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A sorting algorithm

e Defined by Hopkins, McConville and Propp (EJC, 2017).
@ Start with chips labelled 1, ..., n initially at the origin in Z.
@ At each time step, do the following:

@ If no position has two or more chips, stop. Else, go to step 2.

@ Choose a position i uniformly at random among positions
occupied by more than one chip.

© Pick two chips uniformly from those at site /.

@ If the two chips are «, 8 with a < 3, then move « to position
i—1and B toi+1.

@ Go to step 1.
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The main result

Theorem (Hopkins, McConville and Propp, Elec. J. Comb., 2017)

When n is even, the chips end up at positions

and are always sorted.
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Open problem

When n is odd, one can show that the chips end up at positions

Conjecture (Hopkins, McConville and Propp, Elec. J. Comb., 2017)

When n is odd, the chips get sorted with probability tending to 1/3
as n — oo.
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Further work

@ Root system chip firing:
@ Galashin, Hopkins, McConville and Postnikov (SLC 2018),
@ Galashin, Hopkins, McConville and Postnikov (Math. Z. 2019),
© Hopkins and Postnikov (Alg. Comb. 2019).

@ Progress towards proving the conjecture:

@ Kilivans and Liscio (SLC 2020),
@ Felzenszwalb and Klivans (JCTA 2021).
© Kilivans and Liscio (arXiv:2006.12324).
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Modification of the process

@ Suppose n is even and fix r € [n].

@ Assume that the chip labelled r is infinitely heavy, and cannot
be moved.

@ Then one ends up in a configuration which has 2 chips at the
origin (one of which is r) and 1 chip each at positions

n n
—-—+1,...,-1,1,..., - —1.
2+7 ) Pt 72
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@ Now, if we lighten r and let the process continue, we get a
sorted permutation (by the HMP theorem).
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Modification of the process

@ Suppose n is even and fix r € [n].

@ Assume that the chip labelled r is infinitely heavy, and cannot
be moved.

@ Then one ends up in a configuration which has 2 chips at the
origin (one of which is r) and 1 chip each at positions

——+1...,-11,...,-—1.
+? 9 ) 72
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@ Now, if we lighten r and let the process continue, we get a
sorted permutation (by the HMP theorem).
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Motivation

o Consider the last stage where r is still infinitely heavy. E.g.

@
BEONO)
-1 0 1

-2 2

@ That configuration can be considered as a permutation
m € S,_1 plus an extra label, r.

@ In the above example, m = 213, r = 3.

@ According to HMP, all pairs (, r) that arise this way end up
sorted.

@ It is natural to ask what are all the pairs which end up being
sorted.
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Notation

e Suppose ™ = (71,...,m,) € Spand r € [n+1].
Let L, ={-|(n+1)/2),...,-1,0,1,...,|n/2] + 1}.
1 Place the elements mq,...,m, in positions

—V;lJ,...,—1,0,1,...,&.

2 Increase the labels in 7 greater than or equal to r by 1.
3 Add r to the origin.
o
o

We will call this initial condition 7(").
Eg with r=2: p=3142 € 54, 0 = 25134 € Ss.

1 1
) = 4 253 , &A= 3 6 2
01 2 0
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Definitions

e Form € S, and r € [n+ 1], we consider the toppling dynamics.

@ The toppling dynamical system on L, can be considered as a
map T : S, x [n+ 1] = Spi1.
o Let id be the identity (namely sorted) permutation.

Definition

We say that a permutation 7 is r-toppleable if T(,r) =id, and
we say that 7 is toppleable if 7 is r-toppleable for all r € [n+ 1].
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Basic properties

Fix m € S, and r € [n+ 1]. The toppling dynamical system on L,
with initial condition 7(") satisfies the following properties.

@ The final configuration is deterministic.
@ At every time step, the configuration lives in L,.

© In the final configuration, there is precisely one chip at every
position in L,, except the origin (resp. position 1) when n is
odd (resp. even).
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Basic properties

Proposition

Fix m € S, and r € [n+ 1]. The toppling dynamical system on L,
with initial condition 7(") satisfies the following properties.

@ The final configuration is deterministic.
@ At every time step, the configuration lives in L,.

© In the final configuration, there is precisely one chip at every
position in L,, except the origin (resp. position 1) when n is
odd (resp. even).

Main idea: No position contains more than 2 chips!
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Number of toppleable permutations

o Let t,(n) be the number of r-toppleable permutations.
o Let t(n) be the number of toppleable permutations in Sp,.

@ For n =3, there are four 1-toppleable permutations, namely
123, 213, 132 and 231, ...

@ and four 4-toppleable permutations, namely 123, 213, 132 and
312.

