab}_G(v, w)$ fixes all neighbours of $v \dots$
 - \ldots and all neighbours of w
 - etc. Hence $\operatorname{Stab}_G(v, w)$ is trivial and G is discrete



- Q: How "close" to $Aut(T_3)$ can G be?
- A: Not very our specified local actions "collide" to restrict G
 - $\operatorname{Stab}_G(v)$ induces C_3 on neighbours of v
 - So $\operatorname{Stab}_G(v, w)$ fixes all neighbours of $v \dots$
 - \ldots and all neighbours of w
 - etc. Hence $\operatorname{Stab}_G(v, w)$ is trivial and G is discrete

Moral: choice of local action can severely restrict global behaviour



 Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)

- Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)
- An emergent idea of local-to-global universal groups is more useful in this situation

- Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)
- An emergent idea of local-to-global universal groups is more useful in this situation
- Our theory of local action diagrams is a local-to-global complement to Bass–Serre Theory

- Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)
- An emergent idea of local-to-global universal groups is more useful in this situation
- Our theory of local action diagrams is a local-to-global complement to Bass–Serre Theory

Conventions:

- Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)
- An emergent idea of local-to-global universal groups is more useful in this situation
- Our theory of local action diagrams is a local-to-global complement to Bass–Serre Theory

Conventions:

• Graphs are in the sense of Serre, except loops may or may not equal their own reverse

- Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)
- An emergent idea of local-to-global universal groups is more useful in this situation
- Our theory of local action diagrams is a local-to-global complement to Bass–Serre Theory

Conventions:

- Graphs are in the sense of Serre, except loops may or may not equal their own reverse
- Trees have no loops or multiple edges

- Bass–Serre Theory is of limited use when constructing non-discrete groups needed in the theory of locally compact groups (more later)
- An emergent idea of local-to-global universal groups is more useful in this situation
- Our theory of local action diagrams is a local-to-global complement to Bass–Serre Theory

Conventions:

- Graphs are in the sense of Serre, except loops may or may not equal their own reverse
- Trees have no loops or multiple edges
- All topological statements wrt permutation topology and ≤_c means closed subgroup

Groups acting on infinite trees

Primary tool: Bass–Serre Theory

Primary tool: Bass-Serre Theory

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

• Each $P \in V\Gamma$ is decorated with a group G_P

(vertex groups)

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P
- Each $Y \in A\Gamma$ is decorated with a group G_Y

(vertex groups)

(edge groups)

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

* There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

- * There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .
- \odot Conversely, given a graph of groups Γ , its fundamental group Π acts on a tree *T* in such a way that its associated graph of groups is Γ .

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

- * There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .
- \odot Conversely, given a graph of groups **Γ**, its fundamental group **Π** acts on a tree *T* in such a way that its associated graph of groups is **Γ**.

Remarks:

(vertex groups) (edge groups)

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

- * There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .
- \odot Conversely, given a graph of groups **Γ**, its fundamental group **Π** acts on a tree *T* in such a way that its associated graph of groups is **Γ**.

Remarks:

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

- \circledast There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .
- Conversely, given a graph of groups Γ , its fundamental group Π acts on a tree *T* in such a way that its associated graph of groups is Γ .

Remarks:

Becomposition — works well for locally compact groups

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

- \circledast There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .
- Conversely, given a graph of groups Γ , its fundamental group Π acts on a tree *T* in such a way that its associated graph of groups is Γ .

Remarks:

Becomposition — works well for locally compact groups

Graph of groups (G, Γ) is a graph Γ "decorated" with groups:

- Each $P \in V\Gamma$ is decorated with a group G_P (vertex groups)
- Each $Y \in A\Gamma$ is decorated with a group G_Y
- $G_Y = G_{\overline{Y}}$ for all $Y \in A\Gamma$

(and a monomorphism $G_Y \to G_{t(Y)}$ is specified for all $Y \in A\Gamma$)

(edge groups)

Bass–Serre Structure Theorem. Suppose $G \curvearrowright T$ without inversion.

- * There is a graph of groups Γ associated to (T, G), and G can be identified with the fundamental group of Γ .
- Conversely, given a graph of groups Γ , its fundamental group Π acts on a tree *T* in such a way that its associated graph of groups is Γ .

Remarks:

- Becomposition works well for locally compact groups
- Construction problems arise if you want to specify the action ...

Primary tool: Bass–Serre Theory Small example.

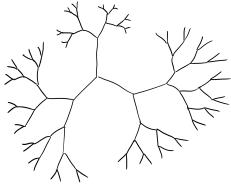
Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $\operatorname{Stab}_G(v) = C_2 \operatorname{Wr} C_3$ at each vertex v

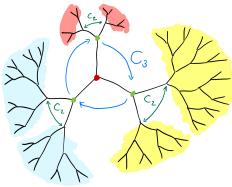
Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $Stab_G(v) = C_2 WrC_3$ at each vertex v



Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $Stab_G(v) = C_2 WrC_3$ at each vertex v



Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $\operatorname{Stab}_G(v) = C_2 \operatorname{Wr} C_3$ at each vertex v

Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $Stab_G(v) = C_2 WrC_3$ at each vertex v

• Bass–Serre says take $G = \operatorname{Stab}_G(v) *_{\operatorname{Stab}_G(v,w)} \operatorname{Stab}_G(w)$ for adjacent v, w

Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $\operatorname{Stab}_G(v) = C_2 \operatorname{Wr} C_3$ at each vertex v

- Bass–Serre says take $G = \operatorname{Stab}_G(v) *_{\operatorname{Stab}_G(v,w)} \operatorname{Stab}_G(w)$ for adjacent v, w
- We've already seen desired action is impossible

Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $\operatorname{Stab}_G(v) = C_2 \operatorname{Wr} C_3$ at each vertex v

- Bass–Serre says take $G = \operatorname{Stab}_G(v) *_{\operatorname{Stab}_G(v,w)} \operatorname{Stab}_G(w)$ for adjacent v, w
- · We've already seen desired action is impossible

Moral: For Bass–Serre to construct what you want, you already need to know that your desired stabiliser arises as a stabiliser of an e.g. almost transitive subgroup of Aut(T)

Small example. Imagine you want to build $G \curvearrowright T_3$ with 2 vertex orbits & specific permutation representations for your vertex stabilisers.

