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Probabilistic Coherence Spaces, introduced by Girard and developed

by Danos and E.

Model of LL with general recursion, all recursive types (pure

λ-calculus).

And also of higher-order functional programs with good properties:

adequacy and full abstraction (E., Pagani and Tasson).

Fact

Major feature: morphisms of the Kleisli category are �analytic

functions� with ≥ 0 real coe�cients. So they have derivatives.

It is a model of classical LL but not of di�erential LL.

Because it is not a pre-additive category: X ⊕ Y 6' X & Y .



What is a PCS?

X = (|X |,PX ) where

• |X | is a set

• and PX ⊆ (R≥0)|X |: the valuations of X .

such that PX which is (x ≤ y if ∀a ∈ |X | xa ≤ ya):

• ↓-closed
• closed under lubs of sequences x(1) ≤ x(2) ≤ · · · ∈ PX

• convex (x , y ∈ PX , λ ∈ [0, 1]⇒ λx + (1− λ)y ∈ PX )

• + a technical condition to avoid ∞ coe�cients.

Notation: if a ∈ |X | then ea ∈ (R≥0)|X | de�ned by (ea)b = δa,b.



Linear morphisms

Pcoh(X ,Y ) is the set of all matrices t ∈ (R≥0)|X |×|Y | such that

∀x ∈ PX t · x =
∑

a∈|X |,b∈|Y |

ta,bxaeb ∈ PY

Fact

Pcoh is a cartesian SMCC with a ∗-autonomous structure. It has

also a resource modality comonad (!_, der, dig) + Seely

isomorphisms.

Pcoh! is a CCC with least �xpoint operators (X ⇒ X )→ X , a

model of PCF and other functional languages. All recursive types,

pure λ-calculus etc.



Basic constructions

• 1 = ({∗}, [0, 1]) is the ⊗-unit and dualizing object;

• |X ( Y | = |X | × |Y |, P(X ( Y ) = Pcoh(X ,Y );

• |X⊥ | = |X |,
PX⊥ = {x ′ | ∀x ∈ PX 〈x , x ′〉 =

∑
a∈|X | xax

′
a ≤ 1};

• X ⊗ Y = (X ( Y⊥)⊥ so that if x ∈ PX and y ∈ PY ,

x ⊗ y = (xayb)(a,b)∈|X |×|Y | ∈ P(X ⊗ Y );

• product: P(X & Y ) ' PX × PY ;

• coproduct, X ⊕ Y = (X⊥ & Y⊥)⊥ :
P(X ⊕ Y ) ' {(λx , (1− λ)y) | x ∈ PX , y ∈ PY and λ ∈
[0, 1]} ⊆ P(X & Y ). Strict inclusion in general!



Exponential, analytic functions

|!X | =M�n(|X |) and P!X = {(xµ)µ∈|X | | x ∈ PX}⊥⊥ where

xµ =
∏

a∈|X | x
µ(a)
a ∈ R≥0.

Fact

t ∈ Pcoh(!X ,Y ) i� for all x ∈ PX one has∑
µ∈M�n(|X |),b∈|Y |

tµ,bx
µeb ∈ PY ⊆ (R≥0)|Y |

A power series with ≥ 0 real coe�cients, which converges on the

whole set PX but not outside in general.



Example

Fact

If x : 1⊕ 1 ` M : 1⊕ 1 then JMKx :1⊕1, the semantics of M, is in

Pcoh(!(1⊕ 1), 1⊕ 1), analytic function P(1⊕ 1)→ P(1⊕ 1).

Take

M = if(x , if(x ,M, t), if(x , f,M))

then f = JMKx :1⊕1 is the �least� function f : P(1⊕ 1)→ P(1⊕ 1)
such that

f (u) = (u2
t + u2

f )f (u) + utuf(et + ef)

f (u) =

{
0 if ut = 1 or uf = 1

utuf
1−u2t−u2f

(et + ef) otherwise



In �polar� coordinates

Any boolean u ∈ P(1⊕ 1) can be written u = rθet + r(1− θ)ef
where

• r is the probability of convergence

• θ de�nes a total boolean θet + (1− θ)ef .

