Moments of L-functions and Automorphic Forms

Collaborative Research Group (CRG) *L*-functions in Analytic Number Theory

CRG Launch Event - November 19, 2022

Table of Contents

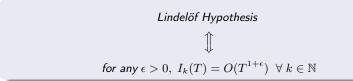
Moments of Zeta

- 2 Moments of Quadratic L-functions
- 3 Moments of Automorphic *L*-functions
- Multiple Dirichlet Series
- 5 Spectral Reciprocity
- 6 Discrete Moments of Zeta
- Objectives and Open Problems

Moments of $\zeta(\frac{1}{2} + it)$

We define the 2k-th moments of $|\zeta(\frac{1}{2}+it)|$ as

$$I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt$$



A Folklore Conjecture

It is believed that

Conjecture

$$I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt \sim c_k T (\log T)^{k^2}$$

for some unspecified constant c_k .

What is known?

A Folklore Conjecture

It is believed that

Conjecture

$$I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt \sim c_k T (\log T)^{k^2}$$

for some unspecified constant c_k .

What is known?

- Hardy-Littlewood (1918): $I_1(T) \sim T \log T$
- Ingham (1926): $I_1(T) = TP_1(\log T) + O(T^{\frac{1}{2}+\epsilon})$

A Folklore Conjecture

It is believed that

Conjecture

$$I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt \sim c_k T (\log T)^{k^2}$$

for some unspecified constant c_k .

What is known?

- Hardy-Littlewood (1918): $I_1(T) \sim T \log T$
- Ingham (1926): $I_1(T) = TP_1(\log T) + O(T^{\frac{1}{2}+\epsilon})$
- Ingham (1926): $I_2(T) \sim \frac{1}{2\pi^2} T \left(\log T \right)^4$
- Heath-Brown (1979): $I_2(T) = TP_2(\log T) + O(T^{\frac{7}{8}+\epsilon})$

Asymptotic Bounds

We have the lower bound

• Radziwiłł-Soundararajan (2013): For all k > 0, we have $I_k(T) \gg T (\log T)^{k^2}$.

and the upper bounds

- Soundararajan (2008): Under RH, for any $\epsilon > 0$ we have $I_k(T) \ll T(\log T)^{k^2 + \epsilon}$.
- Harper (2013):

Under RH, we have $I_k(T) \ll T(\log T)^{k^2}$

Conjectural Asymptotic Formulae

Conjecture (Conrey-Ghosh, 1998)

$$I_3(T) \sim rac{g_3}{9!} a_3 \cdot T (\log T)^9$$

where $g_3 = 42$ and $a_3 = \prod_p \left(1 - p^{-1}\right)^4 \left(1 + 4p^{-1} + p^{-2}\right)$

Conjectural Asymptotic Formulae

Conjecture (Conrey-Ghosh, 1998)

$$I_3(T)\sim rac{g_3}{9!}a_3\cdot T(\log T)^9$$
 where $g_3=42$ and $a_3=\prod_p \left(1-p^{-1}
ight)^4 \left(1+4p^{-1}+p^{-2}
ight)$

Conjecture (Conrey-Gonek, 2001)

$$I_4(T) \sim rac{g_4}{16!} a_4 \cdot T (\log T)^{16}$$

where $g_4 = 24024$ and $a_4 = \prod_p \left(1 - p^{-1}\right)^9 \left(1 + 9p^{-1} + 9p^{-2} + p^{-3}\right)$

Asymptotic Formulae for Higher Moments?

Conjecture (Keating and Snaith, 2000)

$$I_k(T) = \int_0^T |\zeta(\frac{1}{2} + it)|^{2k} dt \sim \frac{g_k}{(k^2)!} \cdot a_k \cdot T(\log T)^{k^2}$$

where

$$g_k = (k^2)! \prod_{j=0}^{k-1} \frac{j!}{(j+k)!}$$

and

$$a_{k} = \prod_{p} \left(1 - \frac{1}{p}\right)^{(k-1)^{2}} \sum_{j=0}^{k-1} \binom{k-1}{j}^{2} p^{-j}.$$

Conditional Results

Theorem (Ng, 2021)

Under a ternary additive divisor conjecture

$$I_3(T) \sim \frac{g_3}{9!} a_3 \cdot T(\log T)^9$$

as $T \to \infty$

Theorem (Ng-Shen-Wong, 2022+)

Under the Riemann Hypothesis and a quaternary additive divisor conjecture

$$I_4(T) \sim \frac{g_4}{16!} a_4 \cdot T(\log T)^{16}$$

as $T \to \infty$.

