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Message:

Affine geometry on an infinitesimal scale
is possible in any good space



Need to explain the three key phrases. The first is standard: affine
geometry is the geometry whose calculational aspect is barycentric
calculus: barycentric calculus = the calculus of linear combinations
where the sum of the coefficients is 1, e.g. formation of
parallelograms.
What is a good space? Wrong question! It is an object in a good
category of spaces.
Examples (good in different ways - the word “good” has many
meanings): e.g. a tangent category, or a topos model of SDG.
Also: the category Aop of affine schemes
It is in the latter that I shall present a notion of infinitesimal scale,
by defining a reflexive symmetric relation f ∼1 g on each of its
hom sets.

The dual of the category of affine k-schemes is the category of
commutative k-algebras, and most of the following deals with that
category. For those of you who attended the talks of Finster, Joyal
(and others), this is like the relationship between the category of
toposes (the geometric aspect), and the category of logoses (the
algebraic aspect).



Barycentric calculus
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1 · y + (−1) · x + 1 · z
A linear combination where the sum of the coefficients is 1, also
called an affine combination.
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Similarly, given two points,
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More generally, can form

(1− t) · x + t · y
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Table of contents

1. The neighbour relation ∼1 in homA(B,C )
(A = the category of commutative k-algebras)

2. Some affine combinations in homA(B,C )

3. Geometric meaning in Aop = the category of affine schemes
over k

“Much like the theory of affine schemes and commutative rings,
the theory of (higher) topoi leads a dual life: one algebraic and one
geometric. . . ” cf. Finster’s abstract.

4. log: from neighbour pairs to tangent vectors



1. (First order) neighbours

Neighbours in the category A of commutative k-algebras:

For each B and C in A, and f and g parallel maps:

B
f
-

g
- C ,

we say that they are (1st order) neighbours if for all x ∈ B:

f ∼1 g :

(f (x)− g(x))2 = 0

It is a reflexive and symmetric relation. It is not transitive.
Slightly stronger:
for all x , y ∈ B

(f (x)− g(x)) · (f (y)− g(y)) = 0
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So f ∼1 g , is defined by validity, for all x and y in the domain B, of

(f (x)− g(x)) · (f (y)− g(y)) = 0

This relation in homA(B,C ) is equivalent to

f (x) · f (y) + g(x) · g(y) = f (x) · g(y) + g(x) · f (y)

No minus occurs !
(So it works for commutative rigs as well)
The value of f and g on a pair of elements in B gives a 2× 2
matrix with entries from C

x y

f f (x) f (y)
g g(x) g(y)

It is stable under precompostion by any map A→ B and under
postcompostion by any map C → D.



So f ∼1 g , is defined by validity, for all x and y in the domain B, of

(f (x)− g(x)) · (f (y)− g(y)) = 0

This relation in homA(B,C ) is equivalent to

f (x) · f (y) + g(x) · g(y) = f (x) · g(y) + g(x) · f (y)

No minus occurs !
(So it works for commutative rigs as well)
The value of f and g on a pair of elements in B gives a 2× 2
matrix with entries from C

x y

f f (x) f (y)
g g(x) g(y)

It is stable under precompostion by any map A→ B and under
postcompostion by any map C → D.



So f ∼1 g , is defined by validity, for all x and y in the domain B, of

(f (x)− g(x)) · (f (y)− g(y)) = 0

This relation in homA(B,C ) is equivalent to

f (x) · f (y) + g(x) · g(y) = f (x) · g(y) + g(x) · f (y)

No minus occurs !
(So it works for commutative rigs as well)
The value of f and g on a pair of elements in B gives a 2× 2
matrix with entries from C

x y

f f (x) f (y)
g g(x) g(y)

It is stable under precompostion by any map A→ B and under
postcompostion by any map C → D.



