# Moments of $L$-functions and Automorphic Forms 

## Collaborative Research Group (CRG) <br> $L$-functions in Analytic Number Theory

CRG Launch Event - November 19, 2022

Banff International Research Station
for Mathematical Innovation and Discovery


University of Lethbridge


UNBC

## Table of Contents

(1) Moments of Zeta
(2) Moments of Quadratic $L$-functions
(3) Moments of Automorphic $L$-functions

4 Multiple Dirichlet Series
(5) Spectral Reciprocity
(6) Discrete Moments of Zeta
(7) Objectives and Open Problems

Moments of $\zeta\left(\frac{1}{2}+i t\right)$

We define the $2 k$-th moments of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ as

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Lindelöf Hypothesis
§

$$
\text { for any } \epsilon>0, I_{k}(T)=O\left(T^{1+\epsilon}\right) \forall k \in \mathbb{N}
$$

## A Folklore Conjecture

It is believed that

## Conjecture

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some unspecified constant $c_{k}$.
What is known?

## A Folklore Conjecture

It is believed that

## Conjecture

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some unspecified constant $c_{k}$.
What is known?

- Hardy-Littlewood (1918): $I_{1}(T) \sim T \log T$
- Ingham (1926): $I_{1}(T)=T P_{1}(\log T)+O\left(T^{\frac{1}{2}+\epsilon}\right)$


## A Folklore Conjecture

It is believed that

## Conjecture

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some unspecified constant $c_{k}$.
What is known?

- Hardy-Littlewood (1918): $I_{1}(T) \sim T \log T$
- Ingham (1926): $I_{1}(T)=T P_{1}(\log T)+O\left(T^{\frac{1}{2}+\epsilon}\right)$
- Ingham (1926): $I_{2}(T) \sim \frac{1}{2 \pi^{2}} T(\log T)^{4}$
- Heath-Brown (1979): $I_{2}(T)=T P_{2}(\log T)+O\left(T^{\frac{7}{8}+\epsilon}\right)$


## Asymptotic Bounds

We have the lower bound

- Radziwiłł-Soundararajan (2013):

For all $k>0$, we have $I_{k}(T) \gg T(\log T)^{k^{2}}$.
and the upper bounds

- Soundararajan (2008):

Under $R H$, for any $\epsilon>0$ we have $I_{k}(T) \ll T(\log T)^{k^{2}+\epsilon}$.

- Harper (2013):

Under $R H$, we have $I_{k}(T) \ll T(\log T)^{k^{2}}$

## Conjectural Asymptotic Formulae

## Conjecture (Conrey-Ghosh, 1998)

$$
\begin{gathered}
I_{3}(T) \sim \frac{g_{3}}{9!} a_{3} \cdot T(\log T)^{9} \\
\text { where } g_{3}=42 \text { and } a_{3}=\prod_{p}\left(1-p^{-1}\right)^{4}\left(1+4 p^{-1}+p^{-2}\right)
\end{gathered}
$$

## Conjectural Asymptotic Formulae

## Conjecture (Conrey-Ghosh, 1998)

$$
I_{3}(T) \sim \frac{g_{3}}{9!} a_{3} \cdot T(\log T)^{9}
$$

where $g_{3}=42$ and $a_{3}=\prod_{p}\left(1-p^{-1}\right)^{4}\left(1+4 p^{-1}+p^{-2}\right)$

## Conjecture (Conrey-Gonek, 2001)

$$
I_{4}(T) \sim \frac{g_{4}}{16!} a_{4} \cdot T(\log T)^{16}
$$

where $g_{4}=24024$ and $a_{4}=\prod_{p}\left(1-p^{-1}\right)^{9}\left(1+9 p^{-1}+9 p^{-2}+p^{-3}\right)$

## Asymptotic Formulae for Higher Moments?

## Conjecture (Keating and Snaith, 2000)

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim \frac{g_{k}}{\left(k^{2}\right)!} \cdot a_{k} \cdot T(\log T)^{k^{2}}
$$

where

$$
g_{k}=\left(k^{2}\right)!\prod_{j=0}^{k-1} \frac{j!}{(j+k)!}
$$

and

$$
a_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{(k-1)^{2}} \sum_{j=0}^{k-1}\binom{k-1}{j}^{2} p^{-j}
$$