E.g. $\operatorname{Stab}_G(v) = C_2 \operatorname{Wr} C_3$ at each vertex v

- Bass–Serre says take $G = \operatorname{Stab}_G(v) *_{\operatorname{Stab}_G(v,w)} \operatorname{Stab}_G(w)$ for adjacent v, w
- · We've already seen desired action is impossible

Moral: For Bass–Serre to construct what you want, you already need to know that your desired stabiliser arises as a stabiliser of an e.g. almost transitive subgroup of Aut(T)

Local-to-global constructions avoid this. We have a local-to-global complement to Bass–Serre theory

Locally compact groups

Recall a fundamental class of tdlc groups:

 $\ensuremath{\mathscr{S}}$ is the class of groups that are:

- nondiscrete
- · locally compact
- · compactly generated
- topologically simple
 (i.e. no closed nontrivial proper normal subgroups)

Recall a fundamental class of tdlc groups:

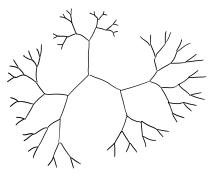
 $\ensuremath{\mathscr{S}}$ is the class of groups that are:

- nondiscrete
- · locally compact
- · compactly generated
- topologically simple
 - (i.e. no closed nontrivial proper normal subgroups)

Groups acting on trees are the main source of examples of nonlinear groups in $\ensuremath{\mathscr{S}}$

• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

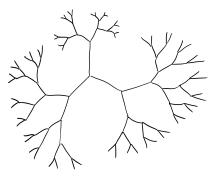
• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees



• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

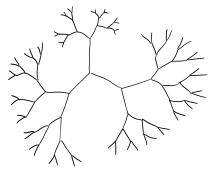
(answering a question due to Serre)

• Tits' result relies on Tits' Independence Property (P) for $G \sim T$:



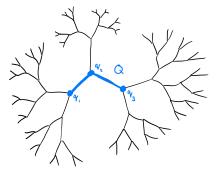
• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

- Tits' result relies on Tits' Independence Property (P) for $G \curvearrowright T$:
- Q (finite or infinite) path in T



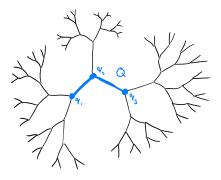
• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

- Tits' result relies on Tits' Independence Property (P) for $G \curvearrowright T$:
- Q (finite or infinite) path in T



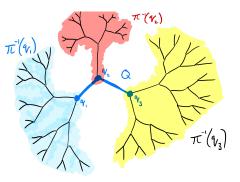
• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

- Tits' result relies on Tits' Independence Property (P) for $G \curvearrowright T$:
- Q (finite or infinite) path in T
- Does $\operatorname{Stab}_G(Q)$ act independently on each of the subtrees "hanging off" Q?



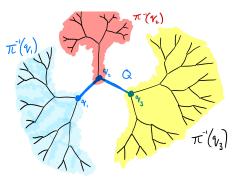
• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

- Tits' result relies on Tits' Independence Property (P) for $G \curvearrowright T$:
- Q (finite or infinite) path in T
- Does $\operatorname{Stab}_G(Q)$ act independently on each of the subtrees "hanging off" Q?



• Jacques Tits (1970): first examples of nonlinear, abstractly simple groups in \mathscr{S} . Achieved via groups acting on trees

- Tits' result relies on Tits' Independence Property (P) for $G \curvearrowright T$:
- Q (finite or infinite) path in T
- Does $\operatorname{Stab}_G(Q)$ act independently on each of the subtrees "hanging off" Q?
- If "YES" for all choices for Q then G has Property (P)



Groups in ${\mathscr S}$

• For $G \curvearrowright T$ let $G^+ := \langle \text{pointwise stabilisers in } G \text{ of edges in } T \rangle$

• For $G \curvearrowright T$ let $G^+ := \langle \text{pointwise stabilisers in } G \text{ of edges in } T \rangle$

Theorem. (Tits, '70) Suppose *T* is an infinite tree and $G \leq \operatorname{Aut} T$ has Property (P). If *G* does not preserve any nonempty proper subtree, nor fix any end, then G^+ is abstractly simple.

• For $G \curvearrowright T$ let $G^+ := \langle \text{pointwise stabilisers in } G \text{ of edges in } T \rangle$

Theorem. (Tits, '70) Suppose *T* is an infinite tree and $G \leq \operatorname{Aut} T$ has Property (P). If *G* does not preserve any nonempty proper subtree, nor fix any end, then G^+ is abstractly simple.

Corollary. If $n \in \mathbb{N}_{\geq 3}$ then $(\operatorname{Aut} T_n)^+ \in \mathscr{S}$ and is nonlinear. (Note: Serre already knew $(\operatorname{Aut} T_n)^+$ was topologically simple)

• For $G \curvearrowright T$ let $G^+ := \langle \text{pointwise stabilisers in } G \text{ of edges in } T \rangle$

Theorem. (Tits, '70) Suppose *T* is an infinite tree and $G \leq \operatorname{Aut} T$ has Property (P). If *G* does not preserve any nonempty proper subtree, nor fix any end, then G^+ is abstractly simple.

