
Linearizing Combinators

JS Pacaud Lemay
Joint work with Robin Cockett

Thanks to Kristine Bauer, Brenda Johnson and Sarah Yeakel for useful discussions and help.

BIRS2021



Background Story

Cartesian differential categories formalize differentiation in multivariable calculus of
Euclidean spaces.

R. Blute, R. Cockett, R.A.G. Seely, Cartesian Differential Categories

Abelian functor calculus was developed by Johnson and McCarthy based on Goodwillie’s
functor calculus. Bauer, Johnson, Osborne, Riehl, and Tebbe (BJORT) constructed an
Abelian functor calculus model of a Cartesian differential category.

Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., Directional derivatives and higher order chain rules

for abelian functor calculus.

The differential combinator is defined using the linearization (or linear approximation) of
functors.

From the Cartesian differential category perspective, the BJORT construction is backwards!

In any Cartesian differential category it is always possible to define the notion of a linear map
and to linearize a map using the differential combinator. However, BJORT constructed their
differential combinator using an already established notion of linear map and linearization.

This made Robin and me very confused... But thanks to talking to with Kristine, Brenda and
Sarah at the CMS Summer Meeting 2018, we set out the understand what was going on!



Story Today

The goal is to reverse engineer BJORT’s construction by abstracting the notion of linear
approximation from the (Abelian) functor calculus.

We introduce linearizing combinators on a Cartesian left additive category.

Every Cartesian differential category comes equipped with a canonical linearizing combinator
obtained by differentiation at zero.

Conversely, a differential combinator can be constructed à la BJORT when one has a system of
partial linearizing combinators.

Linearizing combinators provide an alternative axiomatization of Cartesian differential
categories. This correspondence is the analogue on the monoidal side of the story:

⊗-differential categories Cartesian differential categories
Deriving transformations Differential combinators D

d : !A⊗ A→ !A

f : A→ B

D[f ] : A× A→ B
Coderelictions Linearizing Combinators L

η : A→ !A

f : A→ B

L[f ] : A→ B

Main Reference:

R. Cockett, J.-S. P. Lemay, Linearizing Combinators



Cartesian Left Additive Category - Definition

A left additive category is a category X where every homset is a commutative monoid, so we can
add maps and have zero maps:

+ : X(A,B)× X(A,B)→ X(A,B) 0 ∈ X(A,B)

such that composition preserves the addition in the following sense:

(f + g) ◦ x = f ◦ x + g ◦ x 0 ◦ x = 0

A map f is additive if f ◦ (x + y) = f ◦ x + f ◦ y and f ◦ 0 = 0.

A Cartesian left additive category (CLAC) is a left additive category with finite products such
that the projection maps π0 : A× B → A and π1 : A× B → B are additive.



Cartesian Differential Category - Definition

A Cartesian differential category (CDC) is a CLAC X equipped with a differential combinator D:

f : A→ B

D[f ] : A× A→ B

To help us with the axioms, we will use the following notation/proto-term logic:

D[f ](a, b) :=
df (x)

dx
(a) · b

Then D satisfies the following seven axioms:

[CD.1] df (x)+g(x)
dx

(a) · b = df (x)
dx

(a) · b + dg(x)
dx

(a) · b and d0
dx

(a) · b = 0

[CD.2] df (x)
dx

(a) · (b + c) = df (x)
dx

(a) · b + df (x)
dx

(a) · c and df (x)
dx

(a) · 0 = 0

[CD.3] dx
dx

(a) · b = b and dπi (x0,x1)
d(x0,x1)

(a0, a1) · (b0, b1) = bi

[CD.4] d〈f (x),g(x)〉
dx

(a) · b =
〈

df (x)
dx

(a) · b, dg(x)
dx

(a) · b
〉

[CD.5] dg(f (x))
dx

(a) · b = dg(y)
dy

(f (a)) ·
(

df (x)
dx

(a) · b
)

[CD.6]
d

df (x)
dx

(y)·z
d(y,z)

(a, 0) · (0, b) = df (x)
dx

(a) · b

[CD.7]
d

df (x)
dx

(y)·z
d(y,z)

