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A class has sublinear separators if its n-vertex
subgraphs have separators of size O(n1−ϵ) for ϵ > 0.

Can we describe the structure of these classes?

guarantees
sublinear separators
is general
respects product
structure
does not capture
everything :(

generalized
coloring numbers
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The following classes have sublinear separators.
planar graphs: O(n1/2)

classes with product structure: O(n1/2)

classes with a forbidden minor: O(n1/2)

classes whose depth-r minors have average degree poly(r)

←→?

These are the only classes with sublinear separators.



Subgraphs of H ⊠ P ⊠ . . .⊠ P : O(n1− 1
d+1 )

d

(Dvǒrák-Huynh-Joret-Liu-Wood 21)
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Instead we have a property about pairs of shapes.

r-comparable

For each point x in the “larger” shape, there is a
translate S of the “smaller” shape which contains x
so that the volume of the intersection ≥ 1

r vol(S).



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).

⊠



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).

⊠

Products work if all of
these shapes are both
“large” and “small”.



Theorem
The class of intersection graphs of r-comparable,
k-wise disjoint, compact convex sets in Rd has
separators of size O(n1− 1

2d+4 ).

⊠

Products work if all of
these shapes are both
“large” and “small”.

Using a theorem of
Krauthgamer-Lee 07,

these are exactly subgraphs
of P ⊠ . . .⊠ P .
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Lemma (see Dvǒrák 18 and Esperet-Raymond 18)
Any class with strong coloring numbers ≤ poly(r)
has sublinear separators. (of size O(n1− 1

2deg+4 ))

The scolr is small if there exists a linear order of
V (G) s.t. for each v ,
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Lemma
There exists a class with sublinear separators which
cannot be represented by “comparable
axis-aligned rectangles”.

Problem (Joret-Wood; see Esperet-Raymond 18)
Does every class with sublinear separators have
strong coloring numbers ≤ poly(r)?

Problem (van den Heuvel-Kierstead 19)
If a class has strong coloring numbers ≤ poly(r),
then is there a single vertex ordering for all r?



Thank you!