@ Therefore, t1(3) = ta(3) = 4.
@ The common permutations among these turn out also to be
2- and 3-toppleable.

@ Hence t(3) = t(3) = t3(3) = 3.



Toppleable permutations
0000®00000000000

n\r 1 2 3 4 5 6 7 8 9
3 3 4
14 10 7 7 8

46 38 31 31 38 46

230 184 146 115 115 130 146

1066 920 790 675 675 790 920 1066
6902 5836 4916 4126 3451 3451 3842 4264 4718

o~ oA W

The number of r-toppleable permutations, t,(n), for 3 < n <8.
The number of toppleable permutations are in red.
Note the symmetry for odd n.



Toppleable permutations
00000®0000000000

Background for the results: excedance sets

@ An excedance of a permutation 7 is any position / such that
>

@ The positions at which there are excedances for 7 is called the
excedance set of .

e Ehrenborg and Steingrimsson (Adv. Appl. Math., 2000)
initiated the study of permutations whose excedance set is
{1,...,k} for0< k<n-—1.

@ They gave a formula for the number a, x of such
permutations in S,,.

@ One surprising result they found is that a, x = ap n—1—«-
o A related result of Clark and Ehrenborg (Europ. J of C, 2010)

IS
> arss i
Artss T 7 — .
ol sl e X4 e v —1)2
r,s>0 ( + )
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Main result 1

Theorem (A., Hathcock and Tetali, 2020+ )

For all n,

t(n) = tin/2)+1(n) = t|n/2)42(n)-

{(n) = 2 <n, VT_lD .

Using the exponential generating function, de Andrade, Lundberg
and Nagle (Europ. J. of C, 2015) obtained the asymptotic formula,

Furthermore,

1 n!

) = 2 log 2y T=Tog2 + ol1) (2108 2)"
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Acyclic orientations and chromatic polynomials

o Let G be a simple (no loops or multiple edges) undirected
graph.

An orientation of G is an assignment of arrows to the edges of
G.

An acyclic orientation (AO) is an orientation in which there is
no directed cycle.

A proper colouring of G is an assignment of colours to vertices
such that no two adjacent vertices get the same colour.

@ The chromatic polynomial of G, denoted x¢(q), is the
number of proper colourings of G with g colours.

Theorem (Stanley, Disc. Math., 1973)

The number of acyclic orientations of G (up to sign) is x(—1).
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Example: G, the 4-cycle

Si Si Si So
There are 14 acyclic orientations for C4. Seven are shown here.
The other seven are obtained by reversing each of the arrows.
The chromatic polynomial is x¢,(q) = ¢* — 4¢® + 6¢° — 3q.
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Acyclic orientations with unique sink

An acyclic orientation with a unique sink (AUSO) is an acyclic
orientation with exactly one sink.

| A\

Theorem (Greene and Zaslavsky, Trans. of the AMS, 1983)

The number of AUSOs of G (up to sign) is independent of the sink
and equal to (up to sign) the linear coefficient of xg(—1).

v

C4 has 3 AUSOs, shown in red on the previous page.
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Main result 2

Recall that K, , is the complete bipartite graph with parts of size
m and n.
For example, (3 = K3 5.

Theorem (A., Hathcock and Tetali, 2020+)

For all n, t(n) is equal to the number of acyclic orientations with a
fixed unique sink of Kip/21,n/2)+1-

This proof is bijective.
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Poly-Bernoulli numbers

@ The well-known polylogarithm function is given by

@ Recall that a position k is an ascent in a permutation if
T < Tka1-

@ The Eulerian number <T> is the number of permutations in

Sn with j ascents.

@ For a non-negative integer m,

m—1
> ()
=0

Sl = T
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Poly-Bernoulli numbers

@ Poly-Bernoulli numbers of type B were defined by Kaneko
(1997) via the exponential generating function,
= x" Li_g(1—e™)
Z Bn,kﬁ =T _ex
n=0
@ A surprising result is that By , = B, «.
@ There are many combinatorial interpretations for B, ;.
@ A permutation m € Sk, is said to be a (k, n)-Vesztergombi
permutation if —k <m; —i<nforl1<i<k+n.
@ The number of (k, n)-Vesztergombi permutations is B, .
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The first few poly-Bernoulli numbers of type B

[MkfJofr1]2] 3] 4 [ 5
0 [1]1 1 | 1
1 (12| 4 | 8 | 16 | 3
2 1] 4| 14| 46 | 146 | 454
3 1] 8 | 46 | 230 | 1066 | 4718
4 1] 16| 146 | 1066 | 6906 | 41506
5 || 1|32 454 | 4718 | 41506 | 329462
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Forward difference operators

@ Let A be the discrete (forward) difference operator, i.e. for
any function f(n), A(f(n)) = f(n+1) — f(n).