(a, b) · (c, d) =
d

df (x)
dx

(y)·z
d(y,z)

(a, c) · (b, d)



Smooth Functions Example

Example

Define SMOOTH be the category whose objects are the Euclidean real vector spaces Rn and
whose maps are C∞ functions F : Rn → Rm between them. SMOOTH is a Cartesian differential
category where the differential combinator is defined as the directional derivative of a smooth
function. A smooth function F : Rn → Rm is in fact a tuple:

F = 〈f1, . . . , fm〉

So for a smooth function F : Rn → Rm, its derivative D[F ] : Rn × Rn → Rm is then defined as:

D[F ](~x , ~y) =

〈
n∑

i=1

∂f1

∂xi
(~x)yi , . . . ,

n∑
i=1

∂fm

∂xi
(~x)yi

〉



Linear Maps

In a Cartesian differential category, there is a natural notion of linear maps. A map f : A→ B is
said to be D-linear if:

D[f ] := A× A
π1 // A f // B

df (x)

dx
(a) · b = f (b)

Example

In SMOOTHR, a smooth function F : Rn → Rm is D-linear if and only if it is R-linear in the
classical sense:

F (s~x + t~y) = sF (~x) + tF (~y)

for all s, t ∈ R and ~x , ~y ∈ Rn.

We would now like to have the ability of linearizing maps in a Cartesian differential category.



Calculus

Given a smooth function f : R→ R, its linearization L[f ] : R→ R is the best R-linear
function which is closest to f . This is given by the first degree term in its Maclaurin series
expansion (i.e its Taylor series expansion at 0):

L[f ](x) = f ′(0)x

In terms of the differential combinator, its differential D[f ] : R× R→ R is defined as:

D[f ](x , y) = f ′(x)y

So L[f ](x) = D[f ](0, x).

This construction can be done in any Cartesian differential category. We can use this to
derive an abstract notion of a linearizing combinator, L, for arbitrary Cartesian left additive
categories, which satisfies axioms which parallel those of the differential combinator.



Linearizing Combinator

A linearizing combinator L on a Cartesian left additive category X is a combinator:

f : A→ B

L[f ] : A→ B

Which we denote as follows in the term logic:

L[f ](a) :=
`f (x)

`x
· a



L.1 - Additivity of Combinator & L.2 - Additivity

[L.1] Additivity of Combinator:

`f (x) + g(x)

`x
· a =

`f (x)

`x
· a +

`g(x)

`x
· a

`0

`x
· a = 0

[L.2] Additivity: The linearization of a map is additive

`f (x)

`x
· (a + b) =

`f (x)

`x
· a +

`f (x)

`x
· b

`f (x)

`x
· 0 = 0



L.3 - Identities + Projections & L.4 - Pairings

[L.3] Identities + Projections

`x

`x
· a = a

`πi (x0, x1)

`(x0, x1)
· (a0, a1) = πi (a0, a1) = ai

[L.4] Pairings

`〈f (x), g(x)〉
`x

· a =

〈
`f (x)

`x
· a,

`g(x)

`x
· a
〉



L.5 - Chain Rule & L.6 - Idempotent

[L.5] Chain Rule:

`g (f (x))

`x
· a =

`g(f (0) + y)

`y
·
(
`f (x)

`x
· a
)

The keen-eyed reader may have noticed that on the right hand side of [L.5]. In theory one
could again apply [L.5] to the right hand side again. So [L.5] is indeed simplified as far as
possible. That said, [L.5] does simplify when f or g is additive:

`g (f (x))

`x
· a =

`g(y)

`y
·
(
`f (x)

`x
· a
)

[L.6] Linearization is idempotent:

`
`f (x)
`x
· y

`y
· a =

`f (x)

`x
· a



Linearizing Combinator

A linearizing combinator L on a Cartesian left additive category X is a combinator:

f : A→ B

L[f ] : A→ B

Which we denote as follows in the term logic:

L[f ](a) :=
`f (x)

`x
· a

such that L satisfies [L.1] to [L.6].