Fact

f (θet + (1− θ)ef) =

{
1
2et +

1
2ef if 0 < θ < 1

0 if θ = 0 or θ = 1



Convergence probability of f :

g(r , θ) = f (rθet + r(1− θ)ef)t + f (rθet + r(1− θ)ef)f
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min(10, r ∂g∂r /g) = min(10, 2/(1− r2(1− 2θ − 2θ2))):
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Fact

r ∂g∂r /g = expectation of the number of uses of x , conditioned by

termination, makes sense for all r (for r < 1, u = (rθ, r(1− θ)) is a
partial probabilistic boolean and g(r , θ) = f (u)t + f (u)f < 1).



The problem

So computing derivatives in Pcoh! makes sense:

• related to execution time

• could be used also for learning (�gradient� method).

But it is problematic because derivatives:

• require sums which are not barycentric combinations (Leibniz)

and hence are not freely available in the model

• seem to induce morphisms which are not in the model.



For instance if n ∈ N, then f (x) = xn is in Pcoh(!1, 1):

• all coe�cients in R≥0
• and maps P1 = [0, 1] to P1.

However f ′(x) = nxn−1 is not in Pcoh(!1, 1) as soon as n > 1.

Fact

But, if x , u ∈ P1 satisfy x + u ∈ P1, then f ′(x)u ≤ 1.

This is a general phenomenon if one takes care of computing the

derivative �locally�.



The local derivative

More generally, given x ∈ PX we can de�ne a local PCS Xx as

follows:

|Xx | = {a ∈ |X | | ∃ε > 0 x + εea ∈ PX}
P(Xx) = {u ∈ (R≥0)|Xx | | x + u ∈ PX}

The �local PCS at x�. Observe that

P(Xx) ' {u ∈ PX | x + u ∈ PX}

as convex posets.



Then given f ∈ Pcoh(!X ,Y ) = Pcoh!(X ,Y ), we can de�ne

f ′(x) ∈ Pcoh(Xx ,Yf (x))

by

f ′(x) · u = the �u-linear part� of f (x + u)

that is

f ′(x) · u =
∑

(a,b)∈|Xx |×|Yf (x)|
µ∈M�n(|X |)

(µ(a) + 1)tµ,bx
µuaeb

We have

f (x) ≤ f (x) + f ′(x) · u ≤ f (x + u) ∈ PY

and hence ∀u ∈ PXx f ′(x) · u ∈ PYf (x).



The functor of summable pairs

This suggests a kind of tangent category structure on Pcoh based

on a very simple functor

S : Pcoh→ Pcoh

given by

|SX | = {0, 1} × |X |
P(SX ) = {s ∈ (R≥0)|SX | | (s0,a + s1,a)a∈|X | ∈ PX}

In other words P(SX ) = {(x , u) ∈ PX 2 | x + u ∈ PX}.



And if t ∈ Pcoh(X ,Y ) then St ∈ Pcoh(SX ,SY ) is de�ned by

(St)(i ,a),(j ,b) =

{
ta,b if i = j

0 otherwise.

In other words St · (x , u) = (t · x , t · u).
This de�nition makes sense since t · x + t · u = t · (x + u) ∈ PY by

linearity.

Remark : no di�erentiation involved!



Remark : Of course if x , u ∈ PX and λ ∈ [0, 1] we have

(λx , (1− λ)u) ∈ P(SX ).

But an element of SX is not necessarily of that shape: if

X = X1 & X2 and x(i) ∈ PXi for i = 1, 2, we have

(x(1), 0), (0, x(2)) ∈ P(X1 & X2) and

((x(1), 0), (0, x(2))) ∈ P(S(X1 & X2))

Fact

The functor S preserves all existing limits because it has a left

adjoint S⊥ : Pcoh→ Pcoh de�ned by S⊥X = S(X⊥)⊥ and

similarly on morphisms.

S⊥(X ) = {(x , x) | x ∈ PX}⊥⊥. Notice that SX 6' S⊥X in general.



S has a lot of structures, in particular:

• ιi : X → SX for i = 0, 1: ι0 · x = (x , 0) and ι1 · u = (0, u)

• πi : SX → X for i = 0, 1: π0 · (x , u) = x and π1 · (x , u) = u.

with πi ιj = δi ,j Id (there are 0-morphisms).

