Spherical Multitaper Analysis via

Spatio-Spectrally Concentrated Slepian

 Functions: Theory and ApplicationsFrederik J Simons | Alain Plattner
Princeton University | The University of Alabama
Mark A. Wieczorek \| F. A. Dahlen \| J. C. Hawthorne | Volker Michel Shin-Chan Han | Ciarán Beggan \| Kevin W. Lewis | Chris Harig

Localization in a nutshell

Functions cannot be bandlimited and spacelimited at the same time.

Localization in a nutshell

Functions cannot be bandlimited and spacelimited at the same time.
However, we can find a set of bandlimited functions that will optimize their spatial concentration to some spatial domain, and we can find a set of spacelimited functions that will minimize spectral leakage outside the bandlimit of interest.

Localization in a nutshell

Functions cannot be bandlimited and spacelimited at the same time.
However, we can find a set of bandlimited functions that will optimize their spatial concentration to some spatial domain, and we can find a set of spacelimited functions that will minimize spectral leakage outside the bandlimit of interest.

We can use these "Slepian" functions as windows, for spectral analysis, or we can use them as a (sparse) basis to represent geophysical observables-on a sphere.

A brief history of Slepian functions - 1

In the 60s Slepian et al. solved the problem of concentrating a bandlimited signal

$$
\begin{equation*}
g(t)=\frac{1}{2 \pi} \int_{-W}^{+W} G(\omega) e^{i \omega t} d \omega, \quad|W|<\infty \tag{1}
\end{equation*}
$$

into a time interval $|t| \leq T$. The "Slepian functions" optimize the concentration

$$
\begin{equation*}
\lambda=\frac{\int_{-T}^{+T} g^{2}(t) d t}{\int_{-\infty}^{+\infty} g^{2}(t) d t}, \quad 0<\lambda<1 \tag{2}
\end{equation*}
$$

A brief history of Slepian functions - 1

In the 60s Slepian et al. solved the problem of concentrating a bandlimited signal

$$
\begin{equation*}
g(t)=\frac{1}{2 \pi} \int_{-W}^{+W} G(\omega) e^{i \omega t} d \omega, \quad|W|<\infty \tag{1}
\end{equation*}
$$

into a time interval $|t| \leq T$. The "Slepian functions" optimize the concentration

$$
\begin{equation*}
\lambda=\frac{\int_{-T}^{+T} g^{2}(t) d t}{\int_{-\infty}^{+\infty} g^{2}(t) d t}, \quad 0<\lambda<1 \tag{2}
\end{equation*}
$$

They are eigenfunctions of a Fredholm integral equation,

$$
\begin{equation*}
\int_{-T}^{T}\left[\frac{\sin W\left(t-t^{\prime}\right)}{\pi\left(t-t^{\prime}\right)}\right] g\left(t^{\prime}\right) d t^{\prime}=\lambda g(t) \tag{3}
\end{equation*}
$$

A brief history of Slepian functions - 2

Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions

$$
\begin{equation*}
g(\mathbf{x})=\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} G(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{k}, \quad|\mathcal{K}|<\infty \tag{4}
\end{equation*}
$$

that concentrate into a finite spatial region $\mathcal{R} \in \mathbb{R}^{2}$ of area A by maximizing

$$
\begin{equation*}
\lambda=\frac{\int_{\mathcal{R}} g^{2}(\mathbf{x}) d \mathbf{x}}{\int_{-\infty}^{+\infty} g^{2}(\mathbf{x}) d \mathbf{x}}, \quad 0<\lambda<1 \tag{5}
\end{equation*}
$$

A brief history of Slepian functions - 2

Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions

$$
\begin{equation*}
g(\mathbf{x})=\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} G(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} d \mathbf{k}, \quad|\mathcal{K}|<\infty \tag{4}
\end{equation*}
$$

that concentrate into a finite spatial region $\mathcal{R} \in \mathbb{R}^{2}$ of area A by maximizing

$$
\begin{equation*}
\lambda=\frac{\int_{\mathcal{R}} g^{2}(\mathbf{x}) d \mathbf{x}}{\int_{-\infty}^{+\infty} g^{2}(\mathbf{x}) d \mathbf{x}}, \quad 0<\lambda<1 . \tag{5}
\end{equation*}
$$