Can prove: f ∼1 g is equivalent to

g − f is a derivation w.r.to f

In particular: a 1-neighbour of the identity map of B is of the
form: identity map of B plus a derivation B → B.
Or: first order deformation of the identity map of B = vector field
on B = derivation on B.
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We may consider not only neighbours pairs f , g of k-algebra maps
B → C , but for an n-tuple of mutual neighbouring k-algebra maps
B → C ,

B
f1 -
:
fn
- C

For x , y ∈ B, we get similarly an n × 2 matrix

x y

f1 f1(x) f1(y)
f2 f2(x) f2(y)
. . .
. . .
fn fn(x) fn(y)



2. Affine combinations of n-tuples of mutual neighbours

Theorem.
Let f1, . . . , fn be an n-tuple of mutual neighbour k-algebra maps
B → C , and let t1, . . . , tn be elements of C with t1 + . . .+ tn = 1.
Then the affine combination

n∑
i=1

ti · fi : B → C

is a k-algebra map. The construction is natural in B and in C .



Proof for n = 2. Let x and y in B. Multiplication in B denoted •:

B
f
-

g
- C

s + t = 1 in C

(s · f + t · g)(x • y) =

(s · f )(x • y) + (t · g)(x • y) =

s · f (x) · f (y) + t · g(x) · g(y)

since both f and g preserve multiplication.
Two terms!
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(s · f + t · g)(x) · (s · f + t · g)(y)

multiply out in C , get four terms

s2 · f (x) · f (y) + s · t · f (x) · g(y) + t · s · g(x) · f (y) + t2 · g(x) · g(y)

So compare with the previous poor little two-term expression:

s · f (x) · f (y) + t · g(x) · g(y)

Multiply it by s + t = 1! Get four terms

s2 · f (x) · f (y) + t · s · f (x) · f (y) + s · t · g(x) · g(y) + t2 · g(x) · g(y)

to be compared with

s2 · f (x) · f (y) + s · t · f (x) · g(y) + t · s · g(x) · f (y) + t2 · g(x) · g(y)



s2 · f (x) · f (y) + t · s · f (x) · f (y) + s · t · g(x) · g(y) + t2 · g(x) · g(y)

to be compared with

s2 · f (x) · f (y) + s · t · f (x) · g(y) + t · s · g(x) · f (y) + t2 · g(x) · g(y)

The leftmost red term matches the leftmost blue term.
The rightmost red term matches the rightmost blue term.
The remaining (middle) terms are (s · t times) respectively

f (x) · f (y) + g(x) · g(y)

f (x) · g(y) + g(x) · f (y)

and they are equal by the “cross equation” defining f ∼1 g . QED
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The theorem may be augmented with the following, which are
proved in a similar elementary way:

Let f1, . . . , fn be an n-tuple of mutual neighbour k-algebra maps
B → C .

Then any two affine combinations (with coefficients from C ) of
these maps are neighbours.

Or: in the C -module of k-linear maps B → C , the affine span of
the fi s consists of k-algebra maps, and they are mutual neighbours.



In particular, the barycenter of a (p + 1) tuple of mutual
1-neighbour maps B → C is a well defined map B → C ;

e.g. the mid-“point” of two neigbour maps;

and equations between such affine combinations do hold, since
they are derived from the C -module (“vector space”) homk(B,C )
(unlike infinitesimal constructions using the tangent spaces Tp(M)
which give a special status to the base “point” p).

Thus for x ∼ y ,

midpoint of x and y = midpoint of y and x
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3. Geometric meaning

A the category of k-algebras
Aop the dual category.
so notation and terminology changes.
(similar to the logos vs topos duality in the presentations by Finsler
and Joyal)

B
f
-

g
- C

becomes

C
f
-

g
- B

“B a k-algebra” becomes “B is an (affine) scheme (over k)”
The reflexive symmetric relation ∼1 on the set homA(B,C ) is also
a reflexive symmetric relation ∼1 on the set homAop(C ,B), i.e. on
points of B (defined at same stage C ))
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The initial k-algebra k becomes the terminal affine scheme: k = 1

