Lower bounds on the amenability constant of the Fourier algebra

Yemon Choi Lancaster University

Canadian Abstract Harmonic Analysis Symposium Banff International Research Station, 18th June 2022

See arXiv 2012.14413

Thanks to Brian, Volker and Keith

and

Happy retirement Tony!

In this talk, $\widehat{\otimes}$ denotes the projective tensor product of **Banach** spaces (not the operator space version).

Given a Banach algebra A, let us temporarily write $\mu:A\mathbin{\widehat{\otimes}} A\to A$ for the bounded linear map satisfying

$$\mu(a \otimes b) = ab \qquad \text{for all } a, b \in A$$

and write $\kappa: A \to A^{**}$ for the natural embedding.

A virtual diagonal for A is some $\Delta \in (A \otimes A)^{**}$ such that $a \cdot \Delta = \Delta \cdot a$ and $\mu^{**}(\Delta) \cdot a = \kappa(a)$ for all $a \in A$. If A has a virtual diagonal, we say that it is amenable (JOHNSON, 1972). When A is finite-dimensional, $(A \otimes A)^{**} = A \otimes A$, so we speak of a diagonal element for A.

When A is finite-dimensional, $(A \otimes A)^{**} = A \otimes A$, so we speak of a diagonal element for A.

Example 1. Let A be any Banach algebra that is algebra-isomorphic to \mathbb{C}^n with pointwise product. Then A has a (unique!) diagonal: this is the element of $A \otimes A$ corresponding to $\sum_{j=1}^n \delta_j \otimes \delta_j$. However, it is not clear how large the norm of this element is in $A \otimes A$.

When A is finite-dimensional, $(A \otimes A)^{**} = A \otimes A$, so we speak of a diagonal element for A.

Example 1. Let A be any Banach algebra that is algebra-isomorphic to \mathbb{C}^n with pointwise product. Then A has a (unique!) diagonal: this is the element of $A \otimes A$ corresponding to $\sum_{j=1}^n \delta_j \otimes \delta_j$. However, it is not clear how large the norm of this element is in $A \otimes A$.

Example 2. G a finite group; $A = \ell^1(G)$ with standard basis vectors $(e_g)_{g \in G}$, viewed as a Banach algebra with the convolution product. Then

$$\frac{1}{|G|} \sum_{g \in G} e_g \otimes e_{(g^{-1})}$$

is a diagonal element for A, which turns out to have norm 1 inside $A \otimes A$.

For a Banach algebra A, we define its amenability constant to be

$$\operatorname{AM}(A) := \inf \left\| \Delta \right\|_{(A \widehat{\otimes} A)^{**}}$$

where the infimum is over all virtual diagonals for A. We adopt the convention that $AM(A) := +\infty$ when A is not amenable.

For a Banach algebra A, we define its amenability constant to be

 $\operatorname{AM}(A) := \inf \|\Delta\|_{(A \widehat{\otimes} A)^{**}}$

where the infimum is over all virtual diagonals for A. We adopt the convention that $AM(A) := +\infty$ when A is not amenable.

Example 3. For any finite group G, we saw an explicit witness that $AM(\ell^1(G)) = 1$. In fact, $AM(L^1(G)) = 1$ for every amenable locally compact group G (STOKKE, 2004).

So for L^1 -group algebras there is a dichotomy: the amenability constant is either 1 or $+\infty$. This is very much not true when we work with Fourier algebras (unless we switch to discussing operator (space) amenability).

Let G be a finite group. Given $f\in\mathbb{C}^G,$ and a representation $\sigma:G\to\mathcal{U}(H_\sigma),$ we define

$$\sigma(f) := \sum_{x \in G} f(x)\sigma(x) \in \mathcal{B}(H_{\sigma}).$$

Let G be a finite group. Given $f \in \mathbb{C}^G$, and a representation $\sigma: G \to \mathcal{U}(H_\sigma)$, we define

$$\sigma(f) := \sum_{x \in G} f(x)\sigma(x) \in \mathcal{B}(H_{\sigma}).$$

We then define A(G) to be \mathbb{C}^G equipped with the following norm:

$$\|f\|_{\mathcal{A}} := \sum_{\pi \in \widehat{G}} \frac{d_{\pi}}{|G|} \|\pi(f)\|_{(1)}$$

where $\|\cdot\|_{(1)}$ is the trace-class norm.

Although the norm on $A(G) \otimes A(G)$ is hard to work with, there is a remarkable exact formula for AM(A(G)) when G is finite.

Theorem (JOHNSON, 1994)

Let G be a finite group. Then
$$AM(A(G)) = \frac{1}{|G|} \sum_{\pi \in \widehat{G}} (d_{\pi})^3$$
.