These are also eigenfunctions of a Fredholm integral equation,

$$
\begin{equation*}
\int_{\mathcal{R}}\left[\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d \mathbf{k}\right] g\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime}=\lambda g(\mathbf{x}) \tag{6}
\end{equation*}
$$

A brief history of Slepian functions - 3

On a sphere, Slepian functions are bandlimited spherical-harmonic expansions

$$
\begin{equation*}
g(\hat{\mathbf{r}})=\sum_{l=0}^{L} \sum_{m=-l}^{l} g_{l m} Y_{l m}(\hat{\mathbf{r}}), \quad L<\infty \tag{7}
\end{equation*}
$$

that are concentrated within a region $R \in \Omega$ by optimizing the energy ratio

$$
\begin{equation*}
\lambda=\frac{\int_{R} g^{2}(\hat{\mathbf{r}}) d \Omega}{\int_{\Omega} g^{2}(\hat{\mathbf{r}}) d \Omega}, \quad 0<\lambda<1 \tag{8}
\end{equation*}
$$

A brief history of Slepian functions - 3

On a sphere, Slepian functions are bandlimited spherical-harmonic expansions

$$
\begin{equation*}
g(\hat{\mathbf{r}})=\sum_{l=0}^{L} \sum_{m=-l}^{l} g_{l m} Y_{l m}(\hat{\mathbf{r}}), \quad L<\infty \tag{7}
\end{equation*}
$$

that are concentrated within a region $R \in \Omega$ by optimizing the energy ratio

$$
\begin{equation*}
\lambda=\frac{\int_{R} g^{2}(\hat{\mathbf{r}}) d \Omega}{\int_{\Omega} g^{2}(\hat{\mathbf{r}}) d \Omega}, \quad 0<\lambda<1 \tag{8}
\end{equation*}
$$

They are eigenfunctions of a Fredholm equation, with P_{l} a Legendre function,

$$
\begin{equation*}
\int_{R}\left[\sum_{l=0}^{L}\left(\frac{2 l+1}{4 \pi}\right) P_{l}\left(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\right)\right] g\left(\hat{\mathbf{r}}^{\prime}\right) d \Omega^{\prime}=\lambda g(\hat{\mathbf{r}}) . \tag{9}
\end{equation*}
$$

Some examples of Slepian functions - 1

A unified framework - 1

The integral-equation kernels are all spectrally bandlimited spatial delta functions that are "reproducing kernels" for the bandlimited functions of the kinds considered:

$$
\begin{equation*}
D\left(t, t^{\prime}\right)=\frac{1}{2 \pi} \int_{-W}^{+W} e^{i \omega\left(t-t^{\prime}\right)} d \omega, \quad \operatorname{tr}\{D\}=2 \frac{T W}{\pi} \tag{10}
\end{equation*}
$$

A unified framework - 1

The integral-equation kernels are all spectrally bandlimited spatial delta functions that are "reproducing kernels" for the bandlimited functions of the kinds considered:

$$
\begin{align*}
D\left(t, t^{\prime}\right) & =\frac{1}{2 \pi} \int_{-W}^{+W} e^{i \omega\left(t-t^{\prime}\right)} d \omega, \quad \operatorname{tr}\{D\}=2 \frac{T W}{\pi} \tag{10}\\
D\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d \mathbf{k}, \quad \operatorname{tr}\{D\}=K^{2} \frac{A}{4 \pi} \tag{11}
\end{align*}
$$

A unified framework - 1

The integral-equation kernels are all spectrally bandlimited spatial delta functions that are "reproducing kernels" for the bandlimited functions of the kinds considered:

$$
\begin{align*}
& D\left(t, t^{\prime}\right)=\frac{1}{2 \pi} \int_{-W}^{+W} e^{i \omega\left(t-t^{\prime}\right)} d \omega, \quad \operatorname{tr}\{D\}=2 \frac{T W}{\pi}, \tag{10}\\
& D\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d \mathbf{k}, \quad \operatorname{tr}\{D\}=K^{2} \frac{A}{4 \pi}, \tag{11}\\
& D\left(\hat{\mathbf{r}}, \hat{\mathbf{r}}^{\prime}\right)=\sum_{l=0}^{L} \sum_{m=-l}^{m} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right), \quad \operatorname{tr}\{D\}=(L+1)^{2} \frac{A}{4 \pi} . \tag{12}
\end{align*}
$$