Corollary. If $n \in \mathbb{N}_{\geq 3}$ then $(\operatorname{Aut} T_n)^+ \in \mathscr{S}$ and is nonlinear. (Note: Serre already knew $(\operatorname{Aut} T_n)^+$ was topologically simple)

Flawed plan to generate groups in ${\mathscr S}$ from $G \curvearrowright T$

• For $G \curvearrowright T$ let $G^+ := \langle \text{pointwise stabilisers in } G \text{ of edges in } T \rangle$

Theorem. (Tits, '70) Suppose *T* is an infinite tree and $G \leq \operatorname{Aut} T$ has Property (P). If *G* does not preserve any nonempty proper subtree, nor fix any end, then G^+ is abstractly simple.

Corollary. If $n \in \mathbb{N}_{\geq 3}$ then $(\operatorname{Aut} T_n)^+ \in \mathscr{S}$ and is nonlinear. (Note: Serre already knew $(\operatorname{Aut} T_n)^+$ was topologically simple)

Flawed plan to generate groups in \mathscr{S} from $G \curvearrowright T$

• Use Bass–Serre to find "large" (i.e. nondiscrete) subgroups of Aut *T_n* with Property (P) and apply theorem

• For $G \curvearrowright T$ let $G^+ := \langle \text{pointwise stabilisers in } G \text{ of edges in } T \rangle$

Theorem. (Tits, '70) Suppose T is an infinite tree and $G \leq \operatorname{Aut} T$ has Property (P). If G does not preserve any nonempty proper subtree, nor fix any end, then G^+ is abstractly simple.

Corollary. If $n \in \mathbb{N}_{\geq 3}$ then $(\operatorname{Aut} T_n)^+ \in \mathscr{S}$ and is nonlinear. (Note: Serre already knew $(\operatorname{Aut} T_n)^+$ was topologically simple)

Flawed plan to generate groups in \mathscr{S} from $G \curvearrowright T$

• Use Bass–Serre to find "large" (i.e. nondiscrete) subgroups of Aut *T_n* with Property (P) and apply theorem

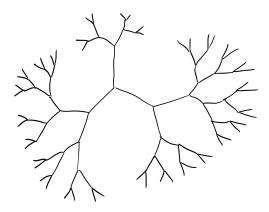
Breakthrough:

• Local-to-global universal groups

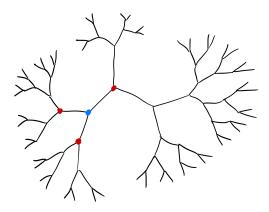
M, N transitive permutation groups of degree m, n (poss. infinite)

 $M,\,N$ transitive permutation groups of degree m,n (poss. infinite) $G \curvearrowright T_m$ is locally- M

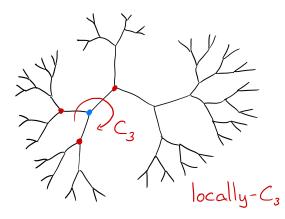
 $M,\,N$ transitive permutation groups of degree m,n (poss. infinite) $G \curvearrowright T_m$ is locally-M



 $M,\,N$ transitive permutation groups of degree m,n (poss. infinite) $G \curvearrowright T_m$ is locally-M



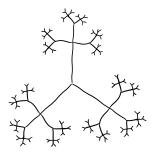
 $M,\,N$ transitive permutation groups of degree m,n (poss. infinite) $G \curvearrowright T_m$ is locally-M



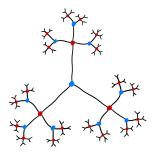
M, N transitive permutation groups of degree m, n (poss. infinite)

 $M,\,N$ transitive permutation groups of degree m,n (poss. infinite) $G \curvearrowright T_{m,n} \text{ is locally-}(M,N)$

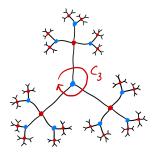
M, N transitive permutation groups of degree m, n (poss. infinite) $G \curvearrowright T_{m,n}$ is locally-(M, N)



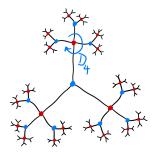
M, N transitive permutation groups of degree m, n (poss. infinite) $G \curvearrowright T_{m,n}$ is locally-(M, N)



 $M,\,N$ transitive permutation groups of degree m,n (poss. infinite) $G \curvearrowright T_{m,n} \text{ is locally-}(M,N)$



M, N transitive permutation groups of degree m, n (poss. infinite) $G \curvearrowright T_{m,n}$ is locally-(M, N)



M, N transitive permutation groups of degree m, n (poss. infinite)

M, N transitive permutation groups of degree m, n (poss. infinite)

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)

(2017, S.) Box product U(M, N)

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq Aut(T_m)$ that:

(2017, S.) Box product U(M, N)

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq Aut(T_m)$ that:

(2017, S.) Box product U(M, N)

There is a "universal" locally-(M, N) subgroup $U(M, N) \leq \operatorname{Aut}(T_{m,n})$ that:

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq \operatorname{Aut}(T_m)$ that:

• has Property (P) and the universal property

(2017, S.) Box product U(M, N)

There is a "universal" locally-(M, N) subgroup $U(M, N) \leq \operatorname{Aut}(T_{m,n})$ that:

has Property (P) and the universal property

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq \operatorname{Aut}(T_m)$ that:

- has Property (P) and the universal property
- has a simple subgroup of index 2

(gen. by vertex stabs)

(2017, S.) Box product U(M, N)

There is a "universal" locally-(M, N) subgroup $U(M, N) \leq \operatorname{Aut}(T_{m,n})$ that:

• has Property (P) and the universal property

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq \operatorname{Aut}(T_m)$ that:

- has Property (P) and the universal property
- has a simple subgroup of index 2

(2017, S.) Box product U(M, N)

There is a "universal" locally-(M, N) subgroup $U(M, N) \leq \operatorname{Aut}(T_{m,n})$ that:

- has Property (P) and the universal property
- is simple when M, N are generated by point stabilisers

(gen. by vertex stabs)

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq \operatorname{Aut}(T_m)$ that:

- has Property (P) and the universal property
- has a simple subgroup of index 2

(2017, S.) Box product U(M, N)

There is a "universal" locally-(M, N) subgroup $U(M, N) \leq \operatorname{Aut}(T_{m,n})$ that:

- has Property (P) and the universal property
- is simple when M, N are generated by point stabilisers
- Majority of new constructions of nonlinear groups in $\mathscr S$ have used the ideas of Tits and Burger and Mozes.