Remark

Those familiar with CDCs might point to the fact that differential combinator have SEVEN
axioms while linearizing combinators have SIX... good observation! Specifically, the analogue of
[CD.7] is not present... this will come up when we talk about partial linearization.



L-Linear

For a linearizing combinator, the analogues of linear maps are the maps for which the linearizing
combinator does nothing. A map f is said to be L-linear if:

L[f ] = f
`f (x)

`x
· a = f (a)

By [L.6], for every map f , its linearization L[f ] is L-linear.



Linearizing Combinators from Differential Combinators

Proposition

Every Cartesian differential category, with differential combinator D, admits a linearizing
combinator LD defined as follows for every map f : A→ B:

LD[f ] := D[f ] ◦ 〈0, 1〉
`f (x)

`x
· a =

df (x)

dx
(0) · b

Furthermore,

(i) A map f is D-linear if and only if f is LD-linear.

(ii) For every map f , LD[f ] is D-linear;

Example

For SMOOTH, the linearizing combinator is defined as evaluating the directional derivative at
zero in the first argument. Explicitly, for a smooth function F : Rn → Rm, F = 〈f1, . . . , fn〉:

L[F ](~x) = J(F )(~0) · ~x =

〈
n∑

i=1

∂f

∂xi
(~0)xi , . . . ,

n∑
i=1

∂f

∂xi
(~0)xi

〉

For example, consider f (x , y) = ex cos(y). Its derivative is worked out to be
D[f ](x , y , z,w) = ex cos(y)z − ex sin(y)w . Then evaluating at 0 in the first two arguments, we
obtain that L[f ](x , y) = e0 cos(0)x − e0 sin(0)y = x .



Differential Combinators from Linearizing Combinators

Now for the other direction: to construct differential combinators from linearizing combinators.



Limits

Consider the classical limit definition of the derivative of a smooth function f : R→ R:

D[f ](x , y) = lim
t→0

f (x + ty)− f (x)

t

Note that if we evaluate at x = 0, then we obtain an expression of L[f ] in terms of a limit:

L[f ](y) = D[f ](0, y) = lim
t→0

f (ty)− f (0)

t

For a fixed x , define gx : R→ R to be the smooth function defined as gx (y) = f (x + y).

D[f ](x , y) = lim
t→0

f (x + t · y)− f (x)

t
= lim

t→0

gx (ty)− gx (0)

t
= L[gx ](y)

So the derivative of f is the linearization of the function gx (y) = f (x + y) in the variable y .

This is precisely how BJORT define their differential combinator. In fact, every differential
combinator in a Cartesian differential category can be defined in this fashion.



Differential Combinators from Linearizing Combinators

Now for the other direction: to construct differential combinators from linearizing combinators.

To do this we require the notion of partial linearization.

However, while it is always possible to define partial differentiation from total
differentiation...

In general it is not necessarily possible to define partial linearization from total
linearization!

As such, we need to separately define the notion of linearizing combinators in contexts,
which we call a system of linearizing combinators

But first we need to discuss context... From a categorical perspective, a map in a fixed
“context” C is interpreted as a map in the simple slice category over C .



Simple Slice Categories

Let X be a category with finite products. For each object C , the simple slice category over C is
the category X[C ] where:

The objects are the objects of X, ob (X[C ]) := ob (X);

The hom-sets are defined as X[C ](A,B) := X(C ×A,B), that is, a map from A to B in X[C ]
is a map f : C × A→ B in X(C × A,B), and we say that f is in context C .

The identity maps are the projection maps π1 : C × A→ A;

The composition of maps f : C × A→ B and g : C × B → D is the composition:

C × A
〈π0,f 〉 // C × B

g // D

For each map h : C ′ → C in X, define the substitution functor h∗ : X[C ]→ X[C ′] on objects as
h∗(A) := A and on maps as:

C × A
h×1 // C ′ × A

f // B



System of Linearizing Combinators

A system of linearizing combinators on a Cartesian left additive category X is a family of
linearizing combinators LC :

f : C × A→ B

LC [f ] : C × A→ B

where LC [f ] is the linearization of f in its second argument, which we denote in the term logic:

LC [f ](c, a) :=
`f (c, x)

`x
· a

where LC is a linearizing combinator for the simple slice category X[C ]:

[L.1] `f (c,x)+g(c,x)
`x

· a = `f (c,x)
`x
· a + `g(c,x)

`x
· a and `0

`x
· a = 0

[L.2] `f (c,x)
`x
· (a + b) = `f (c,x)

`x
· a + `f (c,x)

`x
· b and `f (c,x)

`x
· 0 = 0

[L.3] `π1(c,x)
`x

· a = a and `πi (π1(c,(x0,x1)))
`(x0,x1)

· (a0, a1) = πi (a0, a1) = ai

[L.4] `〈f (c,x),g(c,x)〉
`x

· a =
〈
`f (c,x)
`x
· a, `g(c,x)

`x
· a
〉

[L.5] `g(c,f (c,x))
`x

· a = `g(c,f (c,0)+y)
`y

·
(
`f (c,x)
`x
· a
)

[L.6]
`
`f (c,x)

`x
·y

`y
· a = `f (c,x)

`x
· a

and such that the following two extra axioms hold:



L.7 - Symmetry & L.8 - Context Substitution

[L.7] Symmetry Rule:

`f (c,x,y)
`x

· a
`y

· b =

`f (c,x,y)
`y

· b
`x

· a

[L.8] Context Substitution:

h∗
(
`f (c, x)

`x
· a
)

=
`f (h(c), x)

`x
· a

This tells you how the linearizing combinators on the simple slices are all the same.



System of Linearizing Combinators

A system of linearizing combinators on a Cartesian left additive category X is a family of
linearizing combinators LC :

f : C × A→ B

LC [f ] : C × A→ B

where LC [f ] is the linearization of f in its second argument, which we denote in the term logic:

LC [f ](c, a) :=
`f (c, x)

`x
· a

where LC is a linearizing combinator for the simple slice category X[C ] and such that [L.7] and
[L.8] hold.

Since X[>] ∼= X, then X has a linearizing combinator L defined as follows for a map f : A→ B:

L[f ] = A
〈0,1〉 // >× A

L>[f ◦π1] // B



Example of partial linearization

Consider the polynomial function

f (x , y) = xy + 2xy3 + 3x + 4y

The total linearization of f , that is, linearizing f jointly in x and y is the polynomial:

L[f ](x , y) = 3x + 4y

Linearizing in terms of x while keeping y in context picks out the terms with deg(x) = 1:

Ly [f ] = xy + 2xy3 + 3x

which is now linear in x

Linearizing in terms of y while keeping x in context picks out the terms with deg(y) = 1:

Lx [f ] = xy + 4y

which this time is linear in y

Linearizing xy + 2xy3 + 3x in terms of y or linearizing xy + 4y in terms of x both results in:

Lx [Ly [f ]] = Ly [Lx [f ]] = xy

which this time is bilinear in x and y



System of Linearizing Combinators from Differential Combinators

If X is a CDC, then every simple slice category X[C ] is a CDC via partial differentiation, so the
differential combinator DC is defined as follows on a map f : C × A→ B:

DC [f ] := (C × A)× A
(1×1)×〈0,1〉 // (C × A)× (C × A)

D[f ] // B

DC [f ](c, a, b) :=
df (c, x)

dx
(a) · b :=

df (z, x)

d(z, x)
(c, a) · (0, b)

Proposition

Every Cartesian differential category X, with differential combinator D, admits a system of
linearizing combinators where the linearizing combinators LDC for the simple slice categories are
defined as in the previous slides. In the term logic:

`f (c, x)

`x
· a =

df (c, x)

dx
(0) · b



Differential Combinators from System of Linearizing Combinators

Recall that we saw that the differential of f is equal to the linearization of f (x + y) in the y .

In a Cartesian left additive category, define the map ⊕A : A× A→ A as ⊕A = π0 + π1

⊕A(x , y) = x + y

Proposition

Every Cartesian left additive category X with a system of linearizing combinators LC is a Cartesian
differential category with differential combinator DL defined as follows on a map f : A→ B:

DL[f ] := LA [f ◦ ⊕A]
df (x)

dx
(a) · b =

`f (a + x)

`x
· b



Equivalence

Theorem

For a Cartesian left additive category X, there is a bijective correspondence between:

(i) Differential combinators;

(ii) Systems of linearizing combinators.