A unified framework - 1

The integral-equation kernels are all spectrally bandlimited spatial delta functions that are "reproducing kernels" for the bandlimited functions of the kinds considered:

$$
\begin{align*}
& D\left(t, t^{\prime}\right)=\frac{1}{2 \pi} \int_{-W}^{+W} e^{i \omega\left(t-t^{\prime}\right)} d \omega, \quad \operatorname{tr}\{D\}=2 \frac{T W}{\pi}, \tag{10}\\
& D\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d \mathbf{k}, \quad \operatorname{tr}\{D\}=K^{2} \frac{A}{4 \pi}, \tag{11}\\
& D\left(\hat{\mathbf{r}}, \hat{\mathbf{r}}^{\prime}\right)=\sum_{l=0}^{L} \sum_{m=-l}^{m} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right), \operatorname{tr}\{D\}=(L+1)^{2} \frac{A}{4 \pi} . \tag{12}
\end{align*}
$$

Thus, the Slepian functions are bases for bandlimited geophysical processes anywhere (not just on the domain for which they were constructed, though, there, they will be a sparse basis). Their trace is a space-bandwidth joint "Shannon" area.

A unified framework - 1

The integral-equation kernels are all spectrally bandlimited spatial delta functions that are "reproducing kernels" for the bandlimited functions of the kinds considered:

$$
\begin{align*}
& D\left(t, t^{\prime}\right)=\frac{1}{2 \pi} \int_{-W}^{+W} e^{i \omega\left(t-t^{\prime}\right)} d \omega, \quad \operatorname{tr}\{D\}=2 \frac{T W}{\pi}, \tag{10}\\
& D\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{\mathcal{K}} e^{i \mathbf{k} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d \mathbf{k}, \quad \operatorname{tr}\{D\}=K^{2} \frac{A}{4 \pi}, \tag{11}\\
& D\left(\hat{\mathbf{r}}, \hat{\mathbf{r}}^{\prime}\right)=\sum_{l=0}^{L} \sum_{m=-l}^{m} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right), \operatorname{tr}\{D\}=(L+1)^{2} \frac{A}{4 \pi} . \tag{12}
\end{align*}
$$

Thus, the Slepian functions are bases for bandlimited geophysical processes anywhere (not just on the domain for which they were constructed, though, there, they will be a sparse basis). Their trace is a space-bandwidth joint "Shannon" area.

Remember that the trace of an operator is the sum of all of its eigenvalues, N.

A unified framework - 2

In the spectral domain, the Slepian functions are eigenfunctions of equations that have spacelimited spectral delta functions as kernels. On the sphere, we solve for the spherical harmonic expansion coefficients of the functions as

$$
\begin{equation*}
\sum_{l^{\prime}=0}^{L} \sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}}\left[\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega\right] g_{l^{\prime} m^{\prime}}=\lambda g_{l m}, \quad 0<\lambda<1 \tag{13}
\end{equation*}
$$

A unified framework - 2

In the spectral domain, the Slepian functions are eigenfunctions of equations that have spacelimited spectral delta functions as kernels. On the sphere, we solve for the spherical harmonic expansion coefficients of the functions as

$$
\begin{equation*}
\sum_{l^{\prime}=0}^{L} \sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}}\left[\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega\right] g_{l^{\prime} m^{\prime}}=\lambda g_{l m}, \quad 0<\lambda<1 \tag{13}
\end{equation*}
$$

We define the spatiospectral localization kernel, with eigenvalues λ, as

$$
\begin{equation*}
D_{l m, l^{\prime} m^{\prime}}=\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega, \quad \operatorname{tr}\{\mathbf{D}\}=(L+1)^{2} \frac{A}{4 \pi} \tag{14}
\end{equation*}
$$

Many of the eigenvalues are very, very small. Thus, D may be hard to calculateand even harder to invert.

