
The Affine Group of the plane
and a new Continuous Wavelet Transform

Raja Milad
joint work with Keith Taylor

Dalhousie University

Canadian Abstract Harmonic Analysis Symposium

June, 2022



Overview

Special properties of square–integrable representations of locally
compact groups result in transformations that are useful in signal
and image processing.
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Square–integrability

Let G be a locally compact group with left Haar measure µG.

Let π be an irreducible unitary representation of G on a Hilbert
space Hπ. We say π is square–integrable if there exist
ξ, η ∈ Hπ \ {0} such that∫

G |〈ξ, π(x)η〉Hπ |
2dµG(x) <∞.

Let Vηξ(x) = 〈ξ, π(x)η〉Hπ , for x ∈ G, ξ, η ∈ Hπ.

Duflo–Moore Theorem
Let π be a square–integrable rep. of G. Then, there exists a dense
subspace Dπ of Hπ and a positive self–adjoint operator Cπ on Hπ
with domain Dπ such that, for ξ1, ξ2 ∈ Hπ and η1, η2 ∈ Dπ,∫

G
Vη1ξ1(x)Vη2ξ2(x) dµG(x) = 〈ξ1, ξ2〉Hπ 〈Cπη2,Cπη1〉Hπ .
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G
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Select η ∈ Dπ with ‖Cπη‖Hπ = 1. Let η1 = η2 = η. Then (1) says

〈ξ, ν〉Hπ =
∫

G Vηξ(x)〈π(x)η, ν〉Hπ dµG(x) for all ξ, ν ∈ Hπ. (2)

Fix a ξ ∈ Hπ and consider ν ∈ Hπ as arbitrary. Then (2) means,
for all ξ ∈ Hπ,

ξ =

∫
G

Vηξ(x)π(x)η dµG(x), weakly in Hπ. (3)

The map Vη : Hπ → L2(G) is an isometry called the continuous
wavelet transform associated to π and Equation (3) is the
reconstruction formula.
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The 1D CWT

The affine group of the line is
G1 = Ro R∗ = {[x , a] | x , a ∈ R, a 6= 0}

with group product [x , a][y , b] = [x + ay , ab].

G1 has a square–integrable irreducible representation ρ that acts

on L2(R) by ρ[x , a]f (t) = |a|−1/2f
( t−x

a

)
,

for all t ∈ R, f ∈ L2(R), and [x , a] ∈ G1.

The classic continuous wavelet transform in one dimension arises
from the fact that ρ is square–integrable.
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Affine groups in two dimensions

Let H be a closed subgroup of GL2(R) and form
G = R2 o H = {[x ,A] : x ∈ R2,A ∈ H}.

The natural representation of G acts on L2(R2). For
[x ,A] ∈ R2 o H and f ∈ L2(R2),

ρ[x ,A]f (z) = | det(A)|−1/2f
(
A−1(z − x)

)
, for ae z ∈ R2.

Use row vectors for the “frequency” domain:
R̂2 = {ω = (ω1, ω2) : ω1, ω2 ∈ R}.

F : L2(R2)→ L2(R̂2) is the unitary map such that,
F f (ω) = f̂ (ω) =

∫
R2 f (x)e2πiωxdx , for ω ∈ R̂2 and

f ∈ L1(R2) ∩ L2(R2).

Let ρ̂[x ,A] = Fρ[x ,A]F−1, for all [x ,A] ∈ R2 o H.
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Affine groups in two dimensions

Then ρ̂[x ,A]ξ(ω) = | det(A)|1/2e2πiωxξ(ωA) , for ω ∈ R̂2 and for

ξ ∈ L2(R̂2).

So ρ̂ is a unitary representation equivalent to the
natural representation of R2 o H.

For ω ∈ R̂2, the H–orbit of ω is ωH = {ωA : A ∈ H} .

The stabilizer of ω is Hω = {A ∈ H : ωA = ω}, a closed subgroup
of H.

Theorem: (Bernier & Taylor, Führ)

Let H be a closed subgroup of GLn(R). The natural representation
of Rn o H is square–integrable if and only if there exists an ω ∈ R̂n

such that ωH is open and dense in R̂n and the stabilizer Hω is
compact.

When n = 2 there are only a few examples where the conditions of
this theorem apply.
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Affine groups in two dimensions

Any closed subgroup H of GL2(R) with a dense open orbit and
compact stabilizer is conjugate to one of the following:

(1) Hd =

{(
a1 0
0 a2

)
: a1, a2 ∈ R, a1 6= 0, a2 6= 0

}
(2) Hr =

{(
s −t
t s

)
: s, t ∈ R, s2 + t2 > 0

}
Examples (1) and (2) Lead to common software for image
processing.