Tools: Smooth additive divisor sums, smooth AFE

• Smooth AFE. Heath-Brown (1979): $N = t^k$.

$$|\zeta(\frac{1}{2}+it)|^{2k} = \sum_{m,n=1}^{\infty} \frac{d_k(m)d_k(n)}{m^{\frac{1}{2}}n^{\frac{1}{2}}} \left(\frac{m}{n}\right)^{-it} \varphi\left(\frac{mn}{N}\right) + O(\exp(-t^2/2))$$

• Smooth additive divisor sums DFI (1994) and Aryan (2017)

$$\tilde{D}_{k,\ell}(f,r) = \sum_{m-n=r} d_k(m) d_\ell(n) f(m,n)$$

where $f:[M,2M]\times [N,2N]\rightarrow \mathbb{R}$ is smooth.

Mean values of long Dirichlet polynomials

Theorem (Hamieh-Ng, 2021)

Let
$$1 < \eta < \frac{4}{3}$$
, $N = T^{\eta}$, $L = \log(\frac{t}{2\pi})$, and ω is a smooth weight.

$$\int_{-\infty}^{\infty} \omega(t) \Big| \sum_{n=1}^{N} \frac{d_2(n)}{n^{\frac{1}{2}+it}} \Big|^2 dt \sim \frac{1}{\zeta(2)} \int_{-\infty}^{\infty} \omega(t) \frac{1}{4!} P(\eta) L^4 dt$$

where $P(\eta) = -\eta^4 + 8\eta^3 - 24\eta^2 + 32\eta - 14$.

- special case of more general theorem with d_k .
- Conrey-Keating series of papers on these mean values.
- Baluyot-Turnage-Butterbaugh (2022): Dirichlet L-functions
- Conrey-Rodgers (2022): quadratic Dirichlet L-functions
- Conrey-Fazzari (2022): modular L-functions

Moments of $L(\frac{1}{2},\chi_d)$

Conjecture (Conrey-Farmer-Keating-Rubinstein-Snaith, 2005)

For any $k \in \mathbb{N}^*$,

$$\sum_{0 < d \le X}^{\flat} L(\frac{1}{2}, \chi_d)^k = XP_{\underline{k(k+1)}}(\log X) + O(X^{\frac{1}{2}+\varepsilon}) \sim c_k X(\log X)^{\frac{k(k+1)}{2}}$$

where $P_{\underline{k(k+1)}}$ is a polynomial of degree $\frac{k(k+1)}{2}.$

•
$$k = 1$$
: $O(X^{\frac{1}{4} + \varepsilon}), k = 2$: $O(X^{\frac{1}{4} + \varepsilon})$

• Diaconu-Twiss (2020). $k \ge 3$: conjecture error term is $O(X^{\frac{3}{4}}(\log X)^{C_k})$

Moments of Zeta Quadratic L-functions Automorphic L-functions Multiple Dirichlet Series Spectral Reciprocity Discrete Moments Obje

History

Theorem (Jutila, 1981)

$$\sum_{\substack{l < d < X}}^{b} L(\frac{1}{2}, \chi_d) = X P_1(\log X) + O(X^{\frac{3}{4} + \varepsilon}),$$

where $P_1(t)$ is a linear polynomial with explicit coefficients.

History

Theorem (Jutila, 1981)

$$\sum_{0 < d \le X}^{\flat} L(\frac{1}{2}, \chi_d) = X P_1(\log X) + O(X^{\frac{3}{4} + \varepsilon}),$$

where $P_1(t)$ is a linear polynomial with explicit coefficients.

- Goldfeld-Hoffstein, 1985: $O(X^{\frac{19}{32}+\varepsilon})$.
- Young, 2009: $O(X^{\frac{1}{2}+\varepsilon})$ (smooth version).
- Florea, 2017: $eX^{\frac{1}{3}} + O(X^{\frac{1}{4}+\varepsilon})$ (function field), where e is a constant.

Theorem (Jutila, 1981)

$$\sum_{0 < d \le X}^{\flat} L(\frac{1}{2}, \chi_d)^2 = c_2 X(\log X)^3 + O(X(\log X)^{\frac{5}{2} + \varepsilon}),$$

where c_2 is a explicit constant.