And remember that the spatial region R can be completely arbitrary.

Eigenvalue behavior - 2

A "lucky accident": the "magic of commutation"

Diagonalization of the operator D , with elements

$$
\begin{equation*}
D_{l m, l^{\prime} m^{\prime}}=\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega \tag{15}
\end{equation*}
$$

is often hard and sometimes impossible.

A "lucky accident": the "magic of commutation"

Diagonalization of the operator D , with elements

$$
\begin{equation*}
D_{l m, l^{\prime} m^{\prime}}=\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega \tag{16}
\end{equation*}
$$

is often hard and sometimes impossible.
But if R is axisymmetric, i.e. a single polar cap or a double polar cap, we can find the Slepian functions as the solutions to a different eigenvalue problem involving a very simple kernel with very well-behaved eigenvalues.

Summary of the theory (on the sphere)

Spherical harmonics $Y_{l m}$ form an orthonormal basis on Ω :

$$
\begin{equation*}
\int_{\Omega} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{17}
\end{equation*}
$$

The spherical harmonics $Y_{l m}$ are not orthogonal on R :

$$
\begin{equation*}
\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega=D_{l m, l^{\prime} m^{\prime}} \tag{18}
\end{equation*}
$$

Summary of the theory (on the sphere)

Spherical harmonics $Y_{l m}$ form an orthonormal basis on Ω :

$$
\begin{equation*}
\int_{\Omega} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{17}
\end{equation*}
$$

The spherical harmonics $Y_{l m}$ are not orthogonal on R :

$$
\begin{equation*}
\int_{R} Y_{l m} Y_{l^{\prime} m^{\prime}} d \Omega=D_{l m, l^{\prime} m^{\prime}} \tag{18}
\end{equation*}
$$

The eigenfunctions of \mathbf{D} are called Slepian functions, $g(\hat{\mathbf{r}})$. They form a bandlimited localized basis, doubly orthogonal: on R (to λ) and also on Ω (to 1).

The Shannon number, or sum of the eigenvalues, the space-bandwidth product,

$$
N=(L+1)^{2} \frac{A}{4 \pi},
$$

is the effective dimension of the space for which the bandlimited g are a basis.

Application 1 : Sparse approximation

The expansion of a bandlimited process on the sphere in either spherical harmonics or in Slepian functions is equal and exact:

$$
\begin{equation*}
s(\hat{\mathbf{r}})=\sum_{l=0}^{L} \sum_{m=-l}^{l} s_{l m} Y_{l m}(\hat{\mathbf{r}})=\sum_{\alpha=1}^{(L+1)^{2}} s_{\alpha} g_{\alpha}(\hat{\mathbf{r}}) \tag{19}
\end{equation*}
$$

Application 1 : Sparse approximation

The expansion of a bandlimited process on the sphere in either spherical harmonics or in Slepian functions is equal and exact:

$$
\begin{equation*}
s(\hat{\mathbf{r}})=\sum_{l=0}^{L} \sum_{m=-l}^{l} s_{l m} Y_{l m}(\hat{\mathbf{r}})=\sum_{\alpha=1}^{(L+1)^{2}} s_{\alpha} g_{\alpha}(\hat{\mathbf{r}}) \tag{19}
\end{equation*}
$$

But if the signal is regional in nature, an expansion into Slepian functions up until the Shannon number will be approximate but sparse:

$$
\begin{equation*}
s(\hat{\mathbf{r}}) \approx \sum_{\alpha=1}^{N} s_{\alpha} g_{\alpha}(\hat{\mathbf{r}}), \quad \hat{\mathbf{r}} \in R \tag{20}
\end{equation*}
$$

The mean squared reconstruction error in the noiseless case is determined by the neglected eigenvalues, which are tiny beyond the Shannon number.

Basis I: spherical harmonics $Y_{l m}$

Basis I: spherical harmonics $Y_{l m}$

5040 (5027) spherical harmonic coefficients

A global basis, good for global problems.

Basis I: spherical harmonics $Y_{l m}$

5329 (4181) spherical harmonic coefficients

A global basis, bad for local problems.