## Conditional Results

## Theorem (Ng, 2021)

Under a ternary additive divisor conjecture

$$
I_{3}(T) \sim \frac{g_{3}}{9!} a_{3} \cdot T(\log T)^{9}
$$

as $T \rightarrow \infty$

## Theorem (Ng-Shen-Wong, 2022+)

Under the Riemann Hypothesis and a quaternary additive divisor conjecture

$$
I_{4}(T) \sim \frac{g_{4}}{16!} a_{4} \cdot T(\log T)^{16}
$$

as $T \rightarrow \infty$.

## Tools: Smooth additive divisor sums, smooth AFE

- Smooth AFE. Heath-Brown (1979): $N=t^{k}$.

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k}=\sum_{m, n=1}^{\infty} \frac{d_{k}(m) d_{k}(n)}{m^{\frac{1}{2}} n^{\frac{1}{2}}}\left(\frac{m}{n}\right)^{-i t} \varphi\left(\frac{m n}{N}\right)+O\left(\exp \left(-t^{2} / 2\right)\right)
$$


smooth weight $\varphi$

- Smooth additive divisor sums DFI (1994) and Aryan (2017)

$$
\tilde{D}_{k, \ell}(f, r)=\sum_{m-n=r} d_{k}(m) d_{\ell}(n) f(m, n)
$$

where $f:[M, 2 M] \times[N, 2 N] \rightarrow \mathbb{R}$ is smooth.

## Mean values of long Dirichlet polynomials

## Theorem (Hamieh-Ng, 2021)

Let $1<\eta<\frac{4}{3}, N=T^{\eta}, L=\log \left(\frac{t}{2 \pi}\right)$, and $\omega$ is a smooth weight.

$$
\int_{-\infty}^{\infty} \omega(t)\left|\sum_{n=1}^{N} \frac{d_{2}(n)}{n^{\frac{1}{2}+i t}}\right|^{2} d t \sim \frac{1}{\zeta(2)} \int_{-\infty}^{\infty} \omega(t) \frac{1}{4!} P(\eta) L^{4} d t
$$

where $P(\eta)=-\eta^{4}+8 \eta^{3}-24 \eta^{2}+32 \eta-14$.

- special case of more general theorem with $d_{k}$.
- Conrey-Keating series of papers on these mean values.
- Baluyot-Turnage-Butterbaugh (2022): Dirichlet $L$-functions
- Conrey-Rodgers (2022): quadratic Dirichlet $L$-functions
- Conrey-Fazzari (2022): modular $L$-functions

Moments of $L\left(\frac{1}{2}, \chi_{d}\right)$

## Conjecture (Conrey-Farmer-Keating-Rubinstein-Snaith, 2005)

For any $k \in \mathbb{N}^{*}$,

$$
\sum_{0<d \leq X}^{b} L\left(\frac{1}{2}, \chi_{d}\right)^{k}=X P_{\frac{k(k+1)}{2}}(\log X)+O\left(X^{\frac{1}{2}+\varepsilon}\right) \sim c_{k} X(\log X)^{\frac{k(k+1)}{2}}
$$

where $P_{\frac{k(k+1)}{2}}$ is a polynomial of degree $\frac{k(k+1)}{2}$.

- $k=1: O\left(X^{\frac{1}{4}+\varepsilon}\right), k=2: O\left(X^{\frac{1}{4}+\varepsilon}\right)$
- Diaconu-Twiss (2020). $k \geq 3$ : conjecture error term is $O\left(X^{\frac{3}{4}}(\log X)^{C_{k}}\right)$


## History

## Theorem (Jutila, 1981)

$$
\sum_{0<d \leq X}^{b} L\left(\frac{1}{2}, \chi_{d}\right)=X P_{1}(\log X)+O\left(X^{\frac{3}{4}+\varepsilon}\right)
$$

where $P_{1}(t)$ is a linear polynomial with explicit coefficients.

