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Introduction

Bubbling off dynamics

Consider an evolution equation of either wave or Schrodinger
type

− utt +4u = F (u,∇t,xu)

iut +4u = G (u)

We are interested in solutions of a ’bubbling type’ of
essentially the following form

u(t, x) = λα(t)Q(λ(t)x) + ε(t, x)

where λ(t) blows up either in finite or infinite time, while
ε(t, x) stays ’regular’ and bounded.

Usually the bulk profile Q(x) is either a stationary or even
static solution of the problem.
Smoothness of solution before blow up : only require
smoothness Hs -class in which problem is strongly locally
well-posed, i. e. not just C∞-data.
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Introduction

L2-Critical NLS

L2-critical NLS, for example in one spatial dimension given by

iut + uxx = −|u|4u,

admits stationary solution Q(t, x) = e it
( 3
2
)
1
4

cosh
1
2 ( x

2
)
. Application

of suitable pseudo-conformal transformation leads to

u(t, x) = t−
1
2 e

x2

4it Q(
x

t
)

Application of inherent symmetry leads to a very rigid blow up
type (precisely one blow up rate).

Most ’natural problems’ don’t admit such inherent algebraic
symmetries to infer bubbling off blow up. Nonetheless, the
latter is quite ubiquitous.
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Introduction

Models for Bubbling off dynamics

Key examples which are typically Hamiltonian and also
critical :

Critical Wave Maps : − utt + urr +
1

r
ur =

sin 2u

2r2

Critical focussing NLW on R3+1 : − utt +4u = −u5

Critical Yang-Mills : − utt +4u = − 2

r2
u(1− u2)

critical Schrodinger Maps : ut = u ×4u

Energy critical NLS on R3+1 : iut +4u = −|u|4u

Outlier example :
Hyperbolic Vanishing mean curvature flow :

n∑
α=0

∂α
( ∂αu√

1 + ∂αu∂αu

)
= 0, n = 8. (1)
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Introduction

Bubbling off blow up for WM I

Specific example : co-rotational critical Wave Maps
φ : R2+1 −→ S2 :

− φtt +4φ = φ(|φt |2 − |∇xφ|2), φ ∈ S2 ↪→ R3.

φ(t, x) =

 cos θ sin u
sin θ sin u

cos u

 , u = u(t, r) r = |x |.

implies the equation

− utt + urr +
1

r
ur =

sin 2u

2r2
. (2)

Model admits non-trivial finite energy static solution
Q(r) = 2 arctan r , corresponding to stereographic projection.
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Introduction

Bubbling off blow up for WM II

Two approaches to building finite time bubbling off blow up.

Raphael-Rodnianski(’09) approach : exhibits open data set
within sufficiently smooth class of (co-rotational) data
resulting in solutions of the form

u(t, r) = Q(λ(t)r) + ε(t, r), λ(t) = (T − t)−1e
√

log(T−t).

The result implies the same blow up rate for an open data set,
but the topology is important. The following appears a
natural conjecture :
Conjecture : Stable finite time blow up solutions of (2) with
C∞-data are of the preceding form.

One may also conjecture quantized set of blow up rates
correspoonding to sufficiently smooth data and unstable blow
up.
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Introduction

Bubbling off blow up for WM III

Important to note : the Raphael-Rodnianski solutions live in a
strictly sub-critical topology, namely H2, while the problem is
actually strongly locally well-posed in H1.

Can be contrasted with the following theorem of
Donninger(’16) for the ODE-type blow up solutions

u(t, x) = c(T − t)−
1
2 for the energy-critical NLW on R3+1

−utt +4u = −u5.

Theorem(Donninger’16) : The ODE blow up solutions are
stable under radial H1-perturbations

This is the strongest stability statement one can hope for
since H1 is the largest natural space in which the problem is
locally well-posed.
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Introduction

The phenomenon of a continuum of blow up rates

Back to co-rotational critical Wave Maps into S2, another
approach for finite time bubbling off blow up due to
K.-Schlag-Tataru(’06) : exhibits solutions of the form

u(t, r) = Q(λ(t)r)+ε(t, r), λ(t) = t−1−ν , ε ∈ C ν+
1
2
−∩H1+ν−.

Any ν > 0 is admissible. Original result gave no stability, even
of conditional type.

Two peculiar features : (1) continuum of blow up rates. (2)
The solutions are only of finite regularity, depending on the
blow up rate.

More precisely, the solutions are of class C∞ in the inside of
light cone |x | < |t| centered at singularity, but experience a
shock on the light cone |x | = |t|.
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Introduction

Remarks on KST(’06) construction

There are two key steps in the construction : (1) construction
of an approximate solution uapprox . Here the shock on light
cone already manifests itself. (2) Completion of approximate
solution to an exact one via spectral methods.

Approximate solution : distinguish the regions r � |t| (elliptic
region) and r ∼ |t| (wave region).
In the elliptic region, one can make a formal power series
ansatz

uapprox =
∑
j≥0

tνj fj(R), R = λ(t)r .