(3) Hα
s =

{(
a b
0 aα

)
: a, b ∈ R, a > 0

}
, α ∈ R∗.

Example (3), with α = 1/2, leads to the Continuous Shearlet
Transform, which is especially useful for detecting edge
singularities in images.
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Are there any other useful groups that leads to a CWT ?

Yes. It was known to some that G2 = R2 oGL2(R) must have a
square integrable representation and this must lead to a
generalization of the CWT.

My main project is to work out details of harmonic analysis of
square-integrable functions on the group G2 of all invertible affine
transformations of R2.
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Research group G2 = R2 o GL2(R)

To do this, we had to re-parametrize the 2× 2 invertible matrices
and express left invariant integration on G2 in the new parameters.
The results of our calculations,

An irreducible, square integrable representation of G2. We call
it σ1.

An analogue of Peter-Weyl results.

A proof and conditions for finding a wavelet in L2(R3)
associated with the representation of G2.

A novel wavelet transform.
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Haar measure of GL2(R)

GL2(R) is a unimodular group and the Haar integral is given for
f ∈ Cc

(
GL2(R)

)
,∫

GL2(R)
f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R

f
(

a b
c d

)
da db dc dd
(ad − bc)2

This is well known, you can find it in the book by Hewitt and Ross,
and easy to check. To make it short, we write∫

R

∫
R

∫
R

∫
R

f
(

a b
c d

)
da db dc dd
(ad − bc)2 =

∫
GL2(R)

f (B) dB.



Haar measure of GL2(R)

GL2(R) is a unimodular group and the Haar integral is given for
f ∈ Cc

(
GL2(R)

)
,∫

GL2(R)
f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R

f
(

a b
c d

)
da db dc dd
(ad − bc)2

This is well known, you can find it in the book by Hewitt and Ross,
and easy to check. To make it short, we write

∫
R

∫
R

∫
R

∫
R

f
(

a b
c d

)
da db dc dd
(ad − bc)2 =

∫
GL2(R)

f (B) dB.



Haar measure of GL2(R)

GL2(R) is a unimodular group and the Haar integral is given for
f ∈ Cc

(
GL2(R)

)
,∫

GL2(R)
f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R

f
(

a b
c d

)
da db dc dd
(ad − bc)2

This is well known, you can find it in the book by Hewitt and Ross,
and easy to check. To make it short, we write∫

R

∫
R

∫
R

∫
R

f
(

a b
c d

)
da db dc dd
(ad − bc)2 =

∫
GL2(R)

f (B) dB.



Left Haar measure of G2

Left Haar measure on G2 is given by for f ∈ Cc(G2),∫
G2

f dµG2 =

∫
GL2(R)

∫
R2

f [y ,B]
dy dB

| det(B)|



Factorization of GL2(R)

We identify two useful closed subgroups of GL2(R), K0 and H(1,0)
as follows:

The set K0 is a closed subgroup of GL2(R)

K0 =

{(
s −t
t s

)
: s, t ∈ R, s2 + t2 6= 0

}

The map s + it →
(

s −t
t s

)
is a homeomorphism and topological

group isomorphism of C∗ with K0, where C∗ is the multiplicative
group of nonzero complex numbers.

The left Haar measure on K0,∫
K0

f dµK0 =

∫
R

∫
R

f
(

s −t
t s

)
dsdt

s2 + t2
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Factorization of GL2(R)

We need to factorize GL2(R) and we were not able to find a useful
factorization in any paper or book. We get the idea of factorising
GL2(R) as K0H(1,0). This factorization is what makes some
complicated calculations easier to do.

Proposition

If A =

(
a b
c d

)
∈ GL2(R), then A can be uniquely decomposed as

A = MACA, where

MA =

(
s −t
t s

)
, with s =

d(ad − bc)
b2 + d2 , t =

−b(ad − bc)
b2 + d2 ,

and

CA =

(
1 0
u v

)
, with u =

cd + ab
(ad − bc)

, v =
b2 + d2

(ad − bc)
.
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Factorization of GL2(R)

The parametrization resulting from factoring GL2(R) as K0 H(1,0)
gives an alternate expression for the Haar integral. Haar
integration on GL2(R) is given by∫
GL2(R)

f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R

f
((

s −t
t s

)(
1 0
u v

))
ds dt du dv
|v |(s2 + t2)



Factorization of GL2(R))