## History

## Theorem (Jutila, 1981)

$$
\sum_{0<d \leq X}^{b} L\left(\frac{1}{2}, \chi_{d}\right)=X P_{1}(\log X)+O\left(X^{\frac{3}{4}+\varepsilon}\right)
$$

where $P_{1}(t)$ is a linear polynomial with explicit coefficients.

- Goldfeld-Hoffstein, 1985: $O\left(X^{\frac{19}{32}+\varepsilon}\right)$.
- Young, 2009: $O\left(X^{\frac{1}{2}+\varepsilon}\right)$ (smooth version).
- Florea, 2017: $e X^{\frac{1}{3}}+O\left(X^{\frac{1}{4}+\varepsilon}\right)$ (function field), where $e$ is a constant.

Theorem (Jutila, 1981)

$$
\sum_{0<d \leq X}^{b} L\left(\frac{1}{2}, \chi_{d}\right)^{2}=c_{2} X(\log X)^{3}+O\left(X(\log X)^{\frac{5}{2}+\varepsilon}\right)
$$

where $c_{2}$ is a explicit constant.

## Theorem (Jutila, 1981)

$$
\sum_{0<d \leq X}^{b} L\left(\frac{1}{2}, \chi_{d}\right)^{2}=c_{2} X(\log X)^{3}+O\left(X(\log X)^{\frac{5}{2}+\varepsilon}\right)
$$

where $c_{2}$ is a explicit constant.

- Soundararajan, 2000: main term $+O\left(X^{\frac{5}{6}+\varepsilon}\right)$.
- Florea, 2015: $O\left(X^{\frac{1}{2}+\varepsilon}\right)$ (function field).
- Sono, 2019: $O\left(X^{\frac{1}{2}+\varepsilon}\right)$ (smooth version).


## Theorem (Soundararajan, 2000)

$$
\sum_{\substack{0<d \leq X \\(d, 2)=1}}^{*} L\left(\frac{1}{2}, \chi_{8 d}\right)^{3}=X R_{6}(\log X)+O\left(X^{\frac{11}{12}+\varepsilon}\right)
$$

where $R_{6}(t)$ is a polynomial of degree 6 and $\sum^{*}$ is the sum over square-free integers.

## Theorem (Soundararajan, 2000)

$$
\sum_{\substack{0<d \leq X \\(d, 2)=1}}^{*} L\left(\frac{1}{2}, \chi_{8 d}\right)^{3}=X R_{6}(\log X)+O\left(X^{\frac{11}{12}+\varepsilon}\right)
$$

where $R_{6}(t)$ is a polynomial of degree 6 and $\sum^{*}$ is the sum over square-free integers.

- Diaconu-Goldfeld-Hoffstein, 2003: $O\left(X^{0.853366+\cdot+\varepsilon}\right)$.
- Zhang, 2005: $e_{1} X^{\frac{3}{4}}+$ Error, under technical assumptions.
- Young, 2013: $O\left(X^{\frac{3}{4}+\varepsilon}\right)$ (smooth version).
- Florea, 2015: $O\left(X^{\frac{3}{4}+\varepsilon}\right)$ (function field).
- Diaconu, 2018: $e_{2} X^{\frac{3}{4}}+O\left(X^{\frac{2}{3}+\varepsilon}\right)$ (function field).
- Diaconu-Whitehead, 2018: $e_{3} X^{\frac{3}{4}}+O\left(X^{\frac{2}{3}+\varepsilon}\right)$ (smooth version).


## Theorem (Shen, 2020)

Under GRH,

$$
\sum_{\substack{0<d \leq X \\(d, 2)=1}}^{*} L\left(\frac{1}{2}, \chi_{8 d}\right)^{4}=c_{1} X(\log X)^{10}+O\left(X(\log X)^{9.75+\varepsilon}\right)
$$

- Florea, 2017 (function field) obtains the first three terms using recursive method.
- Xiannan Li (2022) removes GRH assumption in evaluation of

$$
\sum_{\substack{0<8 d<x \\(d, 2)=1}}^{*} L\left(\frac{1}{2}, f \otimes \chi_{8 d}\right)^{2}
$$

- Shen-Stucky (in progress) remove GRH and obtain some lower order terms.
- Diaconu-Pasol-Popa (2022) exact formula for weighted 4th moment (function field).