Spherical harmonics $Y_{l m} \rightarrow$ Slepian functions g 19/42

An orthogonal transform by the eigenmatrix of D introduces welcome sparsity.

Basis II: Slepian functions g

Basis II: Slepian functions g

A local basis, good for local problems. Sparsity!

Solving problems in geophysics ...

Common problems - 1

The data collected in or limited to R are signal plus noise:

We assume that $n(\mathbf{r})$ is zero-mean and uncorrelated with the signal
and consider known the noise covariance:

In other words: we've got noisy and incomplete data on the sphere.

Common problems - 1

The data collected in or limited to R are signal plus noise:

$$
d(\mathbf{r})= \begin{cases}s(\mathbf{r})+n(\mathbf{r}) & \text { if } \mathbf{r} \in R, \\ \text { unknown/undesired } & \text { if } \mathbf{r} \in \Omega-R\end{cases}
$$

We assume that $n(\mathbf{r})$ is zero-mean and uncorrelated with the signal

$$
\langle n(\mathbf{r})\rangle=0 \quad \text { and } \quad\left\langle n(\mathbf{r}) s\left(\mathbf{r}^{\prime}\right)\right\rangle=0
$$

and consider known the noise covariance:

$$
\left\langle n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)\right\rangle .
$$

In other words: we've got noisy and incomplete data on the sphere.

Noisy: Earth's time-variable gravity - 1

Noisy: Earth's time-variable gravity - 2

Incomplete: Cosmic Microwave Background

Common problems - 2

Consider an unknown, noisily and incompletely observed spherical process:

$$
s(\mathbf{r})=\sum_{l m}^{\infty} s_{l m} Y_{l m}(\mathbf{r})
$$

Linear Problem:
\square

Quadratic Problem:
\square

Common problems - 2

Consider an unknown, noisily and incompletely observed spherical process:

$$
s(\mathbf{r})=\sum_{l m}^{\infty} s_{l m} Y_{l m}(\mathbf{r})
$$

Linear Problem:
Given $d(\mathbf{r})$ and $\left\langle n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)\right\rangle$, estimate the signal $s(\mathbf{r})$, realizing that the estimate $\hat{s}(\mathbf{r})$ is always bandlimited to $0 \leq L<\infty$.

Quadratic Problem:
\square

Common problems - 2

Consider an unknown, noisily and incompletely observed spherical process:

$$
s(\mathbf{r})=\sum_{l m}^{\infty} s_{l m} Y_{l m}(\mathbf{r})
$$

Linear Problem:
Given $d(\mathbf{r})$ and $\left\langle n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)\right\rangle$, estimate the signal $s(\mathbf{r})$, realizing that the estimate $\hat{s}(\mathbf{r})$ is always bandlimited to $0 \leq L<\infty$.

Quadratic Problem:
Problem 2
Given $d(\mathbf{r})$ and $\left\langle n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)\right\rangle$, and assuming the field behaves as

$$
\left\langle s_{l m}\right\rangle=0 \quad \text { and } \quad\left\langle s_{l m} s_{l^{\prime} m^{\prime}}\right\rangle=S_{l} \delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$

estimate the power spectral density S_{l}, for $0 \leq l<\infty$, as \hat{S}_{l}.

Common problems - 2 (bis)

The data are noisy and incomplete.

Common problems - 2 (bis)

The data are noisy and incomplete.

Problem 1

Find the signal that gives rise to the data.

Common problems - 2 (bis)

The data are noisy and incomplete.

Problem 1

Find the signal that gives rise to the data.

Problem 2

Find the power spectral density of the signal.

