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Virtual diagonals

In this talk, ⊗̂ denotes the projective tensor product of Banach spaces

(not the operator space version).

Given a Banach algebra A, let us temporarily write µ : A ⊗̂A → A for

the bounded linear map satisfying

µ(a⊗ b) = ab for all a, b ∈ A

and write κ : A → A∗∗ for the natural embedding.

A virtual diagonal for A is some ∆ ∈ (A ⊗̂A)∗∗ such that a ·∆ = ∆ · a

and µ∗∗(∆) · a = κ(a) for all a ∈ A. If A has a virtual diagonal, we say

that it is amenable (Johnson, 1972).
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When A is finite-dimensional, (A ⊗̂A)∗∗ = A ⊗̂A, so we speak of a

diagonal element for A.
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Example 1. Let A be any Banach algebra that is algebra-isomorphic to

C
n with pointwise product. Then A has a (unique!) diagonal: this is the

element of A⊗A corresponding to
∑n

j=1 δj ⊗ δj . However, it is not clear

how large the norm of this element is in A ⊗̂A.
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When A is finite-dimensional, (A ⊗̂A)∗∗ = A ⊗̂A, so we speak of a

diagonal element for A.

Example 1. Let A be any Banach algebra that is algebra-isomorphic to

C
n with pointwise product. Then A has a (unique!) diagonal: this is the

element of A⊗A corresponding to
∑n

j=1 δj ⊗ δj . However, it is not clear

how large the norm of this element is in A ⊗̂A.

Example 2. G a finite group; A = ℓ1(G) with standard basis vectors

(eg)g∈G, viewed as a Banach algebra with the convolution product. Then

1

|G|

∑

g∈G

eg ⊗ e(g−1)

is a diagonal element for A, which turns out to have norm 1 inside A ⊗̂A.
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The amenability constant of a Banach algebra

For a Banach algebra A, we define its amenability constant to be

AM(A) := inf ‖∆‖(A⊗̂A)∗∗

where the infimum is over all virtual diagonals for A. We adopt the

convention that AM(A) := +∞ when A is not amenable.
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The amenability constant of a Banach algebra

For a Banach algebra A, we define its amenability constant to be

AM(A) := inf ‖∆‖(A⊗̂A)∗∗

where the infimum is over all virtual diagonals for A. We adopt the

convention that AM(A) := +∞ when A is not amenable.

Example 3. For any finite group G, we saw an explicit witness that

AM(ℓ1(G)) = 1. In fact, AM(L1(G)) = 1 for every amenable locally

compact group G (Stokke, 2004).

So for L1-group algebras there is a dichotomy: the amenability constant

is either 1 or +∞. This is very much not true when we work with Fourier

algebras (unless we switch to discussing operator (space) amenabiity).
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The Fourier norm on the complex group algebra

Let G be a finite group. Given f ∈ C
G, and a representation

σ : G → U(Hσ), we define

σ(f) :=
∑

x∈G

f(x)σ(x) ∈ B(Hσ).
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The Fourier norm on the complex group algebra

Let G be a finite group. Given f ∈ C
G, and a representation

σ : G → U(Hσ), we define

σ(f) :=
∑

x∈G

f(x)σ(x) ∈ B(Hσ).

We then define A(G) to be C
G equipped with the following norm:

‖f‖A :=
∑

π∈Ĝ

dπ
|G|

‖π(f)‖(1)

where ‖·‖(1) is the trace-class norm.

Although the norm on A(G) ⊗̂A(G) is hard to work with, there is a

remarkable exact formula for AM(A(G)) when G is finite.
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Theorem (Johnson, 1994)

Let G be a finite group. Then AM(A(G)) =
1

|G|

∑

π∈Ĝ

(dπ)
3.

Corollary

If G is a finite abelian group then AM(A(G)) = 1. If G is a finite

non-abelian group, then AM(A(G)) ≥ 3/2.
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Theorem (Johnson, 1994)

Let G be a finite group. Then AM(A(G)) =
1

|G|

∑

π∈Ĝ

(dπ)
3.

Corollary

If G is a finite abelian group then AM(A(G)) = 1. If G is a finite

non-abelian group, then AM(A(G)) ≥ 3/2.

Sketch of the proof of the 2nd part

Suppose G is finite and non-abelian, and let L be the set of

1-dimensional irreps of G. Since dπ ≥ 2 for all π ∈ Ĝ \ L,

AM(A(G)) +
|L|

|G|
≥

1

|G|

∑

π∈Ĝ

2(dπ)
2 = 2.