Theorem (Jutila, 1981)

$$\sum_{0 < d \le X}^{\flat} L(\frac{1}{2}, \chi_d)^2 = c_2 X(\log X)^3 + O(X(\log X)^{\frac{5}{2} + \varepsilon}),$$

where c_2 is a explicit constant.

- Soundararajan, 2000: main term + $O(X^{\frac{5}{6}+\varepsilon})$.
- Florea, 2015: $O(X^{\frac{1}{2}+\varepsilon})$ (function field).
- Sono, 2019: $O(X^{\frac{1}{2}+\varepsilon})$ (smooth version).

Theorem (Soundararajan, 2000)

$$\sum_{\substack{0 < d \le X \\ (d,2)=1}}^{*} L(\frac{1}{2}, \chi_{8d})^3 = XR_6(\log X) + O(X^{\frac{11}{12}+\varepsilon}),$$

where $R_6(t)$ is a polynomial of degree 6 and \sum^* is the sum over square-free integers.

Theorem (Soundararajan, 2000)

$$\sum_{\substack{0 < d \le X \\ d, 2) = 1}}^{*} L(\frac{1}{2}, \chi_{8d})^3 = XR_6(\log X) + O(X^{\frac{11}{12} + \varepsilon}),$$

where $R_6(t)$ is a polynomial of degree 6 and \sum^* is the sum over square-free integers.

- Diaconu-Goldfeld-Hoffstein, 2003: $O(X^{0.853366+\cdot+\varepsilon})$.
- Zhang, 2005: $e_1 X^{\frac{3}{4}}$ + Error, under technical assumptions.
- Young, 2013: $O(X^{\frac{3}{4}+\varepsilon})$ (smooth version).
- Florea, 2015: $O(X^{\frac{3}{4}+\varepsilon})$ (function field).
- Diaconu, 2018: $e_2 X^{\frac{3}{4}} + O(X^{\frac{2}{3}+\varepsilon})$ (function field).
- Diaconu-Whitehead, 2018: $e_3 X^{\frac{3}{4}} + O(X^{\frac{2}{3}+\varepsilon})$ (smooth version).

Theorem (Shen, 2020)

Under GRH,

$$\sum_{\substack{1 \le d \le X \\ d,2)=1}}^{*} L(\frac{1}{2}, \chi_{8d})^4 = c_1 X(\log X)^{10} + O\left(X(\log X)^{9.75+\varepsilon}\right)$$

- Florea, 2017 (function field) obtains the first three terms using recursive method.
- Xiannan Li (2022) removes GRH assumption in evaluation of $\sum_{\substack{0 < 8d < X \\ (d,2)=1}}^{*} L(\frac{1}{2}, f \otimes \chi_{8d})^2$
- Shen-Stucky (in progress) remove GRH and obtain some lower order terms.
- Diaconu-Pasol-Popa (2022) exact formula for weighted 4th moment (function field).

Modular Forms

• Consider the congruence subgroup $\Gamma_0(q) \subset SL_2(\mathbb{Z})$:

$$\Gamma_0(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod q \right\}.$$

• For
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
 and $z \in \mathfrak{h}$, let
 $\gamma \cdot z = \frac{az+b}{cz+d}.$

• Let $f : \mathfrak{h} \to \mathbb{C}$ be holomorphic. We say f is a modular form of weight k with respect to the congruence subgroup $\Gamma_0(q)$ and a character χ modulo q if f is holomorphic at all cusps and

$$f(\gamma \cdot z) = \chi(d)(cz+d)^k f(z) \quad \forall \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(q).$$

Space of Cusp Forms

- We say f is a cusp form if f vanishes at all the cusps.
- The space of cusp forms of weight k for $\Gamma_0(q)$ and $\chi \mod q$ is denoted by $S_k(\Gamma_0(q), \chi)$.

If χ_0 is the principal character, we set $S_k(q)=S_k(\Gamma_0(q),\chi_0),$ and we have

$$\dim_{\mathbb{C}} S_k(q) \sim \frac{k-1}{12} q \prod_{p|q} \left(1 + \frac{1}{p}\right).$$

• A cusp form f has a Fourier series expansion

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{\frac{k-1}{2}} q^n, \quad \text{where } q = e^{2\pi i z}.$$

It is called normalized if $\lambda_f(1) = 1$.