Theorem

The subgroups K0 and H(1,0) of GL2(R) satisfy:

1 K0 ∩ H(1,0) = {id}
2 GL2(R) = K0H(1,0) = {MC : M ∈ K0,C ∈ H(1,0)}.
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Haar measure of G2 in the new parametrization
Note that we can now factor the group G2 = KH, where

K =

{[
0,
(

s −t
t s

)]
: s, t ∈ R, s2 + t2 6= 0

}

and,

H = R2 o H(1,0) =

{[
x ,
(

1 0
u v

)]
: x ∈ R2, u, v ∈ R, v 6= 0

}
Let µG2 , µK , and µH denote the left Haar measures on G2,K , and
H, respectively. Then,∫

K0

f dµK0 =

∫
R

∫
R

f
(

s −t
t s

)
ds dt

s2 + t2 ,

∫
K

f dµK =

∫
K0

f [0,M] dµK0(M) =

∫
R

∫
R

f
[
0,
(

s −t
t s

)]
ds dt

s2 + t2 ,



Haar measure of G2 in the new parametrization
Note that we can now factor the group G2 = KH, where

K =

{[
0,
(

s −t
t s

)]
: s, t ∈ R, s2 + t2 6= 0

}
and,

H = R2 o H(1,0) =

{[
x ,
(

1 0
u v

)]
: x ∈ R2, u, v ∈ R, v 6= 0

}

Let µG2 , µK , and µH denote the left Haar measures on G2,K , and
H, respectively. Then,∫

K0

f dµK0 =

∫
R

∫
R

f
(

s −t
t s

)
ds dt

s2 + t2 ,

∫
K

f dµK =

∫
K0

f [0,M] dµK0(M) =

∫
R

∫
R

f
[
0,
(

s −t
t s

)]
ds dt

s2 + t2 ,



Haar measure of G2 in the new parametrization
Note that we can now factor the group G2 = KH, where

K =

{[
0,
(

s −t
t s

)]
: s, t ∈ R, s2 + t2 6= 0

}
and,

H = R2 o H(1,0) =

{[
x ,
(

1 0
u v

)]
: x ∈ R2, u, v ∈ R, v 6= 0

}
Let µG2 , µK , and µH denote the left Haar measures on G2,K , and
H, respectively. Then,∫

K0

f dµK0 =

∫
R

∫
R

f
(

s −t
t s

)
ds dt

s2 + t2 ,

∫
K

f dµK =

∫
K0

f [0,M] dµK0(M) =

∫
R

∫
R

f
[
0,
(

s −t
t s

)]
ds dt

s2 + t2 ,



Haar measure of G2 in the new parametrization
Note that we can now factor the group G2 = KH, where

K =

{[
0,
(

s −t
t s

)]
: s, t ∈ R, s2 + t2 6= 0

}
and,

H = R2 o H(1,0) =

{[
x ,
(

1 0
u v

)]
: x ∈ R2, u, v ∈ R, v 6= 0

}
Let µG2 , µK , and µH denote the left Haar measures on G2,K , and
H, respectively. Then,∫

K0

f dµK0 =

∫
R

∫
R

f
(

s −t
t s

)
ds dt

s2 + t2 ,

∫
K

f dµK =

∫
K0

f [0,M] dµK0(M) =

∫
R

∫
R

f
[
0,
(

s −t
t s

)]
ds dt

s2 + t2 ,



Haar measure of G2 in the new parametrization

∫
H(1,0)

f dµH(1,0) =

∫
R

∫
R

f
(

1 0
u v

)
du dv

v2

∫
H

f dµH =

∫
R

∫
R

∫
R2

f
[
x ,
(

1 0
u v

)]
dx du dv
|v |3



Haar measure of G2 in the new parametrization

∫
H(1,0)

f dµH(1,0) =

∫
R

∫
R

f
(

1 0
u v

)
du dv

v2∫
H

f dµH =

∫
R

∫
R

∫
R2

f
[
x ,
(

1 0
u v

)]
dx du dv
|v |3



Haar measure of G2 in the new parametrization

Recall,∫
GL2(R)

f dµGL2(R) =

∫
R

∫
R

∫
R

∫
R

f
((

s −t
t s

)(
1 0
u v

))
ds dt du dv
|v |(s2 + t2)

Thus, we can write∫
GL2(R)

f dµGL2(R) =

∫
K0

∫
H(1,0)

f (MC) | det(C)| dµH(1,0)(C) dµK0(M)
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Haar measure of G2 in the new parametrization

