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Plan
Describe a project that arose from functor calculus and how it fits
into the framework of Cartesian differential categories and tangent
categories.

Outline

1. Introduction

2. Abelian functor calculus and directional derivatives

3. Fitting this into a categorical framework

4. A higher order chain rule via tangent categories
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Perspective

I Functor calculus provides a way to approximate functors with
“polynomial” functors, like Taylor polynomials.

I Calculus terminology provides an analogy for describing these
techniques.

I Cartesian differential and tangent categories validate this
analogy and provide new tools for understanding functor
calculus.

I This work is rooted in homotopy theory/algebraic topology,
where we typically work up to some notion of equivalence
(e.g., homotopy equivalence, weak homotopy equivalence,
quasi-isomorphism) that’s weaker than isomorphism.



Starting Point

Goodwillie, 2003
For a functor of spaces F , there is a tower of functors and natural
transformations

F
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. . . // Pn+1F // PnF // Pn−1F // . . . // P0F

such that

I PnF is an n-excisive functor,

I if F is “nice,” the functors PnF approximate F in a range that
increases linearly with n, and

I PnF is universal (in an appropriate homotopy category) among
n-excisive functors with natural transformations from F .



Goodwillie, 2003

F is 1-excisive iff for every strongly (homotopy) cocartesian square

X0
//

��

X1

��
X2

// X12,

the square
F (X0) //

��

F (X1)

��
F (X2) // F (X12)

is (homotopy) cartesian.



Abelian Functor Calculus – Context

I A and B are abelian categories and F : B → A is a functor.

I Eilenberg and Mac Lane (1954) defined “polynomial degree
n” functors in this context in terms of cross effects.

I Eilenberg and Mac Lane (1951, 1956); and Dold and Puppe
(1961) constructed new functors QF (for stable homology of
R-modules with coefficients in S) and DF (for derived
functors of non-additive functors) that are degree 1
polynomial approximations to F .



Abelian Functor Calculus – Cross effects

An analogy:

For f : R→ R, f is degree 1⇒ f (x) = ax + b for some a and b.
Then

cr1f (x) := f (x)− f (0) = ax

is linear, and

cr2f (x , y) = cr1f (x + y)− cr1f (x)− cr1f (y) = 0.



For f : R→ R:
f is degree 2⇒ f (x) = ax2 + bx + c for some a, b, and c . Then

cr2f (x , y) = cr1f (x + y)− cr1f (x)− cr1f (y)

= a(x + y)2 + b(x + y)− ax2 − bx − ay2 − by

= 2axy

is linear in both x and y and

cr3f (x , y , z) = cr2f (x , y + z)− cr2f (x , y)− cr2f (x , z)

= 2ax(y + z)− 2axy − 2axz = 0.

In fact, f is degree n iff crn+1f (x1, x2, . . . , xn+1) = 0.



Cross Effects

Definition:
For F : B → A where B and A are abelian categories, the nth
cross effect functor crnF : Bn → A is defined recursively by

F (X ) ∼= F (0)⊕ cr1F (X ),

cr1F (X1 ⊕ X2) ∼= cr1F (X1)⊕ cr1F (X2)⊕ cr2F (X1,X2),

and, in general,

crn−1F (X1, . . . ,Xn−2,Xn−1 ⊕ Xn) ∼= crn−1F (X1, . . . ,Xn−2,Xn−1)

⊕ crn−1F (X1, . . . ,Xn−2,Xn)

⊕ crnF (X1, . . . ,Xn−1,Xn).

Definition:
F : B → A is degree n if and only if crn+1F ' 0.



Cross Effects

Example

A is an object in an abelian category A, F : A → A with
F (X ) = A⊕ X . Then

A⊕ X = F (X ) ∼= F (0)⊕ cr1F (X ).

Thus,

cr1F (X ) ∼= X ,

cr1F ∼= id.

And,

X ⊕ Y ∼= cr1F (X ⊕ Y ) ∼= cr1F (X )⊕ cr1F (Y )⊕ cr2F (X ,Y ),

cr2F ∼= 0.

In fact, crnF ∼= 0 for all n ≥ 2. So F is degree 1.