Moments of Zeta Quadratic L-functions Automorphic L-functions Multiple Dirichlet Series Spectral Reciprocity Discrete Moments Obje

- Linear operators called Hecke operators act on $S_k(\Gamma_0(q), \chi)$.
- A Hecke eigenform is a cusp form that is a simultaneous eigenvector for all the Hecke operators.
- $S_k(\Gamma_0(q), \chi)$ has an orthogonal basis of normalized primitive eigenforms $H_k(\Gamma_0(q), \chi)$.

Modular *L*-functions

For $f \in H_k(\Gamma_0(q), \chi)$, the *L*-function attached to *f* is defined as:

$$L(s,f) = \sum_{n=1}^{\infty} \frac{\lambda_f(n)}{n^s} = \prod_p \left(1 - \frac{\lambda_f(p)}{p^s} + \frac{\chi(p)}{p^{2s}} \right)^{-1}$$

- L(s, f) converges absolutely for $\Re(s) > 1$,
- ullet admits an analytic continuation to ${\mathbb C}$ and
- satisfies a functional equation: $\Lambda(s, f) = \epsilon_f \Lambda(1 s, \overline{f})$ with $|\epsilon_f| = 1$.

Moments of $L(\frac{1}{2}, f)$

We consider harmonic averages of the form

$$\sum_{f}^{h} \alpha_{f} = \frac{\Gamma(k-1)}{(4\pi)^{k-1}} \sum_{f} \frac{\alpha_{f}}{\langle f, f \rangle}.$$

For $f\in S_k(\Gamma_0(q),\chi),$ we define the $\ell\text{-th}$ moment of $L(\frac{1}{2},f)$ as

$$M^h_\ell(q,\chi) = \sum_{f \in H_k(\Gamma_0(q),\chi)}^h |L(\frac{1}{2},f)|^\ell.$$

First and Second Moments in the Level Aspect

Consider

$$M^h_\ell(q) = \sum_{f \in H_k(q)}^h L(\tfrac{1}{2},f)^\ell \quad \text{as } q \to \infty.$$

Theorem (Duke, 1995)

For k = 2 and q prime, we have

$$M_1^h(q) = \sum_{f \in H_2(q)}^h L(\frac{1}{2}, f) = 1 + O(q^{-\frac{1}{2}} \log q),$$

and

$$M_2^h(q) = \sum_{f \in H_2(q)}^h L(\frac{1}{2}, f)^2 = \log q + O(q^{-\frac{1}{2}} \log q).$$

For any fixed even k and q squarefree

• Iwaniec-Sarnak (2000): $M_1^h(q) \sim 1$ and $M_2^h(q) \sim \log q$

4th Moments in the Level Aspect

Theorem (Kowalski-Michel-Vanderkam, 2000)

For k = 2, as $q \rightarrow \infty$ through prime numbers

$$M_4^h(q) = P(\log q) + O_{\epsilon}(q^{-\frac{1}{12}+\epsilon}),$$

where P is a degree 6 polynomial with leading coefficient $\frac{1}{60\pi^2}$.

- Balkanova-Frolenkov (2017): improved error term for $M_4^h(q)$ of size $O_\epsilon(q^{-\frac{25}{228}+\epsilon})$.
- Balkanova (2016): k is a fixed even integer and $q=p^v$ for a fixed prime p as $v\to\infty.$ We have

$$M_4^h(q) = R(\log q) + O_{\epsilon,k,p}(q^{-\frac{1}{4}+\epsilon} + q^{-\frac{k-1-2\theta}{8-8\theta}+\epsilon}),$$

where R is a degree 6 polynomial .

Moments of Zeta Quadratic L-functions Automorphic L-functions Multiple Dirichlet Series Spectral Reciprocity Discrete Moments Obje

Higher Moments

$$\mathcal{M}_{\ell}^{h}(q) = \frac{2}{\phi(q)} \sum_{\substack{\chi \mod q \\ \chi(-1) = (-1)^{k}}} \sum_{\substack{f \in H_{k}(\Gamma_{0}(q), \chi)}}^{h} |L(\frac{1}{2}, f)|^{\ell}.$$

