The free tangent cary on an object with Alpine connection jo Goff Crutuell.

1) AFFINE CONNECTIONS

Let C be a tangent catt, $M \in C$. An affaire connection on M is a map $K: T^{2} M \rightarrow T M$ st:

(*) is a limit

- various other axioms.

Saw yesterday: the free tang. call on an object is Wail. What's the corresponding free tug. cath \mathbb{F} on an $\operatorname{obj}_{M} w /$ affine connection? Goal: sheath an answer.
2) Local cooronaties

Sine $M \in \mathbb{F}$ hos an affine connection, by \otimes have $T^{2} M \cong T M x_{\mu}{ }_{\mu}^{\prime \prime} T x_{m} T M$ via $T_{p}, P T, K$. More gaoally, since T pres pb's of p_{M} 's, have $T\left(T_{h} M\right) \cong T_{2 h+1} M$. So objects of \mathbb{F} can be taken as

$$
\left\{T_{h} M: h \geqslant 0\right\} \quad \text { with } \quad T\left(T_{h} \mu\right)=T_{2 k+1} M \text {. }
$$

Note that the $T_{h} M$'s are the dishict powers of $T M$ over M :
so \mathbb{F} is in fact a Lanner theory.
NotATIoN. Write gen. elements of $T_{h} M$ as $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ via $\pi_{i}: T_{h} M \rightarrow T_{M}$ - Write gen. elonerts of $T\left(T_{h} M\right)$ as (u, \vec{a}, \vec{b}) via. $T_{p} \cdot T_{\pi}$,

- pT. T_{π}
- $k \cdot T \pi_{i}$.

Good: figwe out what things have to be in our hawser theory in terms of these "local cords".
3) TuE BASICS

Since we have t_{μ}, O_{μ}, our Lamer they includes the they of comm. moods. Using this, can dispatch $p_{1}+, 0, l$:

$$
\begin{aligned}
& P_{T_{h} M}: T\left(T_{h} \mu\right) \rightarrow T_{h} M \\
& (u, \vec{a}, \vec{b}) \longmapsto \vec{a} \\
& O_{T_{k} \mu}: T_{k} \mu \longrightarrow T\left(T_{k} \mu\right) \\
& \vec{a} \longmapsto(0, \vec{a}, \overrightarrow{0}) \\
& t_{T_{h} \mu}: T\left(T_{h} \mu\right) x_{T_{h} \mu} T\left(T_{h} \mu\right) \longrightarrow T\left(T_{h} \mu\right) \\
& (u, \vec{a}, \vec{b}),(v, \vec{a}, \vec{c}) \longmapsto(u+v, \vec{a}, \vec{b}+\vec{c}) \\
& l: T\left(T_{k} \mu\right) \rightarrow T^{2}\left(T_{k} \mu\right) \\
& (u, \vec{a}, \vec{b}) \mapsto(0,(0, \vec{a}, \overrightarrow{0}),(u, \overrightarrow{0}, b))
\end{aligned}
$$

4) Torsion

Prop The syn. map $c_{\mu}: T^{2} M \longrightarrow T^{2} M$ given by

$$
(u, a, b) \longmapsto(a, u, b+\pi(a, a)) \text { "Horsisen" }
$$

for some bilinear $T_{2} \mu \longrightarrow T \mu$ st $T(a, b)+T(b, a)=0$.
Poof First, $T^{2} M \xrightarrow{T p} T M$ and $T^{2} M \xrightarrow{p^{T}} T M$ are comm. monoids one TM via

$$
\begin{aligned}
& (u, a, b)++_{p T}(v, a, c)=(u+v, a, b+c) \\
& (u, a, b)+T_{p}(u, c, d)=(u, a+c, b+d) .
\end{aligned}
$$

Clearly c must be of for $c(u, a, b)=(a, u, \varphi(u, a, b))$.
Since c a map of comm. mosaics $p T \rightarrow T_{p}$ and $T_{p} \rightarrow p T$, have

$$
\left.\begin{array}{rl}
\varphi(u, 0,0) & =0
\end{array}=\varphi(0, a, 0), ~ \begin{array}{l}
\varphi(u+v, a, b+c)
\end{array}=\varphi(u, a, b)+\varphi(v, a, c) \quad \begin{array}{l}
\varphi(u, a+c, b+d)
\end{array}=\varphi(a, a, b)+\varphi(u, c, d)\right\}
$$