But |G|/|L| is the size of the derived subgroup of G, so must be ≥ 2. �
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The Fourier algebra of a locally compact group

For any locally compact group G, one can define its Fourier algebra

A(G), in a way that extends the definition for finite groups.

The locally compact abelian setting

When G is a LCA group, it has a dual group Ĝ, and then A(G) is the

range of the Gelfand/Fourier transform L1(Ĝ) → C0(G).
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The Fourier algebra of a locally compact group

For any locally compact group G, one can define its Fourier algebra

A(G), in a way that extends the definition for finite groups.

The locally compact abelian setting

When G is a LCA group, it has a dual group Ĝ, and then A(G) is the

range of the Gelfand/Fourier transform L1(Ĝ) → C0(G).

Warning

The canonical map A(G1) ⊗̂A(G2) → A(G1 ×G2) has dense range, but

is usually not an isometry.

In fact: for this comparison map to be surjective, either G1 or G2 must

be virtually abelian (i.e. have an abelian subgroup of finite index).
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Lower bounds on AM(A(G))

Some notation

For a group G, define

adiag(G) = {(x, x−1) : x ∈ G} = {(x, y) ∈ G×G : xy = e}.
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Let G be a locally compact group for which A(G) is amenable, and let

Gd be the same group with the discrete topology. Then:
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Lower bounds on AM(A(G))

Some notation

For a group G, define

adiag(G) = {(x, x−1) : x ∈ G} = {(x, y) ∈ G×G : xy = e}.

Theorem (Forrest–Runde, 2005)

Let G be a locally compact group for which A(G) is amenable, and let

Gd be the same group with the discrete topology. Then:

1 1adiag(G) ∈ B(Gd ×Gd);

2 the check map is completely bounded A(Gd) → A(Gd);

3 Gd (and hence G) is virtually abelian.

The first part can be refined to give a quantitative statement:
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Lemma (Runde, 2006)

Let G be a locally compact group. Then

AM(A(G)) ≥
∥∥1adiag(G)

∥∥
B

where ‖·‖B denotes the norm in B(Gd ×Gd).
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Lemma (Runde, 2006)

Let G be a locally compact group. Then

AM(A(G)) ≥
∥∥1adiag(G)

∥∥
B

where ‖·‖B denotes the norm in B(Gd ×Gd).

Quote from [Run06]

It remains to be seen whether or not Lemma 3.1 will eventually

lead to a more satisfactory bound from below for the

amenability constant of a Fourier algebra: very little seems to

be known on the norms of idempotents in Fourier–Stieltjes

algebras.

The point of this talk: we can say quite a bit about the norm of this

particular idempotent!
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A canonical minorant for AM(A(G))

If Λ is a discrete group, we introduce the notation

AD(Λ) :=
∥∥1adiag(Λ)

∥∥
B

Reminder: AM(A(G)) ≥ AD(Gd).

AD is an intrinsic invariant of a virtually abelian group, and we believe it

deserves further study (regardless of the connection to amenability of

Banach algebras). It has several useful hereditary properties.

If H is a subgroup of G then AD(H) ≤ AD(G).

AD(G1 ×G2) = AD(G1)AD(G2).

For any G, there is a countable subgroup Λ such that

AD(Λ) = AD(G).
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The new results (1)

Let G be a finite group. Then AD(G) = ‖1adiag(G)‖A and

‖1adiag(G)‖A =
1

|G×G|

∑

π,σ∈Ĝ

dπdσ
∥∥(π ⊗ σ)(1adiag(G))

∥∥
(1)
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The new results (1)

Let G be a finite group. Then AD(G) = ‖1adiag(G)‖A and

‖1adiag(G)‖A =
1

|G×G|

∑

π,σ∈Ĝ

dπdσ
∥∥(π ⊗ σ)(1adiag(G))

∥∥
(1)

For a Hilbert space H let XH be the “flip map” on H⊗2 H.

Proposition

Let G be a finite group and let π, σ ∈ Ĝ. Then

(π ⊗ σ)(1adiag(G)) =




0 if π 6∼ σ

|G|

dπ
X(Hπ) if π = σ

Corollary (C., submitted)

For G finite, AD(G) =
1

|G|

∑

π∈Ĝ

(dπ)
3 = AM(A(G)).
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The new results (2)

Now let G be a countable virtually abelian group. (This implies that

sup
π∈Ĝ

dπ < ∞.) Let ν be Plancherel measure on Ĝ, normalized so that

∑

x∈G

|f(x)|2 =

∫

Ĝ

(
‖π(f)‖(2))

)2

dν(π) (f ∈ c00(G))

where ‖·‖(2) is the Hilbert–Schmidt norm.