(gen. by vertex stabs)

M, N transitive permutation groups of degree m, n (poss. infinite)

(2000, Burger and Mozes) Universal group U(M)There is a "universal" locally-M subgroup $U(M) \leq \operatorname{Aut}(T_m)$ that:

- has Property (P) and the universal property
- has a simple subgroup of index 2

(2017, S.) Box product U(M, N)

There is a "universal" locally-(M, N) subgroup $U(M, N) \leq \operatorname{Aut}(T_{m,n})$ that:

- has Property (P) and the universal property
- is simple when M, N are generated by point stabilisers
- Majority of new constructions of nonlinear groups in $\mathscr S$ have used the ideas of Tits and Burger and Mozes.
- (2017, S.) There are precisely 2^{\aleph_0} isomorphism classes in $\mathscr S$

(gen. by vertex stabs)

Theory of local action diagrams

• Analogous to Bass-Serre Theory for 'local actions'

- · Analogous to Bass-Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

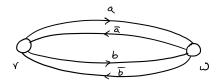
Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

- A connected graph Γ

- · Analogous to Bass-Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

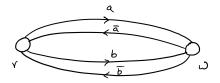
• A connected graph Γ



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

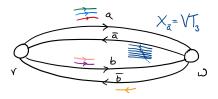
- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

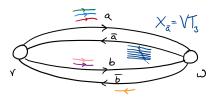
Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).



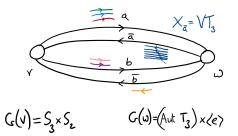
- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:

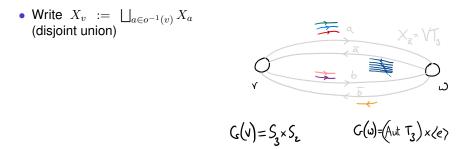


- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union) $\zeta_a(v) = S_a \times S_b$ $\zeta_b(v) = S_a \times S_b$ $\zeta_b(v) = (Aut T_3) \times \langle e \rangle$

- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- ∀v ∈ VΓ, a group G(v) (called the local action at v) with the following properties:



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

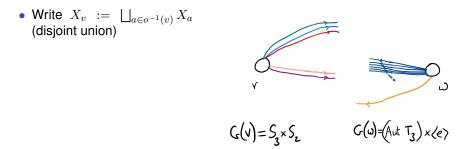
Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union) $G(v) = S_a \times S_a$ G(w) = (Aut T)

L)

- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- ∀v ∈ VΓ, a group G(v) (called the local action at v) with the following properties:



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

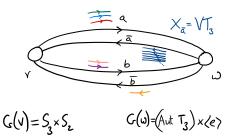
- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union) $\zeta_s(v) = S_s \times S_s$ $G(w) = (Aut T_3) \times \langle e \rangle$

- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union) $\zeta_a(v) = S_a \times S_b$ $\zeta_b(v) = S_a \times S_b$ $\zeta_b(v) = (Aut T_3) \times \langle e \rangle$

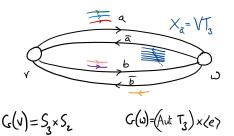
- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write X_v := ⊔_{a∈o⁻¹(v)} X_a (disjoint union)
- $G(v) \leq \operatorname{Sym}(X_v)$ is closed



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union)
- $G(v) \leq \operatorname{Sym}(X_v)$ is closed
- Sets X_a are the orbits of G(v) on X_v



- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union)
- $G(v) \leq \operatorname{Sym}(X_v)$ is closed
- Sets X_a are the orbits of G(v) on X_v

- Analogous to Bass–Serre Theory for 'local actions'
- Gives a general way of completely describing and classifying closed subgroups of Aut *T* with Property (P) (call such groups (P)-closed)

Definition. A local action diagram $\Delta = (\Gamma, (X_a), (G(v)))$ consists of:

- A connected graph Γ
- For each arc a of Γ , a nonempty set X_a (called the colour set of a).
- $\forall v \in V\Gamma$, a group G(v) (called the local action at v) with the following properties:
- Write $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$ (disjoint union)
- $G(v) \leq \operatorname{Sym}(X_v)$ is closed
- Sets X_a are the orbits of G(v) on X_v

Isomorphisms of local action diagrams: the graphs are isomorphic (with iso. θ) & the local actions are perm. isomorphic via $X_a \mapsto X_{\theta(a)}$ around each vertex

Theory of local action diagrams (Iads) Theorem. (Reid–S.)