## Modular Forms

- Consider the congruence subgroup $\Gamma_{0}(q) \subset \mathrm{SL}_{2}(\mathbb{Z})$ :

$$
\Gamma_{0}(q)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \quad \bmod q\right\} .
$$

- For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $z \in \mathfrak{h}$, let

$$
\gamma \cdot z=\frac{a z+b}{c z+d} .
$$

- Let $f: \mathfrak{h} \rightarrow \mathbb{C}$ be holomorphic. We say $f$ is a modular form of weight $k$ with respect to the congruence subgroup $\Gamma_{0}(q)$ and a character $\chi$ modulo $q$ if $f$ is holomorphic at all cusps and

$$
f(\gamma \cdot z)=\chi(d)(c z+d)^{k} f(z) \quad \forall \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(q)
$$

## Space of Cusp Forms

- We say $f$ is a cusp form if $f$ vanishes at all the cusps.
- The space of cusp forms of weight $k$ for $\Gamma_{0}(q)$ and $\chi \bmod q$ is denoted by $S_{k}\left(\Gamma_{0}(q), \chi\right)$.
If $\chi_{0}$ is the principal character, we set $S_{k}(q)=S_{k}\left(\Gamma_{0}(q), \chi_{0}\right)$, and we have

$$
\operatorname{dim}_{\mathbb{C}} S_{k}(q) \sim \frac{k-1}{12} q \prod_{p \mid q}\left(1+\frac{1}{p}\right) .
$$

- A cusp form $f$ has a Fourier series expansion

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{\frac{k-1}{2}} q^{n}, \quad \text { where } q=e^{2 \pi i z}
$$

It is called normalized if $\lambda_{f}(1)=1$.

- Linear operators called Hecke operators act on $S_{k}\left(\Gamma_{0}(q), \chi\right)$.
- A Hecke eigenform is a cusp form that is a simultaneous eigenvector for all the Hecke operators.
- $S_{k}\left(\Gamma_{0}(q), \chi\right)$ has an orthogonal basis of normalized primitive eigenforms $H_{k}\left(\Gamma_{0}(q), \chi\right)$.


## Modular L-functions

For $f \in H_{k}\left(\Gamma_{0}(q), \chi\right)$, the $L$-function attached to $f$ is defined as:

$$
L(s, f)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{n^{s}}=\prod_{p}\left(1-\frac{\lambda_{f}(p)}{p^{s}}+\frac{\chi(p)}{p^{2 s}}\right)^{-1}
$$

- $L(s, f)$ converges absolutely for $\Re(s)>1$,
- admits an analytic continuation to $\mathbb{C}$ and
- satisfies a functional equation: $\Lambda(s, f)=\epsilon_{f} \Lambda(1-s, \bar{f})$ with $\left|\epsilon_{f}\right|=1$.


## Moments of $L\left(\frac{1}{2}, f\right)$

We consider harmonic averages of the form

$$
\sum_{f}^{h} \alpha_{f}=\frac{\Gamma(k-1)}{(4 \pi)^{k-1}} \sum_{f} \frac{\alpha_{f}}{\langle f, f\rangle}
$$

For $f \in S_{k}\left(\Gamma_{0}(q), \chi\right)$, we define the $\ell$-th moment of $L\left(\frac{1}{2}, f\right)$ as

$$
M_{\ell}^{h}(q, \chi)=\sum_{f \in H_{k}\left(\Gamma_{0}(q), \chi\right)}^{h}\left|L\left(\frac{1}{2}, f\right)\right|^{\ell}
$$

## First and Second Moments in the Level Aspect

Consider

$$
M_{\ell}^{h}(q)=\sum_{f \in H_{k}(q)}^{h} L\left(\frac{1}{2}, f\right)^{\ell} \quad \text { as } q \rightarrow \infty
$$