Corollary

If G is a finite abelian group then AM(A(G)) = 1. If G is a finite non-abelian group, then $AM(A(G)) \ge 3/2$.

Theorem (JOHNSON, 1994)

Let G be a finite group. Then
$$AM(A(G)) = \frac{1}{|G|} \sum_{\pi \in \widehat{G}} (d_{\pi})^3$$
.

Corollary

If G is a finite abelian group then AM(A(G)) = 1. If G is a finite non-abelian group, then $AM(A(G)) \ge 3/2$.

Sketch of the proof of the 2nd part

Suppose G is finite and non-abelian, and let L be the set of 1-dimensional irreps of G. Since $d_{\pi} \geq 2$ for all $\pi \in \widehat{G} \setminus L$,

$$\operatorname{AM}(\operatorname{A}(G)) + \frac{|L|}{|G|} \ge \frac{1}{|G|} \sum_{\pi \in \widehat{G}} 2(d_{\pi})^2 = 2.$$

But |G|/|L| is the size of the derived subgroup of G, so must be ≥ 2 . \Box

For any locally compact group G, one can define its Fourier algebra A(G), in a way that extends the definition for finite groups.

The locally compact abelian setting

When G is a LCA group, it has a dual group \widehat{G} , and then A(G) is the range of the Gelfand/Fourier transform $L^1(\widehat{G}) \to C_0(G)$.

For any locally compact group G, one can define its Fourier algebra A(G), in a way that extends the definition for finite groups.

The locally compact abelian setting

When G is a LCA group, it has a dual group \widehat{G} , and then A(G) is the range of the Gelfand/Fourier transform $L^1(\widehat{G}) \to C_0(G)$.

Warning

The canonical map $A(G_1) \widehat{\otimes} A(G_2) \to A(G_1 \times G_2)$ has dense range, but is usually not an isometry.

In fact: for this comparison map to be surjective, either G_1 or G_2 must be virtually abelian (i.e. have an abelian subgroup of finite index).

Lower bounds on AM(A(G))

Some notation

For a group G, define

$$\mathsf{adiag}(G) = \{(x, x^{-1}) \colon x \in G\} = \{(x, y) \in G \times G \colon xy = e\}.$$

For a group G, define

$$\mathsf{adiag}(G) = \{(x, x^{-1}) \colon x \in G\} = \{(x, y) \in G \times G \colon xy = e\}.$$

Theorem (FORREST-RUNDE, 2005)

Let G be a locally compact group for which A(G) is amenable, and let G_d be the same group with the discrete topology. Then:

For a group G, define

$$\mathsf{adiag}(G) = \{(x, x^{-1}) \colon x \in G\} = \{(x, y) \in G \times G \colon xy = e\}.$$

Theorem (FORREST-RUNDE, 2005)

Let G be a locally compact group for which A(G) is amenable, and let G_d be the same group with the discrete topology. Then:

•
$$1_{\operatorname{adiag}(G)} \in \mathcal{B}(G_d \times G_d);$$

For a group G, define

$$\mathsf{adiag}(G) = \{(x, x^{-1}) \colon x \in G\} = \{(x, y) \in G \times G \colon xy = e\}.$$

Theorem (FORREST-RUNDE, 2005)

Let G be a locally compact group for which A(G) is amenable, and let G_d be the same group with the discrete topology. Then:

$$1_{\mathsf{adiag}(G)} \in \mathcal{B}(G_d \times G_d);$$

2 the check map is completely bounded $A(G_d) \rightarrow A(G_d)$;

For a group G, define

$$\mathsf{adiag}(G) = \{(x, x^{-1}) \colon x \in G\} = \{(x, y) \in G \times G \colon xy = e\}.$$

Theorem (FORREST-RUNDE, 2005)

Let G be a locally compact group for which A(G) is amenable, and let G_d be the same group with the discrete topology. Then:

$$1_{\mathsf{adiag}(G)} \in \mathcal{B}(G_d \times G_d);$$

- 2 the check map is completely bounded $A(G_d) \rightarrow A(G_d)$;
- G_d (and hence G) is virtually abelian.

The first part can be refined to give a quantitative statement:

Lemma (RUNDE, 2006)

Let G be a locally compact group. Then

 $\operatorname{AM}(\operatorname{A}(G)) \geq \left\| 1_{\operatorname{\mathsf{adiag}}(G)} \right\|_{\operatorname{B}}$

where $\|\cdot\|_{B}$ denotes the norm in $B(G_d \times G_d)$.

Lemma (RUNDE, 2006)

Let G be a locally compact group. Then

 $\mathrm{AM}(\mathrm{A}(G)) \ge \left\| 1_{\mathsf{adiag}(G)} \right\|_{\mathrm{B}}$

where $\|\cdot\|_{B}$ denotes the norm in $B(G_d \times G_d)$.