G2 =

{[
0,
(

s −t
t s

)][
x ,
(

1 0
u v

)]
:

x ∈ R2, s, t, u, v ∈ R, v 6= 0, s2 + t2 6= 0
}

=

{[(
s −t
t s

)
x ,
(

s −t
t s

)(
1 0
u v

)]
:

x ∈ R2, s, t, u, v ∈ R, v 6= 0, s2 + t2 6= 0
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Haar measure of G2 in the new parametrization

Then,∫
G2

f dµG2 =

∫
R

∫
R

∫
R

∫
R
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f
([

0,
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π1 an irreducible representation of H(1,0)

Recall, H(1,0) =

{(
1 0
u v

)
: u, v ∈ R, v 6= 0

}
.

Consider the Hilbert space L2(R∗) = L2
(
R, db
|b|

)
. There exists an

irreducible representation π1 of H(1,0) that acts on L2(R∗).

For
(

1 0
u v

)
∈ H(1,0) and f ∈ L2(R∗),

π1
(

1 0
u v

)
f (b) = e2πib−1uf

(
v−1b

)
.

Well-known theorem
The left regular representation, λH(1,0) , of H(1,0) is equivalent to a
direct sum of infinitely many copies of π1.
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χ(1,0) ⊗ π1 an irreducible representation of H

Because χ(1,0) is left fixed by H(1,0), we can combine χ(1,0) with π1

to make a representation of H = R2 o H(1,0).

The representation χ(1,0) ⊗ π1 of H given by(
χ(1,0) ⊗ π1) [x ,B] = χ(1,0)(x)π

1(B), for [x ,B] ∈ H,

is an irreducible representation of H on L2(R∗).

This representation of H is induced up to a representation of G2.
Because G2 factors as G2 = KH, the induced representation can
be defined on the Hilbert space L2

(
K , L2(R∗)

)
.

L2(K , L2(R∗)
)
=

{
F : K → L2(R∗) :

∫
K
‖F [0, L]‖2

L2(R∗)dµK [0, L] <∞
}
.
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Representation σ ∼ indG2
H (χ(1,0) ⊗ π1)

For F ∈ L2
(
K , L2(R∗)

)
, [x ,A] ∈ G2, and [0, L] ∈ K ,

σ[x ,A]F [0, L] =

∣∣∣det(C
A−1L

)∣∣∣−1/2 (
χ(1,0) ⊗ π1) [L−1x ,C −1

A−1L

]
F [0,MA−1L]

=
∣∣∣det(C

A−1L

)∣∣∣−1/2
e2πi(1,0)L−1x π1

(
C −1

A−1L

)
F [0,MA−1L]

We found a way to clarify the meaning of this formula.
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An important homeomorphism

Define a map γ : O = R̂2 \ {0} → K0 by

γ(ω1, ω2) =
1

ω2
1 + ω2

2

(
ω1 −ω2

ω2 ω1

)
, for (ω1, ω2) ∈ O.

We can use γ to move σ to an equivalent representation acting on
L2
(
R̂2 × R̂

)
.

Note that L2
(
R̂2 × R̂

)
is really just L2(R3), written in a convenient

way.
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uω,A and vω,A

To clarify the formulas, we introduce two new functions.

For
A ∈ GL2(R) and ω ∈ O, C −1

A−1γ(ω)
∈ H(1,0). So

C −1
A−1γ(ω)

=

(
1 0

uω,A vω,A

)
,

For some uω,A, vω,A ∈ R.

Calculations give

uω,A =
(ac + bd)(ω2

1 − ω2
2)− (a2 + b2 − c2 − d2)ω1ω2

(aω1 + cω2)2 + (bω1 + dω2)2

vω,A =
(ad − bc)(ω2

1 + ω2
2)

(aω1 + cω2)2 + (bω1 + dω2)2 .
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Representation σ1

Define U : L2
(
K , L2(R∗)

)
→ L2

(
R̂2 × R̂

)
by, for F ∈ L2

(
K , L2(R∗)

)
and (ω,ω3) ∈ R̂2 × R̂,

(UF )(ω,ω3) =


(

F [0,γ(ω)]
)
(ω−1

3 )

‖ω‖·|ω3|1/2 for ω ∈ O, ω3 6= 0

0 otherwise.