## Theorem (Duke, 1995)

For $k=2$ and $q$ prime, we have

$$
M_{1}^{h}(q)=\sum_{f \in H_{2}(q)}^{h} L\left(\frac{1}{2}, f\right)=1+O\left(q^{-\frac{1}{2}} \log q\right)
$$

and

$$
M_{2}^{h}(q)=\sum_{f \in H_{2}(q)}^{h} L\left(\frac{1}{2}, f\right)^{2}=\log q+O\left(q^{-\frac{1}{2}} \log q\right)
$$

For any fixed even $k$ and $q$ squarefree

- Iwaniec-Sarnak (2000): $M_{1}^{h}(q) \sim 1$ and $M_{2}^{h}(q) \sim \log q$


## 4th Moments in the Level Aspect

## Theorem (Kowalski-Michel-Vanderkam, 2000)

For $k=2$, as $q \rightarrow \infty$ through prime numbers

$$
M_{4}^{h}(q)=P(\log q)+O_{\epsilon}\left(q^{-\frac{1}{12}+\epsilon}\right)
$$

where $P$ is a degree 6 polynomial with leading coefficient $\frac{1}{60 \pi^{2}}$.

- Balkanova-Frolenkov (2017): improved error term for $M_{4}^{h}(q)$ of size $O_{\epsilon}\left(q^{-\frac{25}{228}+\epsilon}\right)$.
- Balkanova (2016): $k$ is a fixed even integer and $q=p^{v}$ for a fixed prime $p$ as $v \rightarrow \infty$. We have

$$
M_{4}^{h}(q)=R(\log q)+O_{\epsilon, k, p}\left(q^{-\frac{1}{4}+\epsilon}+q^{-\frac{k-1-2 \theta}{8-8 \theta}+\epsilon}\right),
$$

where $R$ is a degree 6 polynomial .

## Higher Moments

$$
\mathcal{M}_{\ell}^{h}(q)=\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(-1)=(-1)^{k}}} \sum_{f \in H_{k}\left(\Gamma_{0}(q), \chi\right)}^{h}\left|L\left(\frac{1}{2}, f\right)\right|^{\ell} .
$$

For fixed odd integer $k \geq 3$, as $q \rightarrow \infty$ through the primes

- Djanković (2011): $\mathcal{M}_{6}^{h}(q) \ll q^{\epsilon}$.
- Stucky (2021): $\mathcal{M}_{6}^{h}(q) \ll(\log q)^{9}$.
- Chandee-Li (2017):

$$
\begin{aligned}
& \frac{2}{\phi(q)} \sum_{\chi} \sum_{\bmod q f \in H_{k}\left(\Gamma_{0}(q), \chi\right)}^{h} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right) L\left(\frac{1}{2}+i t, f\right)\right|^{6} d t \\
& \sim \frac{42}{9!} b_{3}(\log q)^{9} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{6} d t
\end{aligned}
$$

- Chandee-Li (2020): $\mathcal{M}_{8}^{h}(q) \ll q^{\epsilon}$.


## Weight Aspect Results

Consider

$$
M_{\ell}^{h}(k)=\sum_{f \in H_{2 k}(1)}^{h} L\left(\frac{1}{2}, f\right)^{\ell} \quad \text { as } k \rightarrow \infty .
$$

- Balkanova-Frolenkov (2021): as $k \rightarrow \infty$

$$
\begin{gathered}
M_{1}^{h}(k)=1+i^{2 k}+O\left((2 \pi e / k)^{k}\right) \\
M_{2}^{h}(k)=2 \log (k / 2 \pi)+2 \gamma+O\left(k^{-\frac{1}{2}}\right) .
\end{gathered}
$$

- Frolenkov (2020): $M_{3}^{h}(k) \ll(\log k)^{\frac{9}{2}}$.
- Spectral large sieve $\Longrightarrow \sum_{K \leq k \leq 2 K} M_{4}^{h}(k) \ll K^{1+\epsilon}$.
- Khan (2020): $\sum_{k} h\left(\frac{2 k-1}{K}\right) M_{5}^{h}(k) \ll K^{1+2 \theta+\epsilon}$.