In the wave region introduce a = r
t , and write

uapprox =
∑
j≥0

tνjgj(R, a)

where the gj admit suitable Puiseux type expansion in a
reflecting the shock across the light cone.

Recent developments preprint 2021



Introduction

Remarks on KST(’06) construction

There are two key steps in the construction : (1) construction
of an approximate solution uapprox . Here the shock on light
cone already manifests itself. (2) Completion of approximate
solution to an exact one via spectral methods.
Approximate solution : distinguish the regions r � |t| (elliptic
region) and r ∼ |t| (wave region).

In the elliptic region, one can make a formal power series
ansatz

uapprox =
∑
j≥0

tνj fj(R), R = λ(t)r .

In the wave region introduce a = r
t , and write

uapprox =
∑
j≥0

tνjgj(R, a)

where the gj admit suitable Puiseux type expansion in a
reflecting the shock across the light cone.

Recent developments preprint 2021



Introduction

Remarks on KST(’06) construction

There are two key steps in the construction : (1) construction
of an approximate solution uapprox . Here the shock on light
cone already manifests itself. (2) Completion of approximate
solution to an exact one via spectral methods.
Approximate solution : distinguish the regions r � |t| (elliptic
region) and r ∼ |t| (wave region).
In the elliptic region, one can make a formal power series
ansatz

uapprox =
∑
j≥0

tνj fj(R), R = λ(t)r .

In the wave region introduce a = r
t , and write

uapprox =
∑
j≥0

tνjgj(R, a)

where the gj admit suitable Puiseux type expansion in a
reflecting the shock across the light cone.

Recent developments preprint 2021



Introduction

Remarks on KST(’06) construction

There are two key steps in the construction : (1) construction
of an approximate solution uapprox . Here the shock on light
cone already manifests itself. (2) Completion of approximate
solution to an exact one via spectral methods.
Approximate solution : distinguish the regions r � |t| (elliptic
region) and r ∼ |t| (wave region).
In the elliptic region, one can make a formal power series
ansatz

uapprox =
∑
j≥0

tνj fj(R), R = λ(t)r .

In the wave region introduce a = r
t , and write

uapprox =
∑
j≥0

tνjgj(R, a)

where the gj admit suitable Puiseux type expansion in a
reflecting the shock across the light cone.

Recent developments preprint 2021



Introduction

Continuum of blow up rates for other models

All of the models mentioned at the beginning admit analoga
of the KST blow ups.

Theorem(Gal. Perelman(’12)) : The critical Schrodinger
Maps u : R2+1 −→ S2 admits finite time blow up solutions of
the form

u(t, x) = Q(λ(t)x) + ζ(t, x), λ(t) = t−
1
2
−ν , ν > 1.

The restriction ν > 1 can probably be relaxed to ν > 0.

To build approximate solution, one needs to distinguish

between elliptic region r � t
1
2 , the Schrodinger wave region

r ∼ t
1
2 and the far region r � t

1
2 .

By analyzing the approximate solution in far region, Perelman
can extract the leading radiation part that is left over at the
singularity formation.
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A further natural candidate which blends wave and
Schrodinger

The critical Zakharov system on R4+1 :

i∂tu +4u = −nu,
(−∂tt +4)u = 4(|u|2)

Admits the static solution (u, n) = (W ,−W 2) where (same
as for energy critical NLS on R4+1)

W (x) =
1

1 + |x |2
8

.

Conjecture : Zakharov admits a finite time bubbling off blow
up where

u(t, x) = e iα(t)λ(t)W (λ(t)x) + ζ(t, x), λ(t) = t−
1
2
−ν ,

and ν > ν∗ ≥ 0
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Introduction

How to get a coherent picture of all these dynamics ?

The issue of stability : the following appears reasonable but
non-trivial since due to a nonlinear instability : Conjecture :
A KST type blow up solution with λ(t) = t−1−ν and ν large
is unstable, but stable along a manifold of finite co-dimension
in a sufficiently smooth class of perturbations.

Recent progress on the question of stability for KST blowup in
context of critical Wave Maps into S2. The case of
λ(t) = t−1−ν with ν > 0 small was considered.

Recall that these solutions experience shock across light cone

of the form (1− a)
1
2
+ν log(1− a), a = r

|t| .

Displacing this shock ’costs a lot’, i. e. requires a rough
perturbation of the data. Hence natural to consider smooth
perturbations which ’cannot displace’ the shock.
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Stability of KST blow up for critical WM into S2

Theorem(K.-Miao ’19) The KST finite time blow up
solutions for critical co-rotational wave maps u : R2+1 −→ S2

are stable under sufficiently smooth and small co-rotational
perturbations, provided ν > 0 is sufficiently small. More
precisely if ν > 0 is sufficiently small and uν(t, x) a KST blow
up solution with λ(t) = t−1−ν , constructed on some interval
[t0, 0), and if (ε0, ε1) is sufficiently small in the
H4 × H3-norm, then the data

uν [t0] + (ε0, ε1)

lead to a finite time blow up solution of the form

u(t, r) = Q(λ(t)r) + ε(t, r)

with ε ∈ H1+ν−. In particular, the perturbed solution blows up
in the same space-time location (rigidity of blow up).
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Comments on result

One key difficulty in proof has to do with the low regularity
(just H1+) of the solution uν being perturbed. On the other
hand, the low regularity is solely linked to the shock along the
light cone.