The higher difference operators are obtained by composition.
For example, A%(f(n)) = f(n+2) — 2f(n+ 1) + f(n).

The sequence AX(f) is also known as a binomial transform of
the sequence f.

Note that A°(f(n)) = f(n).
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Main result 3

Theorem (A. and Bényi, 2021+)

The number of r-toppleable permutations in S, is

t,(n) — Ar_l (anerlfr,p) )

where p = [(n+1)/2] and A acts on the first index.

@ We generalise this result to any position of adding the extra
chip.

@ We also characterise all possible final permutations and
enumerate permutations toppling to these.
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Focus on odd n

@ For each statement, the results for odd and even n differ

slightly.

@ To make the presentation cleaner, we state the results only for
odd n.

@ This will avoid the presence of floors and ceilings all over the
place.

@ The corresponding results for even n are given in
arXiv:2010.11236.
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Monotonicity

Theorem (A., Hathcock and Tetali, 2020+)

Let m € 52m_|.1.
Q Suppose2 < r < m-+1. Then 7 is (r — 1)-toppleable if 7 is
r-toppleable.
@ Suppose m+2 < r <2m. Then r is (r + 1)-toppleable if m is
r-toppleable.
@ 7 is (m+ 1)-toppleable if and only if w is (m + 2)-toppleable. )




Proof ideas
00®00000

The notion of a pass

@ For m € Symy1, let the number of chips at each site of L, in
(") be
P =(1,...,1,2,1,...,1, ).

@ Topple as follows:

p —(1,...,1,1,2,2,2,1,1,...,1,_)
—(.1,...,1,2,,2,_2,1,....1,0)
—(.1,...,2,,1,2,1,,2,...,1,)

@ At this point, we leave the origin unchanged and start to
topple the vertices with 2 chips both on the left and right,
until we reach the end.

@ We then arrive at the configuration with chip counts given by

(a,.,1,...,1,2,1,...,1,_,1).
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The notion of a pass

@ Now, the extremal points cannot be modified by any further
topplings and are fixed.

@ We call this sequence of topplings the first pass.
@ This consists of 2m + 1 individual topplings.

@ Similarly, the second pass will be initiated by toppling the
origin in a similar way, and we will end up with

(,1,_,1,...,1,2,1,...,1,_,1,1).

o Continue this way until the configuration stabilizes.

e If nis odd, then we see that after (n+ 1)/2 passes, the
configuration will freeze leaving the origin empty.
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Observations about passes

@ Every chip between vacancies topples at least once in every
pass.

o If m € Sy is toppleable, then for 1 </ < m+41, i and
2m+ 2 — i get fixed in their correct positions at the end of
the i'th pass.

@ For example:

1 H 2
_ 3 6 2 45 _passl _ 3 6 4 _ 5

second 3 th_nrcl>
pass 1 2 _ 4 6 Spassl 2 3 _ 4 6 5
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Structure theorem

Theorem (A., Hathcock and Tetali, 2020+)
A permutation ™ € Spmi1 is (m + 1)—toppleable if and only if

m<m+i, 1<i<m,

<
>i—m, m+1<i<2m+1.

j
Equivalently,

mte{l,...,m+i}, 1<i<m+1
mte{i—-m,....2m+1}, m+2<i<2m+1.

Main idea: The notion of a pass and induction.
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Bijection

Lemma

Permutations m € Sppmq1 such that mi < m+1i for1 < i< m and
mi>i—mform+1<i<2m+1 are in bijection with
permutations in Symi1 whose excedance set is {1,...,m}.

Proof idea.

| A

(7‘(1,...,7Tm’7Tm+1,...,7T2m+1)
—0=2m+2— (Tmy-, T1|T2mt1,- -« Tmt1)-

Ol

y
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Proof of main result 1

@ By the monotonicity result, we see that ™ € Spp,11 is
toppleable if it is (m + 1)-toppleable.

@ According to the structure theorem, m; < m—+iforl1 </i<m
and m; > i—mform+1<i<2m-+1.

@ Now, the previous lemma proves that the number of such
permutations is axmy1,m bijectively, completing the proof.

Ol

<
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Back to HMP toppling

Theorem (Lemma 12, Hopkins, McConville and Propp)

Starting with n chips at the origin, the position of chip k lies
between —|(n+ 1 — k)/2| and | k/2| for 1 < k < n at all times.

@ When nis odd, n =2m + 1, the final configuration will
contain single chips in all positions —m through m.

