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Abstract

A brief biological introduction for salmonella motion in mucus is given
llustrate motivations for modeling such motion

Outline the structure of the process model and describe the SDEs

Process model is treated as Hidden Markov Model for learning and inference

A brief introduction to parameter estimation with incomplete data through
Expectation Maximization

Will compare impact of different mucosal conditions on salmonella motion

Will use additional statistical tools to understand accuracy and things like first
passage time

Biological Background and
Motivations

Salmonella swim with flagella and this creates a distinct movement
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Run and Tumble models have been used to model this
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Flagella rotate synchronously to create forward motion and
asynchronously to turn the cell

Studies have already shown that various mucosal conditions can impact
salmonella motion, in particular in Ragl_/_ mice, which lack mature T
and B lymphocytes

Specifically, antibodies that bind to the LPS in salmonella cell walls
hinder active motion

This is because antibodies act as anchors

A model was created to observe the extent of this for Salmonella in
mouse Gl tracts

Model

Cells switch between swimming, tumbling, and dormant

Tumble must be used as an intermediate state between swim and
dormant

This means there are four transition rates

Model Diagram

K, k,
— E——
—— ——
k. K,
Dormant Tumble Swim

Biologically supported by previous run and tumble models and video
data

Each state experiences some variant of Brownian Motion

SDEs

Specific SDEs can then be written to describe each state individually

V2DodW
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Swim (S = 2): dX = v(e,0)dt + /2DydW

Dormant (S =0): dX =
Tumble (S =1): dX =

¢ and @ indicate orientation, uniformly random each time entering
the Swim state

For simplicity, we can discretized the unit sphere to get a finite
number of ¢ and 6 angles

Chapman-Kolmogorov Equation
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Statistical Tools for Parameter
Estimation

Because of the stochastic nature of the model, in addition to the
latent states, statistical tools are needed to estimate parameters

Understanding how to estimate parameter values in the case of
complete data and the case of incomplete data is necessary

Maximum Likelihood Estimation

In the case of complete data, i.e. no latent states, Maximum
Likelihood Estimation (MLE) can be used to estimate parameters

A likelihood function is function to describe the probability of seeing
a certain set of observations, say X1.7 = X1, X9, ..., X7, given the
parameters 6

By optimizing the likelihood function, or equivalently the
log-likelihood, we obtain the parameter values that maximize our
likelihood of seeing Xy.7

Expectation Maximization

For incomplete data, a more advanced algorithm called Expectation
Maximization (EM) is needed as we do not know the complete set
of data

EM consists of two steps, the E-step and the M-step

E-step focuses on optimizing expectations while holding parameters
constant

M-step focuses on optimizing parameters while holding expectations
constant

The Forward-Backward algorithm is an algorithm for the E-step
which computes two probabilities, a = P(St, X1.4) and

B = P(X;11.7|St), by passing through the set of cell position
data, X7q.¢, twice (once forward and once backward)

These two probabilities are then used to calculate two expectations
which represent the probability of being in state S at time t and the
joint probability of being in state .S; and time ¢ — 1 and state S; at
time ¢
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(1) These two expectations can then be used to re-estimate the
parameters, which makes up the M-step
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Where ¢, ; is the state transition probability matrix

We can iterate over these two steps, recomputing first the
expectations then the parameters, until a convergence is reached
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Future work

In the process of running position data for wild type cells, which
means they are a natural strain with no atypical mutations, through
EM algorithm to determine parameter values for locations in the Gl
tract

Position data is pulled from microscopy videos via a particle
tracking algorithm

Image of Video of Wild-Type cells from Mouse Duodenum

Will compare results and evaluate how location in the Gl tract
impacts motion for wild type cells

Confidence of parameter estimation will be examined
First Passage Time will be examined
Possibly look for population heterogeneity

Expand the process model to include population heterogeneity, and
use a reducible HMM to estimate the parameter values
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