For fixed odd integer $k\geq 3,$ as $q\rightarrow\infty$ through the primes

- Djanković (2011): $\mathcal{M}_6^h(q) \ll q^{\epsilon}$.
- Stucky (2021): $\mathcal{M}_{6}^{h}(q) \ll (\log q)^{9}$.
- Chandee-Li (2017):

$$\frac{2}{\phi(q)} \sum_{\chi \mod q} \sum_{\substack{f \in H_k(\Gamma_0(q),\chi)}} \int_{-\infty}^{\infty} \left| \Gamma\left(\frac{k}{2} + it\right) L\left(\frac{1}{2} + it, f\right) \right|^6 dt$$
$$\sim \frac{42}{9!} b_3 (\log q)^9 \int_{-\infty}^{\infty} \left| \Gamma\left(\frac{k}{2} + it\right) \right|^6 dt.$$

• Chandee-Li (2020): $\mathcal{M}_8^h(q) \ll q^{\epsilon}$.

Weight Aspect Results

Consider

$$M^h_\ell(k) = \sum_{f \in H_{2k}(1)}^h L(\tfrac{1}{2},f)^\ell \quad \text{as } k \to \infty.$$

• Balkanova-Frolenkov (2021): as $k
ightarrow \infty$

$$M_1^h(k) = 1 + i^{2k} + O\left(\left(2\pi e/k\right)^k\right),$$

$$M_2^h(k) = 2\log(k/2\pi) + 2\gamma + O(k^{-\frac{1}{2}}).$$

• Frolenkov (2020): $M_3^h(k) \ll (\log k)^{\frac{9}{2}}$.

 $\bullet \ \ {\rm Spectral \ large \ sieve \ } \Longrightarrow \ \ \sum_{K \leq k \leq 2K} M_4^h(k) \ll K^{1+\epsilon}.$

• Khan (2020):
$$\sum_{k} h\left(\frac{2k-1}{K}\right) M_{5}^{h}(k) \ll K^{1+2\theta+\epsilon}$$

Rankin-Selberg Convolutions of Modular Forms

Assume (q, N) = 1, and let $f \in H_k(q)$ and $g \in H_r(N)$ be eigenforms.

$$L(s, f \otimes g) = \zeta^{qN}(2s) \sum_{m \ge 1} \frac{a_f(m)a_g(m)}{m^s}, \qquad \text{for } \Re(s) > 1.$$

- analytic continuation to $\mathbb C$ unless f = g.
- functional equation $\Lambda(s, f \otimes g) = \Lambda(1 s, f \otimes g).$

Moments in the Level Aspect

Let $g \in H_r(N)$. For a fixed even k < 12, consider

$$M^h_\ell(q;g) = \sum_{f \in H_k(q)}^h \left(L\left(rac{1}{2}, f \otimes g
ight)
ight)^\ell.$$

As $q \to \infty$ through primes

- Luo (1999): $M_1^h(q;g) = \prod_{p|N} (1-p^{-1})\log q + O_g(1).$
- Kowalski-Michel-Vanderkam (2000):

$$M_2^h(q;g) = P(\log q) + O_g\left(q^{-\frac{1}{12}+\epsilon}\right), \quad \deg(P) = 3.$$

Moments in the Weight Aspect

Let $g \in H_r(N)$. Consider

$$M^h_\ell(k;g) = \sum_{f \in H_k(1)}^h \left(L\left(\frac{1}{2}, f \otimes g\right) \right)^\ell.$$

For fixed r and N=1, as $k\to\infty$ we have

- Ganguly-Hoffstein-Sengupta: $M_1^h(k;g) = \log k + O_g(1)$.
- Blomer-Harcos (2012): Asymptotic formula for the second moment of $L(\frac{1}{2} + it, f \otimes g)$ over $t \asymp T$ and $k \asymp K$ with $K^{\frac{3}{4} + \epsilon} \leq T \leq K^{\frac{5}{4} \epsilon}$.
- Sarnak (2000): For any $\epsilon > 0$ and $K^{\frac{151}{165}} \leq M \leq K^{1-\epsilon}$, we have $\sum_{|k-K| \leq M} \sum_{f \in H_{2k}(1)} |L(\frac{1}{2} + it, f \otimes g)|^2 \ll_{\epsilon,t,g} (KM)^{1+\epsilon}.$

For r = k, we have

- Hamieh-Tanabe (2021): $M_2^h(k;g) \ll (\log k)^c$.
- Hamieh-Tanabe (work in progress): Asymptotic formula for $M_2^h(k;g)$ over $k \asymp K$ as $K \to \infty$.