## Rankin-Selberg Convolutions of Modular Forms

Assume $(q, N)=1$, and let $f \in H_{k}(q)$ and $g \in H_{r}(N)$ be eigenforms.

$$
L(s, f \otimes g)=\zeta^{q N}(2 s) \sum_{m \geq 1} \frac{a_{f}(m) a_{g}(m)}{m^{s}}, \quad \text { for } \Re(s)>1
$$

- analytic continuation to $\mathbb{C}$ unless $f=g$.
- functional equation $\Lambda(s, f \otimes g)=\Lambda(1-s, f \otimes g)$.


## Moments in the Level Aspect

Let $g \in H_{r}(N)$. For a fixed even $k<12$, consider

$$
M_{\ell}^{h}(q ; g)=\sum_{f \in H_{k}(q)}^{h}\left(L\left(\frac{1}{2}, f \otimes g\right)\right)^{\ell}
$$

As $q \rightarrow \infty$ through primes

- Luo (1999): $M_{1}^{h}(q ; g)=\prod_{p \mid N}\left(1-p^{-1}\right) \log q+O_{g}(1)$.
- Kowalski-Michel-Vanderkam (2000):

$$
M_{2}^{h}(q ; g)=P(\log q)+O_{g}\left(q^{-\frac{1}{12}+\epsilon}\right), \quad \operatorname{deg}(P)=3
$$

## Moments in the Weight Aspect

Let $g \in H_{r}(N)$. Consider

$$
M_{\ell}^{h}(k ; g)=\sum_{f \in H_{k}(1)}^{h}\left(L\left(\frac{1}{2}, f \otimes g\right)\right)^{\ell}
$$

For fixed $r$ and $N=1$, as $k \rightarrow \infty$ we have

- Ganguly-Hoffstein-Sengupta: $M_{1}^{h}(k ; g)=\log k+O_{g}(1)$.
- Blomer-Harcos (2012): Asymptotic formula for the second moment of $L\left(\frac{1}{2}+i t, f \otimes g\right)$ over $t \asymp T$ and $k \asymp K$ with $K^{\frac{3}{4}+\epsilon} \leq T \leq K^{\frac{5}{4}-\epsilon}$.
- Sarnak (2000): For any $\epsilon>0$ and $K^{\frac{151}{165}} \leq M \leq K^{1-\epsilon}$, we have

$$
\sum_{|k-K| \leq M} \sum_{f \in H_{2 k}(1)}\left|L\left(\frac{1}{2}+i t, f \otimes g\right)\right|^{2}<_{\epsilon, t, g}(K M)^{1+\epsilon} .
$$

For $r=k$, we have

- Hamieh-Tanabe (2021): $M_{2}^{h}(k ; g) \ll(\log k)^{c}$.
- Hamieh-Tanabe (work in progress): Asymptotic formula for $M_{2}^{h}(k ; g)$ over $k \asymp K$ as $K \rightarrow \infty$.


## Multiple Dirichlet Series

Diaconu, Goldfeld, and Hoffstein introduced the multi-variable complex functions

$$
\begin{equation*}
Z\left(s_{1}, \ldots, s_{2 k}, w\right)=\int_{1}^{\infty} \zeta\left(s_{1}+\varepsilon_{1} i t\right) \cdots \zeta\left(s_{2 k}+\varepsilon_{2 k} i t\right)\left(\frac{2 \pi e}{t}\right)^{k i t} t^{-w} \tag{1}
\end{equation*}
$$

where

$$
w, s_{1}, s_{2}, \ldots, s_{2 k} \in \mathbb{C}, \varepsilon_{j}= \pm 1,1 \leq j \leq 2 k
$$

- They show that $Z\left(s_{1}, \ldots, s_{2 k}, w\right)$ satisfies certain quasi functional equations.
- Assuming certain meromorphicity conjectures for $Z\left(s_{1}, \ldots, s_{2 k}, w\right)$ they deduce the Keating-Snaith conjecture:

$$
I_{k}(T) \sim \frac{g_{k}}{\left(k^{2}\right)!} a_{k} T(\log T)^{k^{2}}
$$

## Motohashi's exact formula

Let $\omega$ be a smooth weight function.