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

• Isomorphism classes of local action diagrams

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

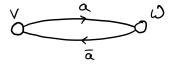
- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

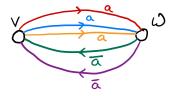
1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)

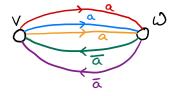
- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)



- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)



- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:

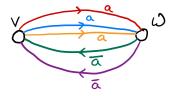


Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism

 $\pi:T\to\Gamma$

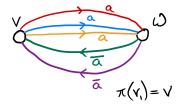
such that



Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism $\pi: T \rightarrow \Gamma$

such that



• V,

Outline of argument:

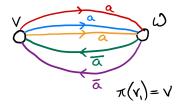
- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree T with:
 - A colouring map $\mathcal{L}: AT \to \bigsqcup_{a \in A\Gamma} X_a$
 - A surjective homomorphism $\pi:T\to \Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

 $\ensuremath{\mathcal{L}}$ restricts to a bijection:

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



• V,

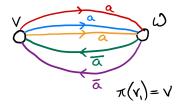
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \to \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphi
 - A surjective homomorphism $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b\in o^{-1}(v_i):\pi(b)=a\}\to X_a$$



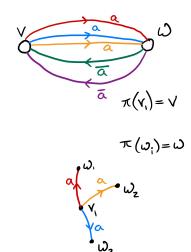
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b\in o^{-1}(v_i):\pi(b)=a\}\to X_a$$



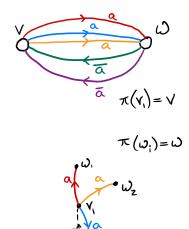
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



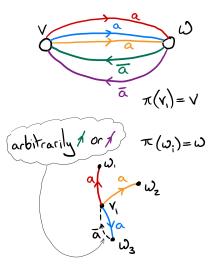
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \to \bigsqcup_{a \in A\Gamma} X_a$
 - A surjective homomorphism $\pi:T\to \Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b\in o^{-1}(v_i):\pi(b)=a\}\to X_a$$



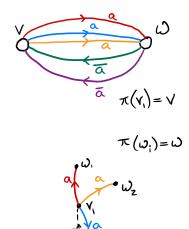
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



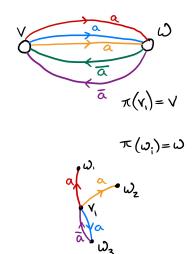
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



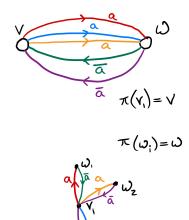
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



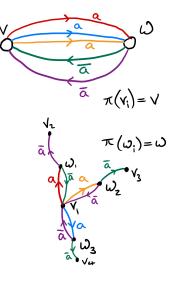
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



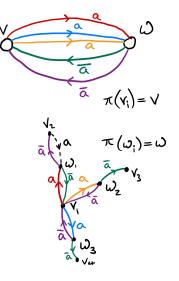
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



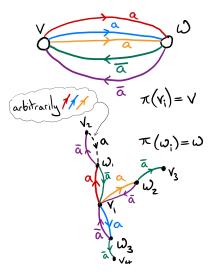
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphis
 - A surjective homomorphism $\pi:T\to \Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b\in o^{-1}(v_i):\pi(b)=a\}\to X_a$$



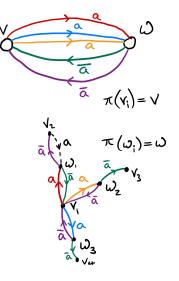
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



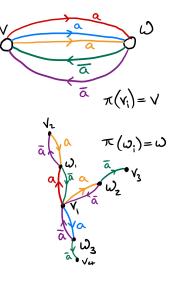
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



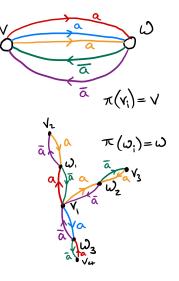
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree **T** is a tree *T* with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$



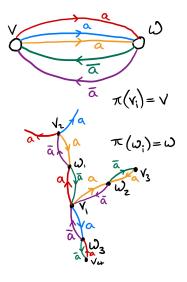
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b\in o^{-1}(v_i):\pi(b)=a\}\to X_a$$



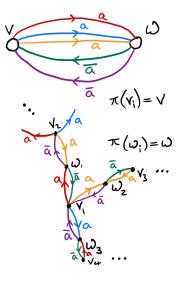
Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - $\pi:T\to\Gamma$

such that

 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

$$\{b\in o^{-1}(v_i):\pi(b)=a\}\to X_a$$



Outline of argument:

- 1. Every $\mathfrak{lad}\ \Delta$ gives rise to a special arc-coloured tree $\mathbf T$ called a $\Delta\text{-tree}$
 - Δ is a graph Γ with arc-colours X_a (local actions play no part here)
 - A Δ -tree T is a tree T with:
 - A colouring map $\mathcal{L}: AT \rightarrow \bigsqcup_{a \in A\Gamma} X_a$ - A surjective homomorphism
 - A surjective homomorphisi $\pi:T
 ightarrow\Gamma$

such that

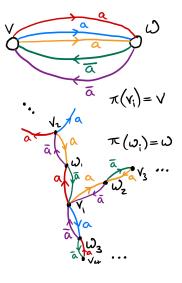
 $\forall v_i \in VT \text{ and } \forall a \in o^{-1}(\pi(v_i))$

 $\ensuremath{\mathcal{L}}$ restricts to a bijection:

$$\{b \in o^{-1}(v_i) : \pi(b) = a\} \to X_a$$

- For Δ -trees \mathbf{T}, \mathbf{T}'
 - \exists graph isomorphism

 $\theta:T \to T'$ s.t. $\pi' \circ \theta = \pi$



Outline of argument:

Outline of argument:

2. We define a "universal" group $\mathbf{U}(\mathbf{T},\!\Delta) \leq \operatorname{Aut} T$

Outline of argument:

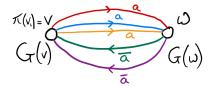
- 2. We define a "universal" group $\mathbf{U}(\mathbf{T},\Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ -tree ${\bf T}$ is:

 $Aut_{\pi}T := \{\theta \in Aut T : \pi \circ \theta = \pi\}$

Theory of local action diagrams (Lads) Outline of argument:

- 2. We define a "universal" group $U(\mathbf{T}, \Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ-tree T is:

 $\operatorname{Aut}_{\pi} T := \{ \theta \in \operatorname{Aut} T : \pi \circ \theta = \pi \}$



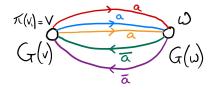
Outline of argument:

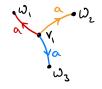
- 2. We define a "universal" group $\mathbf{U}(\mathbf{T},\Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ -tree ${\bf T}$ is:

 $\operatorname{Aut}_{\pi} \mathbf{T} := \{ \theta \in \operatorname{Aut} \mathbf{T} : \pi \circ \theta = \pi \}$

 The local action of g ∈ Aut_πT at v ∈ VT is:

 $\mathcal{L}g\mathcal{L}\big|_{o^{-1}(v)}^{-1} \in \operatorname{Sym}(X_{\pi(v)})$





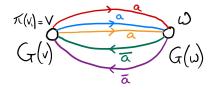
Outline of argument:

- 2. We define a "universal" group $\mathbf{U}(\mathbf{T},\Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ -tree ${\bf T}$ is:

 $\operatorname{Aut}_{\pi} \mathbf{T} := \{ \theta \in \operatorname{Aut} \mathbf{T} : \pi \circ \theta = \pi \}$

 The local action of g ∈ Aut_πT at v ∈ VT is:

 $\mathcal{L}g\mathcal{L}\big|_{o^{-1}(v)}^{-1} \in \operatorname{Sym}(X_{\pi(v)})$



$$X_{v} = \{ / / / \}$$

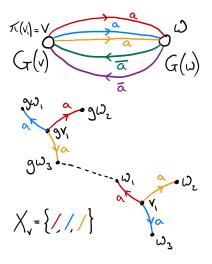
Outline of argument:

- 2. We define a "universal" group $\mathbf{U}(\mathbf{T},\Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ -tree ${\bf T}$ is:

 $\operatorname{Aut}_{\pi} T := \{ \theta \in \operatorname{Aut} T : \pi \circ \theta = \pi \}$

 The local action of g ∈ Aut_πT at v ∈ VT is:

 $\mathcal{L}g\mathcal{L}\big|_{o^{-1}(v)}^{-1} \in \operatorname{Sym}(X_{\pi(v)})$



Outline of argument:

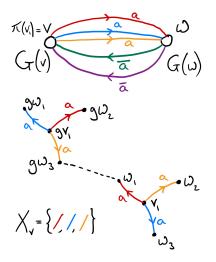
- 2. We define a "universal" group $\mathbf{U}(\mathbf{T},\Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ -tree ${\bf T}$ is:

 $\operatorname{Aut}_{\pi} \mathbf{T} := \{ \theta \in \operatorname{Aut} \mathbf{T} : \pi \circ \theta = \pi \}$

 The local action of g ∈ Aut_πT at v ∈ VT is:

 $\mathcal{L}g\mathcal{L}\big|_{o^{-1}(v)}^{-1} \in \operatorname{Sym}(X_{\pi(v)})$

 g ∈ Aut_πT lies in U(T,Δ) iff ∀v ∈ VT the local action of g at v lies in G(π(v)).



Outline of argument:

- 2. We define a "universal" group $\mathbf{U}(\mathbf{T},\Delta) \leq \operatorname{Aut} T$
 - Automorphism gp of Δ -tree ${\bf T}$ is:

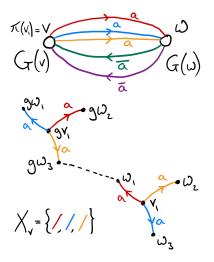
 $\operatorname{Aut}_{\pi} T := \{ \theta \in \operatorname{Aut} T : \pi \circ \theta = \pi \}$

 The local action of g ∈ Aut_πT at v ∈ VT is:

 $\mathcal{L}g\mathcal{L}\big|_{o^{-1}(v)}^{-1} \in \operatorname{Sym}(X_{\pi(v)})$

 g ∈ Aut_πT lies in U(T,Δ) iff ∀v ∈ VT the local action of g at v lies in G(π(v)).

 Choice of T doesn't matter, results in perm. iso. universal groups.
 Write U(Δ) for *the* universal group



Outline of argument:

Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

Proof idea: pick representative vertices in T and use their arcs in T as the colours in Δ

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G\leq_c\operatorname{Aut} T$ has Property (P)

Outline of argument:

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G\leq_c\operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

 Every fa∂ ∆ gives rise to a special arc-coloured tree T called a ∆-tree (underlying uncoloured tree will be T)

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\operatorname{Iad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta) = \mathbf{U}(\mathbf{T}, \Delta) \leq \operatorname{Aut} T$

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\operatorname{Iad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta)=\mathbf{U}(\mathbf{T},\Delta)\leq\operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\operatorname{Iad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta)=\mathbf{U}(\mathbf{T},\Delta)\leq\operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

Consequences:

Theorem. (Reid–S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\mathfrak{lad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta) = \mathbf{U}(\mathbf{T}, \Delta) \leq \operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

Consequences:

- The \mathfrak{lad} associated to $\mathbf{U}(\Delta)$ is Δ

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\mathfrak{lad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta)=\mathbf{U}(\mathbf{T},\Delta)\leq\operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

Consequences:

- The Ia0 associated to $\mathbf{U}(\Delta)$ is Δ

(up to isom.)