With this normalization, 1 =

∫

Ĝ

dπ dν(π).
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The new results (2)

Now let G be a countable virtually abelian group. (This implies that

sup
π∈Ĝ

dπ < ∞.) Let ν be Plancherel measure on Ĝ, normalized so that

∑

x∈G

|f(x)|2 =

∫

Ĝ

(
‖π(f)‖(2))

)2

dν(π) (f ∈ c00(G))

where ‖·‖(2) is the Hilbert–Schmidt norm.

With this normalization, 1 =

∫

Ĝ

dπ dν(π).

Theorem (C., submitted)

Let G, ν be as above. Then AD(G) =

∫

Ĝ

(dπ)
2 dν(π).

Note: if G is finite, then ν({π}) =
dπ
|G|

and we recover our earlier result.
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Ideas in the proof

By old results of Arsac the inverse Fourier transform for G×G

defines an isometry Ψ from an appropriate vector-valued L1-space to

B(G×G).
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We construct an operator-valued distribution/measure F on Ĝ× Ĝ,

such Ψ(F ) = 1adiag(G).

By the previous remarks, AD(G) = ‖F‖L1(whatever). �
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Ideas in the proof

By old results of Arsac the inverse Fourier transform for G×G

defines an isometry Ψ from an appropriate vector-valued L1-space to

B(G×G).

We construct an operator-valued distribution/measure F on Ĝ× Ĝ,

such Ψ(F ) = 1adiag(G).

By the previous remarks, AD(G) = ‖F‖L1(whatever). �

Technical details

Let µ denote the pushforward of ν under the diagonal embedding

Ĝ → Ĝ× Ĝ. Then (in the sense of Radon–Nikodym derivatives)

dF

dµ
(π, σ) =




0 if π 6∼ σ

X(Hπ) if π = σ

where, as before, X denotes the flip on the square of a Hilbert space.
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Some applications

It was asked in [Run06] if Johnson’s lower bound on AM(A(G)) for finite

groups remained true in general. We can now give an affirmative answer.
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Some applications

It was asked in [Run06] if Johnson’s lower bound on AM(A(G)) for finite

groups remained true in general. We can now give an affirmative answer.

Theorem (C.)

Let G be a locally compact VA group which is non-abelian. Then

AM(A(G)) ≥ AD(Gd) ≥ 3/2.

Proof. There is a countable non-abelian subgroup Λ ≤ G, which is also

VA since G is. Since AD(G) ≥ AD(Λ) it suffices to show that

AD(Λ) ≥ 3/2. This follows from our explicit formula for AD(Λ) and the

following technical fact. �

Lemma

Let Λ be a countable, non-abelian VA group with normalized Plancherel

measure ν. Let Ω1 = {π ∈ Λ̂ : dπ = 1}. Then ν(Ω1) ≤ 1/2.
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In fact, if AD(Λ) = 3/2 then ν(Ω1) = 1/2 and every irrep of Λ has

degree ≤ 2. Pursuing this observation further, we obtain a complete

characterization of those non-abelian groups which achieve the lower

bound on AD.
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In fact, if AD(Λ) = 3/2 then ν(Ω1) = 1/2 and every irrep of Λ has

degree ≤ 2. Pursuing this observation further, we obtain a complete

characterization of those non-abelian groups which achieve the lower

bound on AD.

Theorem (C., submitted)

Let G be a (virtually abelian) discrete group. Then

AD(G) = 3/2 ⇐⇒ |G : Z(G)| = 4.

Finite groups with this property include the dihedral group and

quaternion group of order 8. For an infinite example: take the integer

Heisenberg group and quotient by a suitable subgroup of its centre.
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Some remaining challenges

Conjecture

AM(A(G)) = AD(Gd) for every locally compact group G.

Character-theoretic invariants of finite groups

What is the relationship of AM(A(·)) = AD(·) to more traditional

invariants of finite groups?

Further gap results

Work in progress indicates that if G is finite and non-abelian and

AD(G) > 3/2 then AD(G) ≥ 5/3. Can we prove the same gap result for

general (virtually abelian) groups?
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