Problem 1 - Finding the signal

Construct a bandlimited estimate in the spherical harmonic basis by minimizing the misfit to the data over R. The-linear-optimal solution depends on D^{-1} :

$$
\hat{s}_{l m}=\sum_{l^{\prime} m^{\prime}}^{L} D_{l m, l^{\prime} m^{\prime}}^{-1} \int_{R} d Y_{l^{\prime} m^{\prime}} d \Omega .
$$

Problem 1 - Finding the signal

Construct a bandlimited estimate in the spherical harmonic basis by minimizing the misfit to the data over R. The-linear-optimal solution depends on D^{-1} :

$$
\hat{s}_{l m}=\sum_{l^{\prime} m^{\prime}}^{L} D_{l m, l^{\prime} m^{\prime}}^{-1} \int_{R} d Y_{l^{\prime} m^{\prime}} d \Omega .
$$

Finding D^{-1} is tough, so construct a truncated-Slepian basis estimate instead:

$$
\hat{s}(\mathbf{r})=\sum_{\alpha}^{J} \hat{s}_{\alpha} g_{\alpha}(\mathbf{r})
$$

Problem 1 - Finding the signal

Construct a bandlimited estimate in the spherical harmonic basis by minimizing the misfit to the data over R. The-linear-optimal solution depends on D^{-1} :

$$
\hat{s}_{l m}=\sum_{l^{\prime} m^{\prime}}^{L} D_{l m, l^{\prime} m^{\prime}}^{-1} \int_{R} d Y_{l^{\prime} m^{\prime}} d \Omega
$$

Finding D^{-1} is tough, so construct a truncated-Slepian basis estimate instead:

$$
\hat{s}(\mathbf{r})=\sum_{\alpha}^{J} \hat{s}_{\alpha} g_{\alpha}(\mathbf{r})
$$

The solution depends on the localization eigenvalue at the same rank:

$$
\hat{s}_{\alpha}=\lambda_{\alpha}^{-1} \int_{R} d g_{\alpha} d \Omega
$$

Application 2 : Time-variable gravity

b)

Problem 2 - Finding the spectrum

If we simply worked with the available data we'd be using a boxcar window:

$$
\hat{S}_{l}^{\mathrm{SP}}=\frac{1}{2 l+1} \sum_{m}\left|\int_{R} d(\mathbf{r}) Y_{l m}(\mathbf{r}) d \Omega\right|^{2} .
$$

Problem 2 - Finding the spectrum

If we simply worked with the available data we'd be using a boxcar window:

$$
\hat{S}_{l}^{\mathrm{SP}}=\frac{1}{2 l+1} \sum_{m}\left|\int_{R} d(\mathbf{r}) Y_{l m}(\mathbf{r}) d \Omega\right|^{2}
$$

This estimate is biased (unless $S_{l}=S$ or $R=\Omega$), coupling over the entire band. Its bias, variance, and thus mean-squared error depend, again, on D :

$$
\mathrm{mse}_{l}^{\mathrm{SP}} \sim \sum_{m m^{\prime}}\left|D_{l m, l m^{\prime}}\right|^{2}
$$

Problem 2 - Finding the spectrum

If we simply worked with the available data we'd be using a boxcar window:

$$
\hat{S}_{l}^{\mathrm{SP}}=\frac{1}{2 l+1} \sum_{m}\left|\int_{R} d(\mathbf{r}) Y_{l m}(\mathbf{r}) d \Omega\right|^{2}
$$

This estimate is biased (unless $S_{l}=S$ or $R=\Omega$), coupling over the entire band. Its bias, variance, and thus mean-squared error depend, again, on D :

$$
\mathrm{mse}_{l}^{\mathrm{SP}} \sim \sum_{m m^{\prime}}\left|D_{l m, l m^{\prime}}\right|^{2}
$$

The multitaper estimate uses a small L for the Slepian windows $g_{\alpha}(\mathbf{r})$ over R,

$$
\hat{S}_{l}^{\mathrm{MT}}=\sum_{\alpha} \lambda_{\alpha}\left(\frac{1}{2 l+1} \sum_{m}\left|\int_{\Omega} g_{\alpha}(\mathbf{r}) d(\mathbf{r}) Y_{l m}(\mathbf{r}) d \Omega\right|^{2}\right)
$$

The multitaper method

It returns a spectrally bandlimited (to $\pm L$) average of the true spectral power while being sensitive to a spatially localized patch R of data.

Spectral and spatial concentration trade off via the Shannon number, which is the sole parameter to be chosen by the analyst:

$$
N=(L+1)^{2} \frac{A}{4 \pi} .
$$

The multitaper method

It returns a spectrally bandlimited (to $\pm L$) average of the true spectral power while being sensitive to a spatially localized patch R of data.