Abelian Functor Calculus

Theorem (J-McCarthy, 2004)

Given a functor F : B → A between abelian categories B and A,
there exists a Taylor tower of functors and natural transformations
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. . . // Pn+1F // PnF // Pn−1F // . . . // P0F

such that

I for all n ≥ 0, PnF is a degree n functor,

I if F is “nice,” the tower converges to F on “nice” objects, and

I PnF is universal (in an appropriate homotopy category)
among degree n functors with natural transformations from F .



Linearization and Directional Derivatives

The functor F : B → A is linear iff F is degree one and reduced
(F (0) = 0).

The linearization of F : B → A is

D1F := P1(cr1F ) ' hofiber(P1F → P0F ).

Example

For F : X 7→ X ⊕ A, D1F : X 7→ X .



Linearization and Directional Derivatives

Reminder:
For a function f : Rn → Rm, a point x ∈ Rn and a direction
v ∈ Rn, the directional derivative of f at x in the direction v is

∇f (v ; x) = lim
t→0

1

t
[f (x + tv)− f (x)] .

Definition:
For F : B → A, and X ,V ∈ B, the directional derivative of F is

∇F (V ;X ) := D1F (X ⊕−)(V ) ' DV
1 (ker(F (X ⊕ V )→ F (X ))).

ker(F (X ⊕ V )→ F (X ))⇔ f (x + tv)− f (x)

DV
1 ⇔ linearize w.r.t. V ⇔ limt→0

1
t



Theorem - Chain Rule for Directional Derivatives (J-McCarthy,
2004; BJORT, 2018)

For a composable pair of functors F and G ,

∇(F ◦ G ) ' ∇F (∇G ;G ).



Cartesian Differential Categories

Definition (Blute-Cockett-Seely, 2009):

A Cartesian left-additive category with a differential operator ∇

F : B → A
∇F : B × B → A

is a Cartesian differential category if ∇ satisfies properties 1-7 for
morphisms F , G , and objects X ,Y ,Z ,W ,V :

Linear 1 ∇(F ⊕ G )(V ;X ) = ∇F (V ;X )⊕∇G (V ;X ).

Linear 2 ∇F (V ⊕W ;X ) = ∇F (V ;X )⊕∇F (W ;X ) and
∇F (0;X ) = 0.

Identity ∇id(V ;X ) = V .

Products ∇〈F ,G 〉(V ;X ) = 〈∇F (V ;X ),∇G (V ;X )〉.
Chain Rule ∇(F ◦ G )(V ;X ) = ∇F (∇G (V ;X );G (X )).

Partials ∇(∇F )((Z ; 0); (0;X )) = ∇F (Z ;X ).

Mixed ∂ ∇(∇F )((Z ;W ); (V ;X )) = ∇(∇F )((Z ;V ); (W ;X )).



Cartesian Differential Categories

Goal:
Prove that the directional derivative ∇ endows a category whose
objects are abelian categories and morphisms are functors between
abelian categories with the structure of a Cartesian differential
category.

Question:
What’s the correct category?



Context-revisited

1. We’re really working with functors F : B → ChA, where ChA
is the category of chain complexes concentrated in degrees
≥ 0.

A0
∂1←− A1

∂2←− · · · ← An−1
∂n←− . . .

∂n−1 ◦ ∂n = 0

2. We’re working up to chain homotopy equivalence: F ' G
means for a each object X , there is a chain homotopy
equivalence between F (X ) and G (X ).



Cartesian Differential Categories – Issues

I For F : B → ChA and G : C → ChB, how do we form F ◦ G?

I Applying F degreewise does not preserve chain complexes or
chain homotopy equivalences.

I The chain rule only holds up to chain homotopy equivalence.



Constructing the right category

A monad on AbCat
I AbCat is the category whose objects are abelian categories

and morphisms are functors between abelian categories.

I Ch is a monad on AbCat:

A 7→ ChA

For F : B → A, ChF : ChB → ChA is the composite

ChB ' // B∆op F∗ // A∆op ' // ChA.

where the left and right arrows are the Dold-Kan equivalence.

I The unit is deg0 : A → ChA, A 7→ (A← 0← 0← . . . ).

I The multiplication is the total complex functor:
Tot : ChChA → ChA.



