WEIL SPACES AND THE EMBEDDING THEOREM FOR THINGENT CAFECORIES

1) THE FREE TANGENT CATY ON AN OBJECT Notation: if C is a tangent cuty, then we call the fibre products $T_n X = TX \times_{p_X} TX \times_{p_X} TX$ and the pullbacks

So we can speak of "the free tangent acty on an object".
Define Let k be a commutative rig. k-alg is the tangent
cat of k-algebras (comm), with tangent functor

$$T(A) = A [x]/x^2$$

and with $p_A: T(A) \longrightarrow A$
 $q+bx \longmapsto a$.
Alternatively, $T(A) = W \otimes A$ where $W = k [x]/x^2$.

It follows that
$$T_n(A) = W_n \otimes A$$
 where $W_h = k[x_1, \dots, x_n]/(x_{Y_1})_{i \leq j}$
 $\cdot \underbrace{Weil_1}_1$ is the full sub-largent cally of k-alg generated by
 k . Explicitly, it's the full subcall on $W_n \otimes \dots \otimes W_{N_k}$.
The nonvenclabue comes from SDA: a Weil algebra is a comm. k-alg A
st underlying k-module is fg. free, and st $A = k1 \oplus M$ where M
is composed of nilpotents. These compare a sub-targent-cally Weil of
 k -alg, and now Weil, \subseteq Weil.
THM (Leing) Weil, is the free targ, cally on one object (k).
Proof (idea) If \mathcal{C} a targ, cally, $X \in \mathcal{C}$, define
 $L \times I: Weil, \longrightarrow Tx$
 $W \equiv T(k) \longmapsto Tx$
 $W_2 = T_2(k) \longmapsto T_2 X$
 $V_{X_1}: W \mapsto k \longmapsto p_{X_1}: Tx \to X$
 $V = W \mapsto k \longmapsto p_{X_1}: Tx \to X$
 $U = T(k) \mapsto T_1 X$
 $W_{X_1}: W \mapsto k \longmapsto p_{X_1}: Tx \to X$
 $U = T_2(k) \mapsto T_1 X$
 $U_{X_1}: W \mapsto k \longmapsto p_{X_1}: Tx \to X$
 $U = T(k) \mapsto T_1 X$
 $U_{X_2}: W \mapsto W_{X_1}: Tx \to X$
 $U = T_2(k) \mapsto T_2 X$
 $U = T_2(k) \mapsto T_2 X$
 $U = T_2(k) \mapsto T_1 X$
 $U = Weil algebras as certain affine schemes, namely, the$

LEMMA The cart product in Weilers Sp has the poperty that

$$\frac{X \times Y \longrightarrow Z}{X(A) \times Y(B) \longrightarrow Z(A \otimes B)} \text{ not in } A,B$$
Proof Sine \otimes is coproduct in Weilers, have $yA \times yB \cong y(A \otimes B)$.
Now write X, Y as colinitis of reps., use that x in Weilsp peo
colinitis in each variable; \bigotimes ; and Youda lemma.

3) TANGENT CATUS AS ENRICHED (ATUS
There is a standard notion of caty
$$\ell$$
 enrictual over a sym. moraident
caty \mathcal{V} : involves a set of objects; how objects $\ell(X,Y) \in \mathcal{V}$;
composition $\ell(Y,Z) \otimes \ell(X,Y) \longrightarrow \ell(X,Z)$; identifies $k \longrightarrow \ell(X,X)$;
plue ations.

of X by V is an object
$$V di X \in E$$
 His P-noheal bijection

$$\frac{W \longrightarrow \mathcal{E}(Y, V di X)}{V \otimes W \longrightarrow \mathcal{E}(Y, X)} \xrightarrow{in} \mathcal{P}$$
(G.)
Thus A tangent cety E is the same as a (Weil, Sp, X)-enviced
cety with parenes by representables.
Pad Explicit Lengin result: given a tang. cety E, define Weid, Sp
envictual cety E with same objects, and $E(X;Y)$ given by
Weid, $\xrightarrow{LYJ} \mathcal{E} \xrightarrow{\mathcal{E}(X, -)}$ Set
ie $\Psi(X, Y)(W_n, \otimes \cdots \otimes W_n) = \Psi(X, T_{n_k} \cdots T_n, Y).$
For composition; need $\Psi(Y,Z) \otimes \Psi(X;Y) \longrightarrow \Psi(X;Z).$
By lemma, same as giving
 $P(Y,Z)(X) \times P(X;Y)(K) \longrightarrow P(X;Z)(W \otimes W_Z)$
 $(Y \xrightarrow{Y} TZ, X \xrightarrow{f} TZY) \longmapsto X \xrightarrow{Y} TZY \xrightarrow{T} TZ TZ.$
Powers by reps: YW di X choosechared by:

$$\frac{\gamma(h) \longrightarrow \Psi(\mathcal{Y}, \gamma \mathcal{W} h \times)}{\gamma(h) \stackrel{\text{\tiny \circ}}{\rightarrow} \gamma(h) \stackrel{\text{\tiny \circ}}{\rightarrow} \Psi(\mathcal{Y}, \chi)} \quad \text{so fale } \gamma \mathcal{W} h \times = T \times .$$

We can unravel above construction to find our contected ing is of
$$\mathcal{E}$$
 into a catly of $\frac{1}{2}$ and $\frac{1}{2}$ profunctors $\mathcal{E} \longrightarrow Weil$,