Then U is a unitary map. Let σ1[x ,A] = Uσ[x ,A]U−1, for all

[x ,A] ∈ G2. Then

σ1 ∼ σ and

(
σ1[x ,A]ξ

)
(ω,ω3) =

| det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)ξ

(
ωA, ω3vω,A),

for a.e. (ω,ω3) ∈ R̂2 × R̂ and all ξ ∈ L2
(
R̂2 × R̂

)
.
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Main Theorems(
σ1[x ,A]ξ

)
(ω,ω3) =

| det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)ξ

(
ωA, ω3vω,A),

Theorem A:
As defined above, σ1 is an irreducible representation of G2. Let
ψ ∈ L2

(
R̂2 × R̂

)
satisfy

∫
R̂
∫
R̂2
|ψ(ω,ω3)|2
‖ω‖2|ω3| dω dω3 = 1. With

Vψξ[x ,A] = 〈ξ, σ1[x ,A]ψ〉L2(R̂2×R̂),

for [x ,A] ∈ G2, ξ ∈ L2
(
R̂2 × R̂

)
, Vψ is an isometry of L2

(
R̂2 × R̂

)
into L2(G2). Moreover,

Vψσ1[x ,A] = λG2 [x ,A]Vψ, for [x ,A] ∈ G2.

This shows σ1 is equivalent to a subrepresentation of the left
regular representation. Moreover, The left regular representation,
λG2 , of G2 is equivalent to a direct sum of infinitely many copies of
σ1.
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A function ψ ∈ L2
(
R̂2 × R̂

)
is called a σ1-wavelet if∫

R̂

∫
R̂2

|ψ(ω,ω3)|2

‖ω‖2|ω3|
dω dω3 = 1.

For each x ∈ R2 and A =

(
a b
c d

)
∈ GL2(R), define ψx,A on

R̂2 × R̂ by

ψx,A(ω,ω3) =
| det(A)|·‖ω‖
‖ωA‖ e2πi(ωx+ω3uω,A)ψ

(
ωA, ω3vω,A),

For a.e. (ω,ω3) ∈ R̂2 × R̂. Then ψx,A ∈ L2
(
R̂2 × R̂

)
.
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For each ξ ∈ L2
(
R̂2 × R̂

)
, let

Vψξ[x ,A] =
〈
ξ, ψx,A

〉
L2(R̂2×R̂) , for all x ∈ R2,A ∈ GL2(R).

Then Vψ is called the σ1-wavelet transform with σ1-wavelet ψ.

Theorem B:
The Duflo-Moore operator Cσ1 associated with σ1 is given by, for
any ξ ∈ L2

(
R̂2 × R̂

)
, Cσ1ξ(ω,ω3) = ‖ω‖−1|ω3|−1/2ξ(ω,ω3), for

a.e. (ω,ω3) ∈ R̂2 × R̂.
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The reconstruction formula can now be stated for the σ1-wavelet
transform.

Theorem C:

Let ψ ∈ L2
(
R̂2 × R̂

)
be a σ1-wavelet. Then, for any

ξ ∈ L2
(
R̂2 × R̂

)
,

ξ =

∫
GL2(R)

∫
R2

Vψξ[x ,A]ψx,A
dx dµGL2(R)(A)
| det(A)| , weakly in L2

(
R̂2×R̂

)
.

Thank you!



Main Theorems

The reconstruction formula can now be stated for the σ1-wavelet
transform.

Theorem C:

Let ψ ∈ L2
(
R̂2 × R̂

)
be a σ1-wavelet. Then, for any

ξ ∈ L2
(
R̂2 × R̂

)
,

ξ =

∫
GL2(R)

∫
R2

Vψξ[x ,A]ψx,A
dx dµGL2(R)(A)
| det(A)| , weakly in L2

(
R̂2×R̂

)
.

Thank you!



Main Theorems

The reconstruction formula can now be stated for the σ1-wavelet
transform.

Theorem C:

Let ψ ∈ L2
(
R̂2 × R̂

)
be a σ1-wavelet. Then, for any

ξ ∈ L2
(
R̂2 × R̂

)
,

ξ =

∫
GL2(R)

∫
R2

Vψξ[x ,A]ψx,A
dx dµGL2(R)(A)
| det(A)| , weakly in L2

(
R̂2×R̂

)
.

Thank you!



Main Theorems

The reconstruction formula can now be stated for the σ1-wavelet
transform.

Theorem C:

Let ψ ∈ L2
(
R̂2 × R̂

)
be a σ1-wavelet. Then, for any

ξ ∈ L2
(
R̂2 × R̂

)
,

ξ =

∫
GL2(R)

∫
R2

Vψξ[x ,A]ψx,A
dx dµGL2(R)(A)
| det(A)| , weakly in L2

(
R̂2×R̂

)
.

Thank you!