Therefore, a Cartesian differential category is precisely a Cartesian left additive category equipped
with a system of linearizing combinators.



Counter-Example

Here’s an example which has a total linearization but does not have partial linearization.

Example

Define C1-DIFF be the category whose objects are the Euclidean real vector spaces Rn and whose
maps are C1 functions F : Rn → Rm between them. C1-DIFF is a Cartesian left additive category.

C1-DIFF has a (total) linearizing combinator L defined in the same way as the linearizing
combinator in SMOOTH, that is, for a C1 function F = 〈f1, . . . , fm〉:

L[F ](~x) =

〈
n∑

i=1

∂f

∂xi
(~0)xi , . . . ,

n∑
i=1

∂f

∂xi
(~0)xi

〉

If C1-DIFF had partial linearization then C1-DIFF would also have a differential combinator, but
this can’t be since the derivative of C1 functions are not necessarily C∞ functions.

Consider the function f (x) = x
3
2 , which is a C1 function since its derivative f ′(x) = 3

2
x

1
2 exists

and is continuous. If partial linearization was possible, then we would be able to define D[f ] as:

D[f ](x , y) = L[z 7→ f (x + z)](y) =
3

2
(x + y)

1
2

However, this linearization is not define when x + y < 0 and therefore is not a map in C1-DIFF.
Therefore C1-DIFF does not have a system of linearizing combinators.



From total linearization to partial linearization

We would like to define partial linearization from total linearization.

As previously discussed, in general this is not necessarily possible...

However in the setting of a Cartesian closed category, it is possible to construct a system of
linearizing combinators from a linearizing combinator on the base category.

C × A
f // B

Curry A
λ(f ) // [C ,A]

Linearize A
L[λ(f )] // [C ,A]

Uncurry LC [f ] := C × A
λ−1(L[λ(f )]) // [C ,A]

We do however need to assume some compatibility between L and the closed structure. In
this case, we call this an exponential linearizing combinator.



Equivalence

Theorem

For a Cartesian closed left additive category X, there are bijective correspondences between:

(i) Differential combinators D on X which satisfy [CD.λ]: D[λ(f )] = λ
(
DC [f ]

)
(ii) Systems of linearizing combinators LC on X which satisfy [L.λ]: L[λ(f )] = λ

(
LC [f ]

)
(iii) Exponentiable linearizing combinators L on X.

Therefore, a Cartesian closed differential category is precisely a Cartesian closed left additive
category equipped with a exponentiable linearizing combinator or equivalently a Cartesian closed
left additive category equipped with a closed system of linearizing combinators.



Concluding Remarks

The main purpose of this project was to establish n alternative axiomatization for Cartesian
differential categories using a system of linearizing combinators. However, the weakness of
this alternative axiomatization should not be overlooked. The problem is that one needs to
assume partial linearization at the outset: this is a significant requirement. In this regard the
total differential combinator has a clear advantage.

That said, linearization can exist for functions which are not infinitely differentiable! This
suggests that linearization could play a significant role in providing a broader categorical
approach for non-smooth analysis.

Is the BJORT model Cartesian closed and is the linearization combinator an exponentiable
linearizing combinator?

The correspondence is also capture on the monoidal side:

⊗-differential categories Cartesian differential categories
Deriving transformations Differential combinators D

d : !A⊗ A→ !A

f : A→ B

D[f ] : A× A→ B
Coderelictions Linearizing Combinators L

η : A→ !A

f : A→ B

L[f ] : A→ B

Linearizing combinators should also provide equivalent axiomatizations for generalizations of
Cartesian differential categories including generalized Cartesian differential categories,
differential restriction categories, and even tangent categories.



Merci!

Hope you enjoyed it!
Thanks for listening!

Merci!

R. Cockett, J.-S. P. Lemay, Linearizing Combinators