Quote from [Run06]

It remains to be seen whether or not Lemma 3.1 will eventually lead to a more satisfactory bound from below for the amenability constant of a Fourier algebra: very little seems to be known on the norms of idempotents in Fourier–Stieltjes algebras.

The point of this talk: we can say quite a bit about the norm of **this** particular idempotent!

A CANONICAL MINORANT FOR AM(A(G))

If Λ is a discrete group, we introduce the notation

 $\mathrm{AD}(\Lambda) := \left\| \mathbf{1}_{\mathsf{adiag}(\Lambda)} \right\|_{\mathrm{B}}$

Reminder: $AM(A(G)) \ge AD(G_d)$.

AD is an intrinsic invariant of a virtually abelian group, and we believe it deserves further study (regardless of the connection to amenability of Banach algebras). It has several useful hereditary properties.

- If H is a subgroup of G then $AD(H) \leq AD(G)$.
- $\operatorname{AD}(G_1 \times G_2) = \operatorname{AD}(G_1) \operatorname{AD}(G_2).$
- For any G, there is a countable subgroup Λ such that $AD(\Lambda) = AD(G)$.

The New Results (1)

Let G be a finite group. Then $\mathrm{AD}(G) = \|\mathbf{1}_{\mathsf{adiag}(G)}\|_{\mathsf{A}}$ and

$$\left\|\mathbf{1}_{\mathsf{adiag}(G)}\right\|_{\mathcal{A}} = \frac{1}{|G \times G|} \sum_{\pi, \sigma \in \widehat{G}} d_{\pi} d_{\sigma} \left\| (\pi \otimes \sigma)(\mathbf{1}_{\mathsf{adiag}(G)}) \right\|_{(1)}$$

The New Results (1)

Let G be a finite group. Then $\mathrm{AD}(G) = \| 1_{\mathsf{adiag}(G)} \|_{\scriptscriptstyle \Delta}$ and

$$\left\|\mathbf{1}_{\mathsf{adiag}(G)}\right\|_{\mathcal{A}} = \frac{1}{|G \times G|} \sum_{\pi, \sigma \in \widehat{G}} d_{\pi} d_{\sigma} \left\| (\pi \otimes \sigma)(\mathbf{1}_{\mathsf{adiag}(G)}) \right\|_{(1)}$$

For a Hilbert space H let X_H be the "flip map" on $H \otimes_2 H$.

Proposition

Let G be a finite group and let $\pi, \sigma \in \widehat{G}$. Then

$$(\pi \otimes \sigma)(1_{\operatorname{adiag}}(G)) = \begin{cases} 0 & \text{if } \pi \not\sim \sigma \\ \frac{|G|}{d_{\pi}} \mathsf{X}_{(H_{\pi})} & \text{if } \pi = \sigma \end{cases}$$

Corollary (C., submitted)

For G finite,
$$AD(G) = \frac{1}{|G|} \sum_{\pi \in \widehat{G}} (d_{\pi})^3 = AM(A(G))$$
.

The New Results (2)

Now let G be a countable virtually abelian group. (This implies that $\sup_{\pi\in\widehat{G}}d_{\pi}<\infty.$) Let ν be Plancherel measure on \widehat{G} , normalized so that

$$\sum_{x \in G} |f(x)|^2 = \int_{\widehat{G}} \left(\|\pi(f)\|_{(2)} \right)^2 d\nu(\pi) \qquad (f \in c_{00}(G))$$

where $\left\|\cdot\right\|_{(2)}$ is the Hilbert–Schmidt norm.

With this normalization,
$$1 = \int_{\widehat{G}} d_{\pi} d\nu(\pi).$$

The New Results (2)

Now let G be a countable virtually abelian group. (This implies that $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$.) Let ν be Plancherel measure on \widehat{G} , normalized so that

$$\sum_{x \in G} |f(x)|^2 = \int_{\widehat{G}} \left(\|\pi(f)\|_{(2)} \right)^2 d\nu(\pi) \qquad (f \in c_{00}(G))$$

where $\left\|\cdot\right\|_{(2)}$ is the Hilbert–Schmidt norm.

With this normalization,
$$1 = \int_{\widehat{G}} d_{\pi} d\nu(\pi)$$
.

Theorem (C., submitted)

Let G,
$$\nu$$
 be as above. Then $AD(G) = \int_{\widehat{G}} (d_{\pi})^2 d\nu(\pi)$.

Note: if G is finite, then $\nu(\{\pi\}) = \frac{d_{\pi}}{|G|}$ and we recover our earlier result.

