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Part 1:
Background & Motivation
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Regression  in  the Time Domain

  𝑦(𝑡)  = 𝛽(𝑡) 𝑥(𝑡) +  𝜀(𝑡)

Problem: this model can fail to identify temporal trends! 

Assume  error terms  are uncorrelated with respect to time.
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Regression  in  the Frequency Domain

Multitaper 
Transfer Function

We can build a model based on the Eigencoeicients of the original series.

Predictor and response are related via a  Transfer Function  of frequency.

This relaxes previous assumptions regarding time-domain error autocorrelations

  𝑌𝑘(𝑓)  =  𝐻(𝑓) 𝑋𝑘(𝑓) 𝑘 ∊ {𝟢, … , 𝐾-𝟣}



Part 2:
Distributions of Objects
in the Frequency Domain
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The time series we will consider are  signal(s)  embedded in  noise.

But First: Assumptions

The noise underlying each time series is  Gaussian  distributed (zero-mean)

Assume this noise is strongly stationary.
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Eigencoeicients: Distribution

𝑋𝑘(𝑓) can be broken down into its  deterministic  and  stochastic  parts

𝑋𝑘(𝑓) is Complex Gaussian  distributed.
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Multitaper Transfer Function Estimates: Distribution

Ĥ(𝑓) is complex Gaussian.
Fixed predictor time series

Gaussian response time series
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The mean is proportional to the eigencoeicient of the pure response signal
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Ĥ(𝑓) is complex Gaussian.

Summary

Variance is inversely proportional to the  spectrum of the predictor

The MTFE is not  frequency stationary.

Mean is proportional to the  eigencoeicient of the pure response signal

Real and Imaginary parts are  uncorrelated. 



MTFEs: Moduli

The Rice distribution describes moduli of circularly symmetric CGRVs.

The Modulus of H(f) is Rice distributed with the following parameters

( EQ: 3.51b)



Part 2:
MTFEs at
Signal Frequencies
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1. Large variance, zero mean

Indicates no signal is present.

2. Small variance, zero mean

Indicates signal in  𝑥(𝑡)

3. Large variance, non-zero mean

Indicates signal in  𝑦(𝑡)

4. Small variance, nonzero mean

Indicates a  common  signal
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Test Statistics  for  Signal Detection

𝑇1 :  

𝑇2 : 

⏐E[𝐻(𝑓)]⏐2 detects signals in the response

The variance of  ⏐𝐻(𝑓)⏐2   across simulations  detects signals in the predictor

This test is less sensitive to “coincidental” coherencies than the MSC.

This test is more robust to frequency modulation than the Harmonic F-test.



Working  with  Frequency Non-Stationarity



Part 3:
Phase
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NOTE: The above distribution assumes  𝑥  and  𝑦  are uncorrelated.

Phase Distribution: Complex Gaussian Random Variables
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Detecting Signals  using the  MTFE’s Phase

1. Phase distribution will be uniform on (-𝜋 ,𝜋] 
except at response signal frequencies.

2. If there is a common signal in 𝑥(𝑡) and 𝑦(𝑡), 
the variance will decrease at that frequency.

3. A test statistic based on variance  structure is 
restricted to a frequency band of interest

4. If the signal amplitude is large in 𝑦(𝑡) compared to 𝑥(𝑡), it may be 
diicult to distinguish coherent signals from response-only signals.
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Conclusion & Future Work
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What’s next?

Develop a test statistic (T3 ) using MTFE phase

★ Consider the amplitude ratio of signals in predictor vs. response

★ Compare performance of (T3 ) to established methods (eg: MSC and Harmonic F tests)

Generalize and Explore

★ Multiple signals?

★ Signal frequencies within a small bandwidth?

★ Extend to other distributions of underlying noise in 𝑥(𝑡) and 𝑦(𝑡)
★ What does the phase distribution imply in the time  domain?



Thanks for Tuning In, Folks 𝅘𝅥𝅮𝅘𝅥𝅮
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