So $\varphi(u, a, b)=\varphi(u, a, 0)+\varphi(0, a, b)$

$$
=\varphi(u, a, 0)+\underbrace{\varphi(0, a, 0)}_{0}+\varphi(0,0, b)
$$

But $c l=l$ implies $\varphi(0,0, b)=b$. So wasting $T(a, 4)=$ $\varphi(u, a, 0)$, get

$$
\varphi(u, a, b)=T(a, y)+b .
$$

Bilinearity of T comes from $* T(a, u)+T(u, a)=0$ since $c^{2}=1$.
4) Curvature

Similar argumat shows:
PRop $c_{T M}: T^{3} M \longrightarrow T^{3} M$ given by

$$
\left(v,(u, a, b),\left(u^{\prime}, a^{\prime}, b^{\prime}\right)\right) \longmapsto\left(u,\left(v, a, a^{\prime}\right),\left(v^{\prime}+T(u, v), b, b^{\prime}+R(u, v, a)\right)\right)
$$

for some trilinear $R: T_{3} M \rightarrow T M$ st $R(a, b, c)+R(a, c, b)=0$. \uparrow "cunvalue".
In fact $C_{T_{h} M}$ given lay a similar formula.
5) Counaiant derivalue

Leaves only action of T on maps. Note everything io for has only involved sums of reindexings of multhinear maps. So enough to say how T acts on these.

Prop If $f: T_{k} M \rightarrow T M$ is multilinear, then

$$
T f: \quad \mid u, \vec{a}, \vec{b}) \longmapsto\left(u, f(\vec{a}), \quad \nabla f(u, \vec{a})+\sum_{i=1}^{k} f\left(\vec{a}\left[b ; / a_{i}\right]\right)\right)
$$

for some $(h+1)$-linear $\nabla f: T_{h+1} M \rightarrow T M$.
\& covariant deil of f.

Using this, can also describe how T acts on sums of reindesizs of multiliner maps.
6) Axioms

Functonality of T says:
(i) $\nabla(i d)(u, \vec{a})=0$
(2) $\nabla\left(g \circ\left(f_{1}, \ldots, f_{k}\right)\right)=(\nabla g) \circ\left(f_{1}, \ldots, f_{k}\right)+g \circ\left(\nabla f_{1}, f_{2}, \ldots, f_{k}\right)+\cdots+g \circ\left(f_{1}, \ldots, f_{k-1}, f_{k}\right)$ \& chain mes
Mac Lave heragon for C_{M} :
(3) $S(R(x, y, z))=S(\nabla T(x, y, z)+\pi(\pi(x, y), z)) \quad S_{x}=$ cycki sum

Mac Lave heragon for G_{m} :
(4) $S^{\prime}(\nabla R(w, x, y, z))+S^{\prime}(R(T(w, x), y, z))=0$

Nat. of c :
Nat. of c :
(5) $R(u, v, f(\vec{x}))+\nabla^{2} f(v, u, \vec{x})=\sum_{i=1}^{k} f\left(\hat{x}\left[R\left(u, v x_{i}\right) / x_{i}\right]\right)+\nabla f(T(u, v), \vec{x})$
for all k-mallilinar f

$$
+\nabla^{2} f(u, v, \vec{x})
$$

Rica iderhty.
7) Solution (hopefully)

Defy An operad w/cometion is a symm. (Mon-operad 8 with:

- an equivanad operator $\nabla: \theta(n) \longrightarrow \theta(n+1)$
- elemerts $T \in \theta(2), R \in B(3)$ suitally artisymm.
- sahsfying (1) $-(5)$.

CoN3 Thoe's an adjunction
whore End (φ, M, k) is the opend of multinear mapo

$$
E_{n d}(\varphi, \mu, k)(n)=\left\{T_{n} \mu \rightarrow T \mu\right\}
$$

and where Free (8$)$ is the Lawere theay of 8 -algehas.
If this holds, then the free tangent caly w/ offre comection is the Lawwer theng of das ower the initial OWC.

