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Part 1:
Background & Motivation
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Regression  in  the Time Domain

  𝑦(𝑡)  = 𝛽(𝑡) 𝑥(𝑡) +  𝜀(𝑡)

Problem: this model can fail to identify temporal trends! 

Assume  error terms  are uncorrelated with respect to time.
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Regression  in  the Frequency Domain

Multitaper 
Transfer Function

We can build a model based on the Eigencoeicients of the original series.

Predictor and response are related via a  Transfer Function  of frequency.

This relaxes previous assumptions regarding time-domain error autocorrelations

  𝑌𝑘(𝑓)  =  𝐻(𝑓) 𝑋𝑘(𝑓) 𝑘 ∊ {𝟢, … , 𝐾-𝟣}



Part 2:
Distributions of Objects
in the Frequency Domain
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The time series we will consider are  signal(s)  embedded in  noise.

But First: Assumptions

The noise underlying each time series is  Gaussian  distributed (zero-mean)

Assume this noise is strongly stationary.
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𝑋𝑘(𝑓) can be broken down into its  deterministic  and  stochastic  parts

𝑋𝑘(𝑓) is Complex Gaussian  distributed.



Eigencoeicients: Mean and Variance

The stochastic part  𝑍𝑘(𝑓)  has a mean of  zero.



Eigencoeicients: Mean and Variance

The stochastic part  𝑍𝑘(𝑓)  has a mean of  zero.



Eigencoeicients: Mean and Variance

The stochastic part  𝑍𝑘(𝑓)  has a mean of  zero.



Eigencoeicients: Mean and Variance

The stochastic part  𝑍𝑘(𝑓)  has a mean of  zero.



The stochastic part  𝑍𝑘(𝑓)  has a mean of  zero.

Eigencoeicients: Mean and Variance

𝑋𝑘(𝑓)’s  mean is the  eigencoeicient of the response signal,  at frequency f



The stochastic part  𝑍𝑘(𝑓)  has a mean of  zero.

Eigencoeicients: Mean and Variance

𝑋𝑘(𝑓)’s  mean is the  eigencoeicient of the response signal,  at frequency f



Eigencoeicients: Mean and Variance



Eigencoeicients: Mean and Variance



Eigencoeicients: Mean and Variance



Eigencoeicients: Mean and Variance



Eigencoeicients: Mean and Variance



Eigencoeicients: Mean and Variance

The variance of  𝑋𝑘(𝑓) is real valued 



Eigencoeicients: Mean and Variance

Simplifies greatly when  𝑧(𝑡) is strongly stationary.

The variance of  𝑋𝑘(𝑓) is real valued 



Eigencoeicients: Mean and Variance

Simplifies greatly when  𝑧(𝑡) is strongly stationary.

The variance of  𝑋𝑘(𝑓) is real valued 



Eigencoeicients: Mean and Variance

Simplifies greatly when  𝑧(𝑡) is strongly stationary.

The variance of  𝑋𝑘(𝑓) is real valued 



Eigencoeicients: Mean and Variance

Simplifies greatly when  𝑧(𝑡) is strongly stationary.

The variance of  𝑋𝑘(𝑓) is real valued 



Eigencoeicients: Mean and Variance

Simplifies greatly when  𝑧(𝑡) is strongly stationary.

The variance of  𝑋𝑘(𝑓) is real valued 



Eigencoeicients: Correlation Structures



Eigencoeicients are uncorrelated across orders  𝑘𝑗  

Eigencoeicients: Correlation Structures



Eigencoeicients are uncorrelated across orders  𝑘𝑗  

Eigencoeicients: Correlation Structures



Eigencoeicients are uncorrelated across orders  𝑘𝑗  

Eigencoeicients: Correlation Structures

There is  some covariance across Fourier Frequencies



Eigencoeicients are uncorrelated across orders  𝑘𝑗  

Eigencoeicients: Correlation Structures

There is  some covariance across Fourier Frequencies



Eigencoeicients are uncorrelated across orders  𝑘𝑗  

Eigencoeicients: Correlation Structures

There is  some covariance across Fourier Frequencies



Multitaper Transfer Function Estimates



Multitaper Transfer Function Estimates



Multitaper Transfer Function Estimates: Distribution



Multitaper Transfer Function Estimates: Distribution

Fixed predictor time series



Multitaper Transfer Function Estimates: Distribution

Fixed predictor time series

Gaussian response time series



Multitaper Transfer Function Estimates: Distribution

Ĥ(𝑓) is complex Gaussian.
Fixed predictor time series

Gaussian response time series
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Ĥ(𝑓) is complex Gaussian.

Summary

Variance is inversely proportional to the  spectrum of the predictor

The MTFE is not  frequency stationary.

Mean is proportional to the  eigencoeicient of the pure response signal

Real and Imaginary parts are  uncorrelated. 



MTFEs: Moduli

The Rice distribution describes moduli of circularly symmetric CGRVs.

The Modulus of H(f) is Rice distributed with the following parameters

( EQ: 3.51b)



Part 2:
MTFEs at
Signal Frequencies
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1. Large variance, zero mean

Indicates no signal is present.

2. Small variance, zero mean

Indicates signal in  𝑥(𝑡)

3. Large variance, non-zero mean

Indicates signal in  𝑦(𝑡)

4. Small variance, nonzero mean

Indicates a  common  signal
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Test Statistics  for  Signal Detection

𝑇1 :  

𝑇2 : 

⏐E[𝐻(𝑓)]⏐2 detects signals in the response

The variance of  ⏐𝐻(𝑓)⏐2   across simulations  detects signals in the predictor

This test is less sensitive to “coincidental” coherencies than the MSC.

This test is more robust to frequency modulation than the Harmonic F-test.
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Part 3:
Phase
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Phase Distribution: Complex Gaussian Random Variables
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Detecting Signals  using the  MTFE’s Phase

1. Phase distribution will be uniform on (-𝜋 ,𝜋] 
except at response signal frequencies.

2. If there is a common signal in 𝑥(𝑡) and 𝑦(𝑡), 
the variance will decrease at that frequency.

3. A test statistic based on variance  structure is 
restricted to a frequency band of interest

4. If the signal amplitude is large in 𝑦(𝑡) compared to 𝑥(𝑡), it may be 
diicult to distinguish coherent signals from response-only signals.
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What’s next?

Develop a test statistic (T3 ) using MTFE phase

★ Consider the amplitude ratio of signals in predictor vs. response

★ Compare performance of (T3 ) to established methods (eg: MSC and Harmonic F tests)

Generalize and Explore

★ Multiple signals?

★ Signal frequencies within a small bandwidth?

★ Extend to other distributions of underlying noise in 𝑥(𝑡) and 𝑦(𝑡)
★ What does the phase distribution imply in the time  domain?



Thanks for Tuning In, Folks 𝅘𝅥𝅮𝅘𝅥𝅮
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