X ⊕ X SX X & X
[ι0,ι1] 〈π0,π1〉

NB: 〈π0, π1〉 mono. We also have s : SX → X (s · (x , u) = x + u):

X SX

X

ιi

Id
s

S2X SX

SX X

SsX

sSX sX

sX



Summability

f0, f1 ∈ Pcoh(Y ,X ) are summable if there is g ∈ Pcoh(Y ,SX ) such
that

Y SX X

X & X

g

〈f0,f1〉
〈π0,π1〉

s

and then we have f0 + f1 = s g . Well de�ned because 〈π0, π1〉 is a
mono.



Di�erential structure

Goal: di�erentiate morphisms in Pcoh!, that is linear morphisms

!X ( Y

; as in DiLL, di�erentiation is considered as a structure of the

exponential.

A distributive law

∂X ∈ Pcoh(!SX , S!X )

so that

!SX S!X

SX

∂X

derSX
SderX

!SX S!X

!!SX !S!X S!!X

∂X

digSX SdigX
!∂X ∂!X



Notice that |!SX | =M�n(|X |)2 and |S!X | = {0, 1} ×M�n(|X |).
∂X : !SX → S!X is given by

(∂X )(λ,ρ),(i ,µ) =


1 if i = 0, λ = µ and ρ = [ ]

µ(a) if i = 1, ρ = [a] and µ = λ+ [a]

0 otherwise.

∂ induces a functor D : Pcoh! → Pcoh! as usual by:

given f : !X → Y , we set Df = (Sf ) ∂X : !SX → SY .

Fact

If we consider f as a function PX → PY and Df as a function

PSX → PSY then we have

Df (x , u) = (f (x), f ′(x) · u)

Functoriality of D is chain rule.



Di�erentiation of a constant function

Remember that each !X has a commutative comonoid structure

wX : !X → 1, contrX : !X → !X ⊗ !X .

Derivative of a constant function is 0:

!SX S!X

S1

∂X

0
SwX



Leibniz law

Derivative of f (x , x) is the sum of two partial derivatives:

!SX S!X

!SX ⊗ !SX S!X ⊗ S!X S(!X ⊗ !X )

∂X

contrSX ScontrX
∂X⊗∂X L!X ,!X



What is L?

Fact

The two morphisms π0 ⊗ π1, π1 ⊗ π0 : SX ⊗ SY → X ⊗ Y are

summable.

We have used the lax monoidality LX ,Y : SX ⊗ SY → S(X ⊗ Y )
which satis�es

SX ⊗ SY S(X ⊗ Y )

X ⊗ Y

LX ,Y

π0⊗π0
π0

SX ⊗ SY S(X ⊗ Y )

X ⊗ Y

LX ,Y

π0⊗π1+π1⊗π0
π1



The strength of S and partial derivatives

There is a kind of tensorial strength:

ρX ,Y : X ⊗ SY SX ⊗ SY S(X ⊗ Y )
ι0⊗SY LX ,Y

which gives the second partial derivative of f : !X ⊗ !Y → Z

!X ⊗ !SY !X ⊗ S!Y S(!X ⊗ !Y ) SZ!X⊗∂Y ρ!X ,!Y Sf



Concluding remarks

Clearly very close to tangent categories.

And more speci�cally to Tangent Categories from the Coalgebras of

Di�erential Categories by Cockett, Lemay and Lucyshyn-Wright

(distributive law). Main di�erences:

• our objects have an �algebraic structure� s : SX → X

• though the category is not (left) additive

• positive outcome: the category can have �xpoint operators.

In an additive category with �xpoints, the function x 7→ x + u must

have a �xpoint which requires ∞ or idempotent coe�cients.

Other similarity: partial traces for the GoI, partial sums (Haghverdi,

Scott).



What kind of derivatives do we compute?

We consider programs typically as analytic probability

sub-distribution transformers. We compute their Jacobians as such.

A priori it is not like having a ground type of real numbers and

computing derivatives wrt. parameters in this type as in usual

di�erential programming languages.

Thanks to this model, we will be able to internalize di�erentiation

in a di�erential-probabilistic LL or λ-calculus, with �xpoints,

recursive types etc.



Possible extensions

To positive cones and stable functions (E., Pagani, Tasson) which

are a model of probabilistic computations compatible with

continuous data-types (real line etc), conservative extension of

Pcoh.

More surprisingly, similar structures are available in stable domain

semantics, typically coherence spaces and hopefully also dI-domains.

Big di�erence wrt. standard DiLL: this �local� DiLL seems

compatible with determinism. The S functor accounts for

compatibility (boundedness in domains).

Possible connections with incremental programming?