Maps C → B (i.e. scheme maps) are called “points of B (defined
at stage C )”; Kripke-Joyal semantics applies in Aop.
Thus points of B at stage 1 (“global” points) are the same as
k-algebra maps B → k .
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What about the “scalars” ti , i.e. the elements of C that enter in
the formulation of the Main Theorem ?
k[X ] = the free k-algebra in one generator X ; R := k[X ]

Elements t of C

correspond to

k-algebra maps k[X ]→ C (namely the one with X 7→ t)
= maps in Aop: C → R

points of R defined at stage C
or: “scalars” ∈ R defined at stage C ,



homk(B,C ) is a C -module.
The Theorem can be expressed:
The subset homA(B,C ) ⊆ homk(B,C ) is stable under formation
of affine combinations (in this C -module) of mutual neighbours
(and the formation is natural w.r.to maps C → C ′)

The structure on homA(B,C ) provided by the Theorem is a
partially defined algebraic structure: (defined on mutually
neighbouring maps): of such, affine combinations of such (over the
k-module of linear maps B → C ) can be formed (natural w.r.to
. . . )
Expressed in Aop:
homAop(C ,B) carries structure of partially defined affine space
over C (defined on mutually neighbouring maps C → B (natural
w.r.to . . . )
or
One may form affine combinations of mutual neigbouring points of
B (points at stage C ) with coefficients: scalars ∈ R (at stage C
(natural w.r.to . . . ))
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4. Logarithm

For x ∼1 y ∈ B and t ∈ R = k[X ], x , y neighbour points of B, t a
point of R, all three at stage C , say, have

(1− t) · x + t · y ∈ B

(natural in C ) Synthetically: for x ∼1 y , this defines a map R → B

t 7→ (1− t) · x + t · y

The 1-jet of this map at 0 is a tangent vector at x (in B).
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log : B(1) → T (B)

For good B, this is a bijection onto the subscheme of (T (B))1, the
inverse is called exp. For B = Rn:

(T (B))1 = tangent vectors whose principal part is ∼1 0.

And exp adds the prinincipal part to the base point.
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Filip Bar: Affine connections and second-order affine structures, to
appear in Cahiers de Top. et Geom. Diff. Cat.

E. Dubuc and A. Kock.: On 1-form classifiers, Communications in
Algebra 12 (1984), 1471-1531.

A. Kock: Synthetic Geometry of Manifolds, Cambridge Tracts in
Mathematics 180, Cambridge University Press 2010.

A. Kock: Affine combinations in affine schemes, Cahiers de Top. et
Geom. Diff. Cat., 58 (2017), 115-130.

A. Kock: Integration of 1-forms and connections, arXiv
1902.11003 .

https://tildeweb.au.dk/au76680/



Thank you !



B
f
-

g
- C

Then f ∼1 g iff
(f , g) : B ⊗ B → C

factors through
B ⊗ B → B ⊗ B/I 2

where I is the kernel of the multiplication map

B ⊗ B → B

In Aop, this quotent map becomes a subscheme

B1 ⊂ B ⊗ B

the “first neighbourhood of the diagonal”.
The submodule I/I 2 ⊂ B ⊗ B/I 2 is the Kaehler differentials of B.
Interpreted in Aop: the module of scalar functions ω : B1 → R
which vanish on the diagonal,
ω(x , y) ∈ R defined for x ∼1 y , with ω(x , x) = 0.
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A becomes a tangent category B 7→ B[ε]
Aop becomes a tangent category: B maps to the symmetric
B-algebra on the Kaehler differentials of B.



If only x ∼1 y , x ∼1 z is assumed, but not y ∼1 z , the completion
of the first figure into the second, is an added structure, namely an
affine connection λ:
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z

q qq q λ(x , y , z)

I have no license to write the affine combination y − x + z unless
y ∼1 z .

In this case, λ(x , y , z) = y − x + z iff λ is symmetric in y , z ,
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