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} \omega(t) d t=\operatorname{Mainterm}(\omega)+\sum_{j=1}^{\infty} \alpha_{j} L\left(\frac{1}{2}, f_{j}\right)^{3} \tilde{\omega}(j) \\
& +\pi \int_{-\infty}^{\infty} \frac{\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{6}}{|\zeta(1+2 i t)|^{2}} \widehat{\omega}(t) d t+\sum_{k=1}^{\infty}\left(\sum_{f \in H_{2 k}(\Gamma)} L\left(\frac{1}{2}, f\right)^{3} C(k, f, \omega)\right) . \tag{2}
\end{align*}
$$

- If $\omega \approx \mathbf{1}_{[T, 2 T]}$, then Mainterm $(\omega) \sim \frac{T}{2 \pi^{2}}(\log T)^{4}$.
- $\left\{L\left(s, f_{j}\right)\right\}$ ranges through Maass form $L$-functions attached to full modular group.
- $\{L(s, f)\}$ ranges through a modular $L$-functions attached to a basis of Hecke eigenforms of $S_{2 k}(\Gamma)$.
- $\tilde{\omega}(j)$ and $\widehat{\omega}(t)$ are certain integral transforms of $\omega$.
- Zavorotnyi (1989) deduces: $O\left(T^{\frac{2}{3}+\varepsilon}\right)$ for $I_{2}(T)$.


## Moments of $\zeta^{\prime}(\rho)$

$$
J_{k}(T)=\sum_{0<\gamma<T}\left|\zeta^{\prime}(\rho)\right|^{2 k}
$$

applications: $M(x)$, simple zeros, gaps between zeros of zeta

## Conjecture (Hughes-Keating-O'Connell, 2001)

For $k>-\frac{3}{2}$,

$$
J_{k}(T) \sim C_{k} \cdot a_{k} \cdot N(T) \cdot\left(\log \frac{T}{2 \pi}\right)^{k(k+2)}
$$

- $C_{k}=\frac{G^{2}(k+2)}{G(2 k+3)}$ where $G$ is Barnes' function.
- $N(T)=\#\{\rho \mid \zeta(\rho)=0,0<\Im(\rho) \leq T\}$.
- Gonek-Hejhal (1989), $J_{k}(T) \asymp T(\log T)^{(k+1)^{2}}($ all $k)$
- $k=0$. von-Mangoldt/Riemann $J_{0}(T)=N(T) \sim \frac{T}{2 \pi} \log T$


## Results on $J_{k}(T)$

- Gonek (1984) RH implies

$$
J_{1}(T)=\frac{T}{24 \pi}(\log T)^{4}+O\left((\log T)^{3}\right)
$$

Milinovich (unpublished), main term $+O\left(T^{\frac{1}{2}+\varepsilon}\right)$.

- Ng (2004) RH implies

$$
c_{1} T(\log T)^{9} \leq J_{2}(T) \leq c_{2} T(\log T)^{9} .
$$

Garunkstis and Steuding (2005) improve $c_{2}$.

- Milinovich-Ng (2014). Let $k \in \mathbb{N}$. GRH implies

$$
J_{k}(T) \gg T(\log T)^{(k+1)^{2}}
$$

Gao (2022) extends this to all $k>0$ on GRH. GRH (2022+) GRH replaced by RH (Benli, Elma, Ng).

- Kirila (2020). Let $k \in \mathbb{N}$. RH implies

$$
J_{k}(T) \ll T(\log T)^{(k+1)^{2}}
$$

Milinovich (2007), extra factor $(\log T)^{\varepsilon}$.

- Milinovich-Ng (2012). RH + SZ implies

$$
J_{-1}(T) \geq\left(\frac{3}{2 \pi^{3}}+o(1)\right) T
$$

Gonek (1989), $J_{-1}(T) \gg T$.

- Heap-Li-Zhao (2022). Let $k \in \mathbb{Q}<0 . \mathrm{RH}+\mathrm{SZ}$ implies

$$
J_{k}(T) \gg T(\log T)^{(k+1)^{2}}
$$

Gao-Zhao (2022) generalize this to $k<0$.