Constructing the right category

AbCatCh is the Kleisli category associated to AbCat and Ch

I Objects are abelian categories.

I morphisms are functors B → ChA
I identity morphism is deg0 : A → ChA
I the composition of G : C → ChB and F : B → ChA is the

composite

C G−→ ChB ChF−−→ ChChA Tot−−→ ChA.



Cartesian Differential Categories

Theorem (BJORT).

∇ and AbCatCh satisfy:

1. ∇(F ⊕ G )(V ;X ) ∼= ∇F (V ;X )⊕∇G (V ;X ).

2. ∇F (V ⊕W ;X ) ' ∇F (V ;X )⊕∇F (W ;X ) and
∇F (0;X ) ∼= 0.

3. ∇id(V ;X ) ∼= V .

4. ∇〈F ,G 〉(V ;X ) ∼= 〈∇F (V ;X ),∇G (V ;X )〉.
5. ∇(F ◦ G )(V ;X ) ' ∇F (∇G (V ;X );G (X )).

6. ∇(∇F )((Z ; 0); (0;X )) ∼= ∇F (Z ;X ).

7. ∇(∇F )((Z ;W ); (V ;X )) ' ∇(∇F )((Z ;V ); (W ;X )).

' denotes chain homotopy equivalences, ∼= denotes isomorphims.

Corollary (BJORT)

The homotopy category HoAbCatCh (objects same as AbCatCh,
morphisms [B,A] are chain homotopy classes of functors) with the
directional derivative ∇ is a Cartesian differential category.



Higher Order Chain Rules:

For composable functions of real vector spaces (or Banach spaces),
Huang, Marcantognini and Young (2006) defined higher order
directional derivatives, ∆n, and derived a chain rule:

∆n(f ◦ g) = ∆nf (∆ng ,∆n−1g , . . . ,∆1g ; g).

When g is a function of a single variable, this yields a chain rule
for ordinary derivatives:

(f ◦ g)(n)(x) = ∆nf (g (n)(x), g (n−1)(x), . . . , g ′(x); g).

In degree 1, this is

∇(f ◦ g) = ∇f (∇g ; g).



Question:
Is there an analogous notion of a higher order directional derivative
and a higher order chain rule for abelian functor calculus?



Higher Order Directional Derivatives

For F : B → A and objects V1,V2, . . . ,Vn,X in B, the higher
order directional derivatives of F are given by

∆0F (X ) := F (X ),

∆1F (V1;X ) := ∇F (V1;X )

∆2F (V2,V1;X ) := ∇(∆1F )((V2,V1); (V1,X )),

and, in general,

∆nF (Vn, . . . ,V1;X )

:= ∇(∆n−1F )((Vn, . . . ,V2;V1); (Vn−1, . . . ,V1;X )).



Higher Order Chain Rule

Theorem (BJORT)

For a composable pair of functors F and G ,

∆n(F ◦ G )(Vn, . . . ,V1;X )

is chain homotopy equivalent to

∆nF (∆nG (Vn, . . . ,V1;X ), . . . ,∆2G (V2,V1;X ),∆1G (V1;X ),G (X )).



Higher Order Chain Rule – proof

I R. Cockett and G. Cruttwell (2014): Cartesian differential
categories are tangent categories.

I Tangent categories are equipped with an endofunctor T
encoding essential properties of tangent bundles.

I T : HoAbCatCh → HoAbCatCh is defined for
I an object A by T (A) = A×A,
I a morphism F : B → ChA, TF : B × B → ChA× ChA via

TF (V ,X ) = 〈∇F (V ;X ),F (X )〉.



Higher Order Chain Rule – proof
Goal:

∆n(F ◦ G )(Vn, . . . ,V1;X ) '

∆nF (∆nG (Vn, . . . ,V1;X ), . . . ,∆1G (V1;X );G (X ))

Key: Use the diagram of functors

Cn+1 d∗
n // C2n

T n(F◦G)
**

T nF◦T nG

55' ChA2n πL // ChA.

When applied to (Vn, . . . ,V1;X ), composition along the top yields

∆n(F ◦ G )(Vn, . . . ,V1;X ),

and composition along the bottom yields

∆nF (∆nG (Vn, . . . ,V1;X ), . . . ,∆1G (V1;X );G (X )).
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