Remarkable feature of co-rotational reduction : no derivatives
in nonlinearity :

�u =
sin 2u

2r2
versus �u = u(|ut |2 − |∇xu|2).

Applying Duhamel parametrix to source term sin 2u
2r2

leads to
terms of regularity H2+, which gives a key boost in regularity.
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2r2

leads to
terms of regularity H2+, which gives a key boost in regularity.
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Introduction

Stability of KST blow up under general (non-equivariant)
perturbations I

Up until recently, the stability of either the KST type blow up
or the Raphael-Rodnianski blow up for the co-rotational
critical Wave Maps into S2 and under generic, non-equivariant
perturbations has been completely open. In fact, for the
(Ra-Ro) solutions it is conjectured that they are unstable.

For the KST blow up uν at low ν (where λ(t) = t−1−ν and
solutions are at regularity H1+ν−), even if one uses very
smooth perturbations (ε0, ε1) of the data, the interactions of
uν with perturbation in the nonlinearity

u(|ut |2 − |∇u|2)

lead to terms of same regularity as uν . Modulations needed,
but only of the kind preserving the locus of the shock.
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Introduction

Stability of KST blow up under general (non-equivariant)
perturbations II

Theorem(K.-Miao-Schlag ’20) The KST finite time blow up
solutions for critical co-rotational wave maps u : R2+1 −→ S2

are stable under sufficiently smooth and small generic
perturbations, provided ν > 0 is sufficiently small. The
perturbed solutions are of the form

u(t, x) = Rα(t),β(t)h(t) Lv(t)Sc(t)
(
Q(λ(t)r) + ε(t, x)

)
.

where Rα(t),β(t)h(t) represents a suitable combination of rotations
on the target in terms of Euler angles, Lv(t) a suitable Lorentz
transform, and Sc(t) a suitable scaling transformation.
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Introduction

Stability of KST blow up under general (non-equivariant)
perturbations III

Key aspects of this work : non-equivariant setting forces one
to work in suitable frame for tangent bundle : cos θ cosU

sin θ cosU
− sinU

 ,

 − sin θ
cos θ

0



If we write φ1E1 + φ2E2 for the tangential part of
perturbation, then. φ1 ± iφ2 can be decomposed into Fourier
series with respect to θ, resulting in

ε±(n) = φ1(n)± iφ2(n).

Schrodinger operators

H±n = ∂RR +
1

R
∂R − fn(R)± gn(R), fn =

n2 + 1

R2
− 8

(1 + R2)2
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Introduction

Stability of KST blow up under general (non-equivariant)
perturbations III

We require an asymptotic (in n) spectral analysis for these
operators, in particular asymptotics for the generalized
eigenfunctions φn(R; ξ).

’Semiclassical variable’ h = 1
|n|+1 , α = h · E ,

φn(R; ξ) = h
1
3α−

1
2 q−

1
4 (τ)Ai(h−

2
3 τ)(1 + ha0(−τ, α, h)).

For each mode n, one tries to mimic the estimates in the
co-rotational case (as in K.-Miao).

The symmetries of the problem lead to certain algebraic
instabilities which manifest in the Fourier modes n = 0,±1.
This is where the modulations are being used.
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Introduction

Outlook : classification in terms of radiation at blow up
time ?

Recent(2019) work by Jendrej-Lawrie-Rodriguez : write
co-rotational WM blow up solution as

u(t, r) = Q(λ(t)r) + u∗(r) + g(t)

where limt→0 g(t) = 0. Then if

u∗(r) = qrν + o(rν), ν >
9

2
,

then λ(t) ∼ | log t|
tν+1 .

KST solutions have similar radiation part (but also with ν > 0
very small). Probably similar classification ?

How about more general radiation part asymptotics near
r = 0. More exotic blow up rates ?
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Introduction

Outlook : multibubble solutions ; how much freedom ?

Precise characterization of two bubble solutions for
equivariant wave maps and under a minimal energy condition
(threshold blow up) by Jendrej-Lawriew (’20) for k ≥ 2 and in
the co-rotational case k = 1 by Rodriguez(’18). Rigid blow up
rates.

In these scenarios only one bubble collapses while the other
one converges to a ’limiting bubble’.

Can there be multi-bubble solutions where all bubbles collapse
in finite or infinite time ? This will require more than the
threshold energy. Is there a link between the topology one is
working with and the possible collapsing rates ?
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