Spectral and spatial concentration trade off via the Shannon number, which is the sole parameter to be chosen by the analyst:

$$
N=(L+1)^{2} \frac{A}{4 \pi}
$$

This dictates the deliberate bias of the estimate. More tapers \rightarrow more bias, but the covariance matrix of the estimates between tapers is almost diagonal.

Thus, weighted averaging of estimates made with many different tapers reduces the estimation variance. And with eigenvalue weighting, the bias is strictly limited to the bandwidth L, and independent of the shape of the region R.

Balancing bias and variance

Multitaper bias

Using the choice of the eigenvalues λ of D as weights of the multitaper spectral estimate, the multitaper coupling matrix is

$$
K_{l l^{\prime}}=\frac{2 l^{\prime}+1}{(L+1)^{2}} \sum_{p}^{L}(2 p+1)\left(\begin{array}{lll}
l & p & l^{\prime} \\
0 & 0 & 0
\end{array}\right)^{2}
$$

which — amazingly — depends only upon the chosen bandwidth L.

Multitaper variance - 1

The covariance between the multitaper estimates is relatively simple when the spectra is moderately colored (compared to the bandwidth L of the estimator):

$$
\begin{align*}
\Sigma_{l l^{\prime}}^{\mathrm{MT}}= & \frac{1}{2 \pi}\left(S_{l}+N_{l}\right)\left(S_{l^{\prime}}+N_{l^{\prime}}\right) \sum_{p}(2 p+1) \Gamma_{p}\left(\begin{array}{lll}
l & p & l^{\prime} \\
0 & 0 & 0
\end{array}\right)^{2}, \tag{13}\\
\Gamma_{p}= & \frac{1}{K^{2}} \sum_{s s^{\prime}}^{L} \sum_{u u^{\prime}}^{L}(2 s+1)\left(2 s^{\prime}+1\right)(2 u+1)\left(2 u^{\prime}+1\right) \sum_{e}^{2 L}(-1)^{p+e}(2 e+1) B_{e} \\
& \times\left\{\begin{array}{lll}
s & e & s^{\prime} \\
u & p & u^{\prime}
\end{array}\right\}\left(\begin{array}{ccc}
s & e & s^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
u & e & u^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
s & p & u^{\prime} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
u & p & s^{\prime} \\
0 & 0 & 0
\end{array}\right), \tag{14}
\end{align*}
$$

with B_{e} the boxcar power, which depends on the shape of the region of interest, and the sums over angular degrees are limited by Wigner $3-j$ selection rules.
The term in curly braces is a Wigner $6-j$ symbol. Ugly, but computable.

Application 3 : Magnetic field spectra

Conclusions: Linear \& Quadratic Problems

- Slepian functions are both spectrally and spatially concentrated

Conclusions: Linear \& Quadratic Problems

- Slepian functions are both spectrally and spatially concentrated
- They form a doubly orthogonal basis on the sphere and any portion of it

Conclusions: Linear \& Quadratic Problems

- Slepian functions are both spectrally and spatially concentrated
- They form a doubly orthogonal basis on the sphere and any portion of it
- They are the ideal basis to separate signal from noise, for approximation and inverse problems

Conclusions: Linear \& Quadratic Problems

- Slepian functions are both spectrally and spatially concentrated
- They form a doubly orthogonal basis on the sphere and any portion of it
- They are the ideal basis to separate signal from noise, for approximation and inverse problems
- They are ideal data windows for spectral analysis

Conclusions: Linear \& Quadratic Problems

- Slepian functions are both spectrally and spatially concentrated
- They form a doubly orthogonal basis on the sphere and any portion of it
- They are the ideal basis to separate signal from noise, for approximation and inverse problems
- They are ideal data windows for spectral analysis
- The Slepian multitaper method yields a smoothed and thus biased estimate of the spectrum, but it requires neither iteration nor large-scale matrix inversion. Its variance is much lower than that of any other method, and the only parameter that needs to be specified by the analyst is the Shannon number, or the space-bandwidth product diagnostic of the spatiospectral concentration.

