Distributions

of

Multitaper Transfer Function Estimates

Multitaper Spectral Analysis (Online)
BIRS 2022 Workshop

Skyepaphora Griffith, MSc., Queen’s University



Part 1:

Background & Motivation



Regression in the Time Domain



Regression in the Time Domain

y(1) =p() x(2) + ()



Regression in the Time Domain

y(1) =p() x(2) + ()

Assume error terms are uncorrelated with respect to time.



Regression in the Time Domain

y(1) =p() x(2) + ()

Assume error terms are uncorrelated with respect to time.

Problem: this model can fail to identify temporal trends!
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Regression in the Frequency Domain

Y.() = H(If) X.(f) ke o, .., K-1}
Multitaper
Transfer Function
We can build a model based on the Eigencoefficients of the original series.

Predictor and response are related via a Transfer Function of frequency.

This relaxes previous assumptions regarding time-domain error autocorrelations
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But First: Assumptions

The time series we will consider are signal(s) embedded in noise.

2(t) = &2 (t) + 22(2) 2(t) ~ N (0,07)

y(t) = ElE) + 2y(t) 2y(t) ~ N(0,07)

The noise underlying each time series is [Gaussian distributed (zero-mean)

Assume this noise is strongly stationary.
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Eigencoefficients: Distribution

Xko() can be broken down into its deterministic and stochastic parts

X (f) is Complex Gaussian distributed.
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Eigencoefficients: Mean and Variance
The stochastic part Zk(f) has a mean of zero.
E[Zu(£)] =0

Xk(f) 's mean is the eigencoefficient of the response signal, at frequency f

B| Xi(F)| - B
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Eigencoefficients: Mean and Variance

Var [Xk(f)} - o2

The variance of X, (f) is real valued

Simplifies greatly when z(z) is strongly stationary.
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Eigencoefficients: Correlation Structures

Eigencoefficients are uncorrelated across orders «,

Cov| X, (£), Xes ()] = 0

There is some covariance across Fourier Frequencies

Cov | Xp(f), Xi(f + )| #0
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Multitaper Transfer Function Estimates: Distribution
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Fixed predictor time series .
—»  H(f) is complex Gaussian.
Gaussian response time series
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Multitaper Transfer Function Estimates: Mean
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The mean is proportional to the eigencoefficient of the pure response signal
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Multitaper Transfer Function Estimates: Variance
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The variance is inversely proportional to the spectrum of the predictor
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Summary

H(f) is complex Gaussian.
Mean is proportional to the eigencoefficient of the pure response signal
Variance is inversely proportional to the spectrum of the predictor

Real and Imaginary parts are uncorrelated.

The MTFE is not frequency stationary.



MTFEs: Moduli

The Rice distribution describes moduli of circularly symmetric CGRVSs.

The Modulus of H(f) is Rice distributed with the following parameters

(EQ: 3.51b)
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MTFES at
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Large variance, zero mean

Indicates no signal is present.

Small variance, zero mean

Indicates signalin x(z)

Large variance, non-zero mean

Indicates signalin y(z)
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Test Statistics: Definition of T

J isthe number of Fourier Frequencies in a W-Radius Band about f

~

H is H, transformed to have uncorrelated entries



Test Statistics: Comparison to MSC




Test Statistics: Comparison to MSC

» 1SR
H()|? = = 5.
) (55 (£))



Test Statistics: “Coherent” Noise

Y(f2) = VAX(f5) +V1=XZ}(f2)
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MTFE: Behaviour under Frequency Modulation
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F-Test: Behaviour under Frequency Modulation
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MTFE: Behaviour under Frequency Modulation
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F-Test: Behaviour under Frequency Modulation

Harmonic F-test
M = 5000 simulations of: x(t) = cos(2ng(f,,t)t) +£(t)
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Phase Distribution: Complex Gaussian Random Variables

2 2
2050,

Tz0y €Xp { (M‘ray Al M;,%;) } (1 + /7 A(¢) exp {A(gb)2} erfc{ — A((b)})

2

9( DIz, ty, 0923’ Uy) =
27 (05 cos?(¢p) + o2 sin2(gb))

1273 08() + iy 72 sin(6)

where A(¢) =
0p0y \/05 cos?(¢) + o2 sin®(¢)

NOTE: The above distribution assumes x and y are uncorrelated.
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Phase Distribution: Multitaper Transfer Function Estimates
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1. Phase distribution will be uniform on (- , 7]
except at response signal frequencies. Histogram of Phase: MTFE
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4. If the signal amplitude is large in y(r) compared to x(z), it may be
difficult to distinguish coherent signals from response-only signals.
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Conclusion & Future Work
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What’s next?

Develop a test statistic (Ts) using MTFE phase

% Consider the amplitude ratio of signals in predictor vs. response

* Compare performance of (T3 ) to established methods (eg: MSC and Harmonic F tests)

Generalize and Explore

% Multiple signals?
Signal frequencies within a small bandwidth?

Extend to other distributions of underlying noise in x(z) and y(z)

* % ¢

What does the phase distribution imply in the time domain?



Thanks for Tuning Tn, Folks >
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