@ We now apply this condition to count permutations arising
from this condition switching positions from [—m, m] to [n].

@ For n even, the only permutation that appears as a result of
toppling is id.

@ We also consider this case, although it is not directly relevant
to the toppling problem.
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Collapsed permutations

We say that a permutation m € S, is collapsed if

s {[k/ﬂ n odd,

-1
k 1+ |k/2] neven and m” < [n/2] + [k/2).

Let G, be the subset of collapsed permutations in S,

@ Forn=2m+1,

i |1 2 3. ... 2m 2m+1
Position of / > 1 1 2 m m+1
Positionof i< | m+1 m+2 m+2 ... 2m+1 2m+1

o For example, Gz = {123,132,213} and G4 = {1234, 1324}.
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Seidel triangle for the Genocchi numbers

@ To state our results, we recall a well-known combinatorial
triangle.

@ The Seidel triangle is the triangular sequence S, x for n > 1
given by

S11 =1,
Snk =0, k<2or(n+3)/2<k,
Sonk = Z Son—1,i,

i>k

S2n+1,k — Z 52n,i-

i<k
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56 104 138 155 155
608 552 448 310 155

nk| 2 3 4 5 6
1 | 1

2 | 1

3|1 1

4 | 2 1

5 |2 3 3

6 | 8 6 3

7 | 8 14 17 17
8 | 56 48 34 17
9

10
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Genocchi numbers of the first kind

@ The numbers on the rightmost diagonal are the Genocchi
numbers of the first kind, go,.

@ They counts permutations in S,_3 whose excedence set is
{1,3,...,2n —5}.
@ For example, gg = 17:

21435, 21534, 21543, 31425, 315, 24, 31542, 32415, 32514,
32541, 41523, 41532, 42513, 42531, 51423, 51432, 52413, 52431.

@ The exponential generating function of g», is given by

x2n X
Zggnw = xtan (§> .

n>0
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Odd collapsed permutations

The number of collapsed permutations in Spp+1 iS gonta. \

@ Define a bijection f : Gopr1 — Sont1 which send

T o0 =(01,...,02n+1)

such that
Q 0 = T, 00i_1 = Tpyp14; for 1 < j < n, and
Q 0241 = Thy1.

@ The bijection for n = 1 is illustrated below:

Gz | S3 with excedence set {1}
132 213
123 312
213 321
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Genocchi numbers of the second kind

@ The numbers on the leftmost diagonal are the median
Genocchi numbers or Genocchi numbers of the second kind,

Hant1.

@ They count among other things, ordered pairs ((a1,...,an—1),
(b1,..., by 1)) € Z""1 x Z"1 such that 0 < a4 < k and
1< by <kforall kand {a1,...,an-1,

bi,...,bp—1} =[n—1].
o For example, H; = 8:

((0,0),(1,2)), ((0,1),(1,2)), ((0,2),(1,1)), ((0,2),(1,2)),
((1,0),(1,2)), ((1,1),(1,2)), ((1,2),(1,1)), ((1,2),(1,2)).

@ In terms of the Genocchi numbers of the first kind, we have

n
n
Hapy1 = § g2n—2i<2l. 1)-
i=0

)
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Normalized median Genocchi numbers

@ Although it is not clear either from the above definition or the
formula, Hapy1 is always divisible by 27.

@ The numbers h, = Hapy1/2" are called the normalized
median Genocchi numbers.
The first few numbers of this sequence are

{ha}_o = {1,1,2,7,38,295,3098, 42271}.

@ A classical combinatorial interpretation for these are certain
configurations first defined by Hippolyte Dellac in 1900.
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Dellac configuration

Definition

A Dellac configuration of order nis a 2n x n array containing 2n
points, such that every row has a point, every column has two
points, and the points in column j lie between rows j and n+ j,
both inclusive, 1 < j < n.

For example, when n = 3, the 7 Dellac configurations are
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Even collapsed permutations

The number of collapsed permutations in Sy, is given by Hap,_1. l

@ Both 2/ and 2/ + 1 have to lie in positions between i + 1 and
i + n, both inclusive, for 1 <i<n-—1.

@ Thus, #Go, is divisible by 2",

@ Focus on 7 € Gy, such that 2/ precedes 2/ + 1 in one-line
notation for all /.

@ Since m; = 1 and mp, = 2n are forced, we focus on
(7T2, ceey 7T2n_1).
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Bijection

@ Construct a configuration C of points on an
(2n — 2) x (n — 1) array as follows:
@ For 2 <j<2n—1, place a point in position (i — 1, [7;/2]).
@ C is a Dellac configuration and this can be inverted.
o For example, the permutation 1243657 8 € Gg is in bijection
with
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