• $U(\Delta) \leq_c \operatorname{Aut} T$ has Property (P)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\mathfrak{lad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta) = \mathbf{U}(\mathbf{T}, \Delta) \leq \operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

Consequences:

- The Iad associated to $\mathbf{U}(\Delta)$ is Δ
- $\mathbf{U}(\Delta) \leq_c \operatorname{Aut} T$ has Property (P)
- For any $G \leq \operatorname{Aut} T$ with associated $\operatorname{Iad} \Delta$, then (up to perm isom)

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\mathfrak{lad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta) = \mathbf{U}(\mathbf{T}, \Delta) \leq \operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

Consequences:

- The tad associated to $\mathbf{U}(\Delta)$ is Δ
- $\mathbf{U}(\Delta) \leq_c \operatorname{Aut} T$ has Property (P)
- For any $G \leq \operatorname{Aut} T$ with associated $\operatorname{Iad} \Delta$, then (up to perm isom) $G \leq \mathbf{U}(\Delta)$ with equality iff G is closed with Property (P).

Theorem. (Reid-S.) There is a natural one-to-one correspondence between:

- Isomorphism classes of local action diagrams
- Isomorphism classes of pairs (T,G) where T is a tree and $G \leq_c \operatorname{Aut} T$ has Property (P)

Outline of argument:

Initial things to prove:

- Every $\mathfrak{lad} \Delta$ gives rise to a special arc-coloured tree T called a Δ -tree (underlying uncoloured tree will be T)
- For Δ and T, we define the universal group $\mathbf{U}(\Delta) = \mathbf{U}(\mathbf{T}, \Delta) \leq \operatorname{Aut} T$
- For a tree T' and $G \leq \operatorname{Aut} T'$, there is a $\operatorname{Iad} \Delta'$ associated to (T', G) and T' can be arc-coloured to be a Δ' -tree \mathbf{T}' .

 $\label{eq:consequences: Groups U} \mbox{ Consequences: Groups U}(\Delta) \mbox{ are precisely the (P)-closed groups up to isom. }$

- The Iad associated to $\mathbf{U}(\Delta)$ is Δ
- $U(\Delta) \leq_c \operatorname{Aut} T$ has Property (P)
- For any $G \leq \operatorname{Aut} T$ with associated $\operatorname{Iad} \Delta$, then (up to perm isom) $G \leq \mathbf{U}(\Delta)$ with equality iff G is closed with Property (P).

• All possible local action diagrams arise

- All possible local action diagrams arise
- Examples:

- All possible local action diagrams arise
- Examples:
 - Burger–Mozes framework: Γ is a single vertex with a set of loops, each of which is its own reverse

(cf graph of groups of an HNN extension)

- All possible local action diagrams arise
- Examples:
 - Burger–Mozes framework: Γ is a single vertex with a set of loops, each of which is its own reverse

(cf graph of groups of an HNN extension)

• Box product framework: Γ has two vertices and no loops.

(cf graph of groups of an amalgamated free product)

- All possible local action diagrams arise
- Examples:
 - Burger–Mozes framework: Γ is a single vertex with a set of loops, each of which is its own reverse

(cf graph of groups of an HNN extension)

• Box product framework: Γ has two vertices and no loops.

(cf graph of groups of an amalgamated free product)

• Properties of $G \leq_c \operatorname{Aut} T$ with Property (P) can be read directly from Δ

- All possible local action diagrams arise
- Examples:
 - Burger–Mozes framework: Γ is a single vertex with a set of loops, each of which is its own reverse

(cf graph of groups of an HNN extension)

• Box product framework: Γ has two vertices and no loops.

(cf graph of groups of an amalgamated free product)

 Properties of G ≤_c Aut T with Property (P) can be read directly from ∆ For example:

- All possible local action diagrams arise
- Examples:
 - Burger–Mozes framework: Γ is a single vertex with a set of loops, each of which is its own reverse

(cf graph of groups of an HNN extension)

• Box product framework: Γ has two vertices and no loops.

(cf graph of groups of an amalgamated free product)

• Properties of $G \leq_c \operatorname{Aut} T$ with Property (P) can be read directly from Δ For example:

Proper nonempty invariant subtrees and fixed ends of G(arise from non-empty "strongly confluent partial orientations" of Δ)

- All possible local action diagrams arise
- Examples:
 - Burger–Mozes framework: Γ is a single vertex with a set of loops, each of which is its own reverse

(cf graph of groups of an HNN extension)

• Box product framework: Γ has two vertices and no loops.

(cf graph of groups of an amalgamated free product)

 Properties of G ≤_c Aut T with Property (P) can be read directly from ∆ For example:

Proper nonempty invariant subtrees and fixed ends of G(arise from non-empty "strongly confluent partial orientations" of Δ)

Hence: simplicity of G^+

Thank you

Papers to read for more info:

- Marc Burger & Shahar Mozes, 'Groups acting on trees: from local to global structure', *Publications mathématiques de l'I.H.É.S.* (2000)
- Colin D. Reid, Simon M. Smith with an appendix by Stephan Tornier, 'Groups acting on trees with Tits' independence property (P)', arXiv:2002.11766
- Simon M. Smith, 'A product for permutation groups and topological groups', *Duke Math. J.* (2017)
- Stephan Tornier, 'Groups Acting on Trees With Prescribed Local Action', arXiv:2002.09876

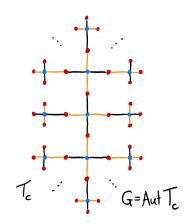
Additional slides

Appendix: Proofs for local action diagrams

Outline of argument:

Outline of argument:

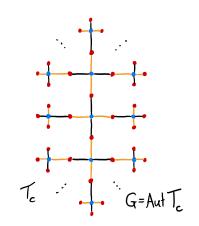
Outline of argument:



Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

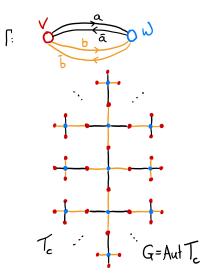
• $\Gamma := T \backslash G$, with quotient map π



Outline of argument:

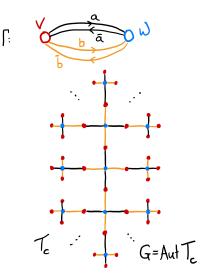
3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

• $\Gamma := T \setminus G$, with quotient map π



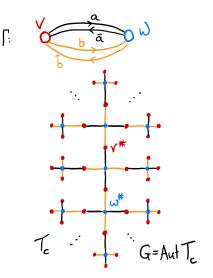
Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$



Outline of argument:

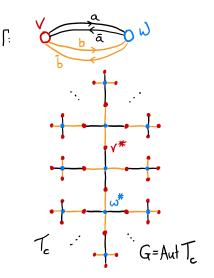
- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

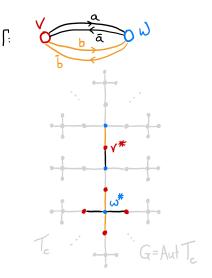
$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

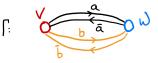
$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

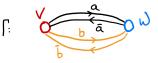
$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

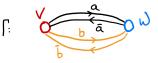
$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

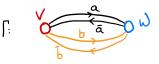
$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$

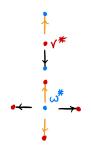


Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$

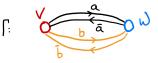


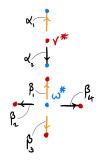


Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$

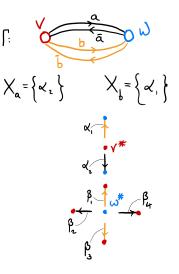




Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

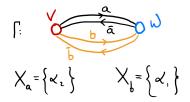
$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$



Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$

$$\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

Outline of argument:

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

$$X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$$

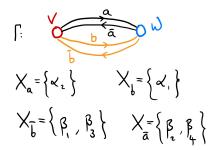
$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$$

Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a fad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

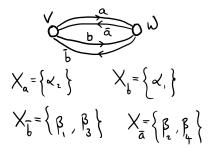


Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a fad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

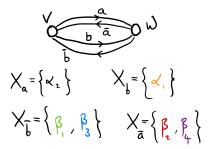


Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

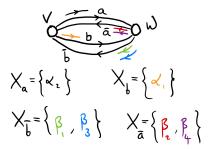


Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a fad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

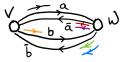


Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

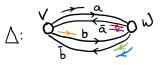


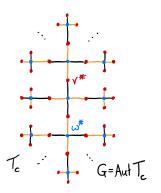
Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$





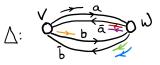
Outline of argument:

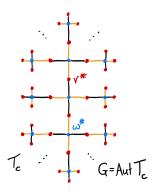
3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

- X_v is union of these X_a
- G(v) is closure of the permutation group induced by $\operatorname{Stab}_G(v^*) \curvearrowright X_v$





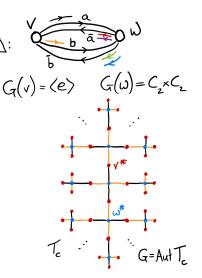
Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

- X_v is union of these X_a
- G(v) is closure of the permutation group induced by $\operatorname{Stab}_G(v^*) \curvearrowright X_v$



Outline of argument:

3. For a tree T and $G \leq \operatorname{Aut} T$, there is a Iad Δ associated to (T,G) and T can be arc-coloured to be a Δ -tree ${\bf T}$

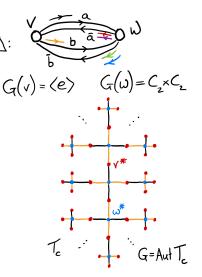
- $\Gamma := T \backslash G$, with quotient map π
- $\forall v \in V\Gamma$ fix $v^* \in VT$ s.t. $\pi(v^*) = v$
- $\forall a \in A\Gamma$ s.t. v = o(a),

 $X_a := \{ b \in o^{-1}(v^*) : \pi(b) = a \}$

- X_v is union of these X_a
- G(v) is closure of the permutation group induced by $\operatorname{Stab}_G(v^*) \curvearrowright X_v$

- Finally arc-colour T to form a $\Delta\text{-tree}$:
 - $\forall w \in VT$ choose $g_w \in G$ s.t. $g_w w = w^*$

•
$$\forall b \in o^{-1}(w)$$
 set $\mathcal{L}(b) := g_w b$.



Appendix: Further remarks

Enumerating all (P)-closed groups

Enumerating all (P)-closed groups

Let C(n, d) be the class of (P)-closed actions on trees (T, G) such that G has at most n orbits on vertices and no vertex has degree greater than d. Then:

Enumerating all (P)-closed groups

Let C(n, d) be the class of (P)-closed actions on trees (T, G) such that G has at most n orbits on vertices and no vertex has degree greater than d. Then:

- There are only finitely many conjugacy classes in $\mathcal{C}(n,d)$

Enumerating all (P)-closed groups

Let C(n, d) be the class of (P)-closed actions on trees (T, G) such that G has at most n orbits on vertices and no vertex has degree greater than d. Then:

- There are only finitely many conjugacy classes in $\mathcal{C}(n,d)$
- The number of conjugacy classes grows rapidly with *n* and *d*. For *n* = 1 there are more than just the Burger-Mozes groups.

Enumerating all (P)-closed groups

Let C(n, d) be the class of (P)-closed actions on trees (T, G) such that G has at most n orbits on vertices and no vertex has degree greater than d. Then:

- There are only finitely many conjugacy classes in $\mathcal{C}(n,d)$
- The number of conjugacy classes grows rapidly with *n* and *d*. For *n* = 1 there are more than just the Burger-Mozes groups.
- Stephan Tornier has an appendix in our paper where he uses GAP to find all (up to conjugacy) (P)-closed groups on T_d the *d*-regular tree, for d ≤ 5.