Multiple Dirichlet Series

Diaconu, Goldfeld, and Hoffstein introduced the multi-variable complex functions

$$Z(s_1,\ldots,s_{2k},w) = \int_1^\infty \zeta(s_1 + \varepsilon_1 it) \cdots \zeta(s_{2k} + \varepsilon_{2k} it) \left(\frac{2\pi e}{t}\right)^{kit} t^{-w}$$
(1)

where

$$w, s_1, s_2, \ldots, s_{2k} \in \mathbb{C}, \varepsilon_j = \pm 1, 1 \le j \le 2k.$$

- They show that $Z(s_1, \ldots, s_{2k}, w)$ satisfies certain quasi functional equations.
- Assuming certain meromorphicity conjectures for $Z(s_1, \ldots, s_{2k}, w)$ they deduce the Keating-Snaith conjecture:

$$I_k(T) \sim \frac{g_k}{(k^2)!} a_k T (\log T)^{k^2}.$$

Motohashi's exact formula

Let ω be a smooth weight function.

$$\int_{-\infty}^{\infty} |\zeta(\frac{1}{2} + it)|^4 \omega(t) \, dt = \mathsf{Mainterm}(\omega) + \sum_{j=1}^{\infty} \alpha_j L(\frac{1}{2}, f_j)^3 \tilde{\omega}(j) + \pi \int_{-\infty}^{\infty} \frac{|\zeta(\frac{1}{2} + it)|^6}{|\zeta(1 + 2it)|^2} \widehat{\omega}(t) \, dt + \sum_{k=1}^{\infty} \Big(\sum_{f \in H_{2k}(\Gamma)} L(\frac{1}{2}, f)^3 C(k, f, \omega) \Big).$$
(2)

- If $\omega \approx \mathbf{1}_{[T,2T]}$, then $\operatorname{Mainterm}(\omega) \sim \frac{T}{2\pi^2} (\log T)^4$.
- $\{L(s, f_j)\}$ ranges through Maass form *L*-functions attached to full modular group.
- $\{L(s, f)\}$ ranges through a modular L-functions attached to a basis of Hecke eigenforms of $S_{2k}(\Gamma)$.
- $\tilde{\omega}(j)$ and $\hat{\omega}(t)$ are certain integral transforms of ω .
- Zavorotnyi (1989) deduces: $O(T^{\frac{2}{3}+\varepsilon})$ for $I_2(T)$.

Moments of $\zeta'(\rho)$

$$J_k(T) = \sum_{0 < \gamma < T} |\zeta'(\rho)|^{2k}$$

applications: M(x), simple zeros, gaps between zeros of zeta

Conjecture (Hughes-Keating-O'Connell, 2001)

For $k > -\frac{3}{2}$, $J_k(T) \sim C_k \cdot a_k \cdot N(T) \cdot \left(\log \frac{T}{2\pi}\right)^{k(k+2)}$

- $C_k = \frac{G^2(k+2)}{G(2k+3)}$ where G is Barnes' function.
- $N(T) = \#\{\rho \mid \zeta(\rho) = 0, 0 < \Im(\rho) \le T\}.$
- Gonek-Hejhal (1989), $J_k(T) \asymp T(\log T)^{(k+1)^2}$ (all k)
- k = 0. von-Mangoldt/Riemann $J_0(T) = N(T) \sim \frac{T}{2\pi} \log T$

Results on $J_k(T)$

• Gonek (1984) RH implies

$$J_1(T) = \frac{T}{24\pi} (\log T)^4 + O((\log T)^3).$$

Milinovich (unpublished), main term+ $O(T^{\frac{1}{2}+\varepsilon})$.

Ng (2004) RH implies

$$c_1 T (\log T)^9 \le J_2(T) \le c_2 T (\log T)^9.$$

Garunkstis and Steuding (2005) improve c_2 .

• Milinovich-Ng (2014). Let $k \in \mathbb{N}$. GRH implies

$$J_k(T) \gg T(\log T)^{(k+1)^2}.$$

Gao (2022) extends this to all k > 0 on GRH. GRH (2022+) GRH replaced by RH (Benli, Elma, Ng). • Kirila (2020). Let $k \in \mathbb{N}$. RH implies

 $J_k(T) \ll T(\log T)^{(k+1)^2}.$

Milinovich (2007), extra factor $(\log T)^{\varepsilon}$.