## Open problems

- Evaluate asymptotically $\sum_{n \leq x} d_{3}(n) d_{3}(n+1)$.
- Find an asymptotic formula for $\sum_{n \leq x} d(n) d(n+1) d(n+2)$.
- Omega theorem for $\sum_{n \leq x} d_{k}(n) d(n+h)$.
- Connection to Elliot-Halberstam type conjectures for $d_{k}$ as in Nguyen (2022).

Let $\epsilon>0$. Then, for any $k \geq 1$, we have, uniformly in $1 \leq h \leq X^{\frac{k-1}{k}}$, the upper bound

$$
\sum_{\substack{q \leq X^{\frac{k-1}{k}}}}\left|\sum_{\substack{n \leq x \\ n \equiv h(\bmod ) q}} d_{k}(n)-\frac{1}{\phi\left(\frac{q}{(h, q)}\right)} \sum_{\substack{n \leq x \\\left(n, \frac{\bar{q}}{(h, q)}\right)=1}} d_{k}(n)\right|<_{\epsilon} X^{\frac{1}{2}+\varepsilon}
$$

as $X \rightarrow \infty$.

- Do such conjectures imply asymptotic for $I_{3}(T)$ ?
- Improve Zavorotnyi's bound $O\left(T^{\frac{2}{3}+\varepsilon}\right)$ for $I_{2}(T)$.
- Smoothed fourth moment, show error term is $O\left(T^{\frac{1}{2}+\theta+\varepsilon}\right), \theta$ is upper bound in Ramanujan's conjecture.
- Omega theorem for $I_{3}(T)$ assuming ternary additive divisor conjecture.
- Full main term for $I_{4}(T)$ and the shifted version.
- A suitable conjecture for the error term $E_{k}(T)=I_{k}(T)$ - main term .
- Conjecture: $E_{1}(T)=O\left(T^{\frac{1}{4}+\varepsilon}\right), E_{2}(T)=O\left(T^{\frac{1}{2}+\varepsilon}\right)$.
- Conjecture (Ivic-Motohashi) $E_{3}(T)=O\left(T^{\frac{3}{4}+\varepsilon}\right)$ ?? What does MDS method say? Recent work of Baluyot-Cech.
- For some small $\epsilon_{0} \geq 0$ evaluate asymptotically

$$
\int_{0}^{T}\left|\sum_{n \leq T^{2+\epsilon_{0}}} \frac{d_{k}(n)}{n^{\frac{1}{2}+i t}}\right|^{2} d t
$$

- Improve error term for $\sum_{0<d \leq X} L\left(\frac{1}{2}, \chi_{d}\right)$. Conjecture $O\left(X^{\frac{1}{4}+\varepsilon}\right)$ work of Florea, Goldfeld-Hoffstein, Young
- Full main term for $\sum_{0<d \leq X} L\left(\frac{1}{2}, \chi_{d}\right)^{4}$ (degree 10 polynomial) works of Shen-Stucky, Florea, Diaconu-Pasol-Popa
- Connection between MDS method and AFE method. works of Diaconu-Whitehead, Diaconu-Twiss, Diaconu-Pasol-Popa. Patnaik-Puskas,
- Full main term for $\sum_{0<d \leq X} L\left(\frac{1}{2}, f \otimes \chi_{d}\right)^{2}$
- Asymptotic for $\sum_{0<d \leq X} L\left(\frac{1}{2}, f \otimes \chi_{d}\right) L\left(\frac{1}{2}, g \otimes \chi_{d}\right)$ work of Xiannan Li
- Compute asymptotic formula for the twisted second moments

$$
\sum_{f \in H_{k}\left(p^{v}\right)} \lambda_{f}(r) L\left(\frac{1}{2}+\mu, f \otimes g\right)^{2}
$$

for a fixed prime $p$ as $v \rightarrow \infty$.

- Establish non-vanishing results for the above family (work of Balkanova-Frolenkov)
- Establish upper bounds for higher moments of this family (work of Chandee-Li)
- Establish weight aspect estimates for higher moments of Rankin-Selberg convolutions in the weight aspect (work of Khan and Humphries-Khan).
- Study shifted convolution sums of coefficients of holomorphic cusp forms in the weight aspect (recent work of Hoffstein-Lee).