Ideas in the proof

• By old results of ARSAC the inverse Fourier transform for $G \times G$ defines an isometry Ψ from an appropriate vector-valued L^1 -space to $B(G \times G)$.

Ideas in the proof

- By old results of ARSAC the inverse Fourier transform for $G \times G$ defines an isometry Ψ from an appropriate vector-valued L^1 -space to $B(G \times G)$.
- We construct an operator-valued distribution/measure F on $\widehat{G} \times \widehat{G}$, such $\Psi(F) = 1_{\text{adiag}}(G)$.
- By the previous remarks, $AD(G) = ||F||_{L^1(whatever)}$.

Ideas in the proof

- By old results of ARSAC the inverse Fourier transform for $G \times G$ defines an isometry Ψ from an appropriate vector-valued L^1 -space to $B(G \times G)$.
- We construct an operator-valued distribution/measure F on $\widehat{G} \times \widehat{G}$, such $\Psi(F) = 1_{\text{adiag}}(G)$.
- By the previous remarks, $AD(G) = ||F||_{L^1(whatever)}$.

Technical details

Let μ denote the pushforward of ν under the diagonal embedding $\widehat{G} \to \widehat{G} \times \widehat{G}$. Then (in the sense of Radon–Nikodym derivatives)

$$\frac{dF}{d\mu}(\pi,\sigma) = \begin{cases} 0 & \text{if } \pi \not\sim \sigma \\ \mathsf{X}_{(H_{\pi})} & \text{if } \pi = \sigma \end{cases}$$

where, as before, X denotes the flip on the square of a Hilbert space.

It was asked in [Run06] if Johnson's lower bound on AM(A(G)) for finite groups remained true in general. We can now give an affirmative answer.

Some applications

It was asked in [Run06] if Johnson's lower bound on AM(A(G)) for finite groups remained true in general. We can now give an affirmative answer.

Theorem (C.)

Let G be a locally compact VA group which is non-abelian. Then $AM(A(G)) \ge AD(G_d) \ge 3/2$.

Some applications

It was asked in [Run06] if Johnson's lower bound on AM(A(G)) for finite groups remained true in general. We can now give an affirmative answer.

Theorem (C.)

Let G be a locally compact VA group which is non-abelian. Then $AM(A(G)) \ge AD(G_d) \ge 3/2$.

Proof. There is a countable non-abelian subgroup $\Lambda \leq G$, which is also VA since G is. Since $AD(G) \geq AD(\Lambda)$ it suffices to show that $AD(\Lambda) \geq 3/2$.

Some applications

It was asked in [Run06] if Johnson's lower bound on AM(A(G)) for finite groups remained true in general. We can now give an affirmative answer.

Theorem (C.)

Let G be a locally compact VA group which is non-abelian. Then $AM(A(G)) \ge AD(G_d) \ge 3/2$.

Proof. There is a countable non-abelian subgroup $\Lambda \leq G$, which is also VA since G is. Since $AD(G) \geq AD(\Lambda)$ it suffices to show that $AD(\Lambda) \geq 3/2$. This follows from our explicit formula for $AD(\Lambda)$ and the following technical fact.

Lemma

Let Λ be a countable, non-abelian VA group with normalized Plancherel measure ν . Let $\Omega_1 = \{\pi \in \widehat{\Lambda} : d_\pi = 1\}$. Then $\nu(\Omega_1) \leq 1/2$.

In fact, if $AD(\Lambda) = 3/2$ then $\nu(\Omega_1) = 1/2$ and every irrep of Λ has degree ≤ 2 . Pursuing this observation further, we obtain a complete characterization of those non-abelian groups which achieve the lower bound on AD.

In fact, if $AD(\Lambda) = 3/2$ then $\nu(\Omega_1) = 1/2$ and every irrep of Λ has degree ≤ 2 . Pursuing this observation further, we obtain a complete characterization of those non-abelian groups which achieve the lower bound on AD.

Theorem (C., submitted)

Let G be a (virtually abelian) discrete group. Then $AD(G) = 3/2 \iff |G: Z(G)| = 4.$

Finite groups with this property include the dihedral group and quaternion group of order 8. For an infinite example: take the integer Heisenberg group and quotient by a suitable subgroup of its centre.

Conjecture

 $AM(A(G)) = AD(G_d)$ for every locally compact group G.

Character-theoretic invariants of finite groups

What is the relationship of $AM(A(\cdot)) = AD(\cdot)$ to more traditional invariants of finite groups?

Further gap results

Work in progress indicates that if G is finite and non-abelian and AD(G) > 3/2 then $AD(G) \ge 5/3$. Can we prove the same gap result for general (virtually abelian) groups?