• Milinovich-Ng (2012). RH + SZ implies

$$J_{-1}(T) \ge \left(\frac{3}{2\pi^3} + o(1)\right)T.$$

Gonek (1989), $J_{-1}(T) \gg T$.

• Heap-Li-Zhao (2022). Let $k \in \mathbb{Q}_{<0}$. RH +SZ implies

$$J_k(T) \gg T(\log T)^{(k+1)^2}.$$

Gao-Zhao (2022) generalize this to k < 0.

Open problems

- Evaluate asymptotically $\sum_{n \leq x} d_3(n) d_3(n+1)$.
- Find an asymptotic formula for $\sum_{n < x} d(n)d(n+1)d(n+2)$.
- Omega theorem for $\sum_{n \leq x} d_k(n) d(n+h)$.
- Connection to Elliot-Halberstam type conjectures for d_k as in Nguyen (2022).

Let $\epsilon>0.$ Then, for any $k\geq 1,$ we have, uniformly in $1\leq h\leq X^{\frac{k-1}{k}}$, the upper bound

$$\sum_{q \le X^{\frac{k-1}{k}}} \Big| \sum_{\substack{n \le x \\ n \equiv h(\operatorname{\mathsf{mod}})q}} d_k(n) - \frac{1}{\phi(\frac{q}{(h,q)})} \sum_{\substack{n \le x \\ (n, \frac{q}{(h,q)}) = 1}} d_k(n) \Big| \ll_{\epsilon} X^{\frac{1}{2} + \varepsilon}$$

as $X \to \infty$.

• Do such conjectures imply asymptotic for $I_3(T)$?

- Improve Zavorotnyi's bound $O(T^{\frac{2}{3}+\varepsilon})$ for $I_2(T)$.
- Smoothed fourth moment, show error term is $O(T^{\frac{1}{2}+\theta+\varepsilon})$, θ is upper bound in Ramanujan's conjecture.
- Omega theorem for $I_3(T)$ assuming ternary additive divisor conjecture.
- Full main term for $I_4(T)$ and the shifted version.
- A suitable conjecture for the error term $E_k(T) = I_k(T) \text{ main term}$.
- Conjecture: $E_1(T) = O(T^{\frac{1}{4}+\varepsilon}), E_2(T) = O(T^{\frac{1}{2}+\varepsilon}).$
- Conjecture (Ivic-Motohashi) $E_3(T) = O(T^{\frac{3}{4}+\varepsilon})$?? What does MDS method say? Recent work of Baluyot-Cech.
- For some small $\epsilon_0 \ge 0$ evaluate asymptotically

$$\int_0^T \Big| \sum_{n \le T^{2+\epsilon_0}} \frac{d_k(n)}{n^{\frac{1}{2}+it}} \Big|^2 dt.$$

- Improve error term for $\sum_{0 < d \le X} L(\frac{1}{2}, \chi_d)$. Conjecture $O(X^{\frac{1}{4} + \varepsilon})$ work of Florea, Goldfeld-Hoffstein, Young
- Full main term for $\sum_{0 < d \le X} L(\frac{1}{2}, \chi_d)^4$ (degree 10 polynomial) works of Shen-Stucky, Florea, Diaconu-Pasol-Popa
- Connection between MDS method and AFE method. works of Diaconu-Whitehead, Diaconu-Twiss, Diaconu-Pasol-Popa. Patnaik-Puskas,
- Full main term for $\sum_{0 < d \le X} L(\frac{1}{2}, f \otimes \chi_d)^2$
- Asymptotic for $\sum_{0 < d \leq X} L(\frac{1}{2}, f \otimes \chi_d) L(\frac{1}{2}, g \otimes \chi_d)$ work of Xiannan Li

• Compute asymptotic formula for the twisted second moments

$$\sum_{f \in H_k(p^v)} \lambda_f(r) L(\frac{1}{2} + \mu, f \otimes g)^2$$

for a fixed prime p as $v \to \infty$.

- Establish non-vanishing results for the above family (work of Balkanova-Frolenkov)
- Establish upper bounds for higher moments of this family (work of Chandee-Li)
- Establish weight aspect estimates for higher moments of Rankin-Selberg convolutions in the weight aspect (work of Khan and Humphries-Khan).
- Study shifted convolution sums of coefficients of holomorphic cusp forms in the weight aspect (recent work of Hoffstein-Lee).