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Can we let the machine discover usetul features?
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Can we interpret this literally, as a "space”?
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We can find meaningful semantic axes in the space
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"Geometry of Culture”

'.} Check for updates

AVA

AMERICAN SOCIOLOGICAL ASSOCIATION

American Sociological Review

The Geometry of Culture: & Amrican Socilogical
Analyzing the Meanings

of Class through Word ®)SAGE
Embeddings

Austin C. Kozlowski,” Matt Taddy,"
and James A. Evans®°©

Abstract

We argue word embedding models are a useful tool for the study of culture using a historical
analysis of shared understandings of social class as an empirical case. Word embeddings
represent semantic relations between words as relationships between vectors in a high-
dimensional space, specifying a relational model of meaning consistent with contemporary
theories of culture. Dimensions induced by word differences (rich — poor) in these spaces
correspond to dimensions of cultural meaning, and the projection of words onto these
dimensions reflects widely shared associations, which we validate with surveys. Analyzing
text from millions of books published over 100 years, we show that the markers of class
continuously shifted amidst the economic transformations of the twentieth century, yet
the basic cultural dimensions of class remained remarkably stable. The notable exception
is education, which became tightly linked to affluence independent of its association with

cultivated taste. A. C. Kozlowski, M. Taddy, and J. Evans, ASR, 2019
https://arxiv.org/abs/1806.05521
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Tshitoyan, Vahe, et al. "Unsupervised word embeddings capture latent knowledge from materials science literature." Nature 571.7763 (2019): 95-98.



Meaningtul axes about facial features
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1'he representation space
itself 1s interesting!



We think and imagine spatially
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We think and imagine spatially

HAPPY IS UP; SAD IS DOWN

I'm feeling up. That boosted my spirits. My spirits rose. You're in high spirits. Think-
ing about her always gives me a lift. I'm feeling down. I'm depressed. He’s really low
these days. I fell into a depression. My spirits sank.
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HAPPY IS UP; SAD IS DOWN

I'm feeling up. That boosted my spirits. My spirits rose. You're in high spirits. Think-

ing about her always gives me a lift. I'm feeling down. I'm depressed. He’s really low

these days. I fell into a depression. My spirits sank.

CONSCIOUS IS UP; UNCONSCIOUS IS DOWN

Get

up. Wake up. I'm up already. He rises early in the morning. He fell asleep. He

dropped off to sleep. He’s under hypnosis. He sank into a coma.

HEALTH AND LIFE ARE UP; SICKNESS AND DEATH ARE DOWN

He'’s at the peak of health. Lazarus rose from the dead. He’s in top shape. As to his

heal
heal

th, he’s way up there. He fell ill. He’s sinking fast. He came down with the flu. His

th is declining. He dropped dead.
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HAPPY IS UP; SAD IS DOWN

I'm feeling up. That boosted my spirits. My spirits rose. You're in high spirits. Think-

ing about her always gives me a lift. I'm feeling down. I'm depressed. He’s really low

these days. I fell into a depression. My spirits sank.

CONSCIOUS IS UP; UNCONSCIOUS IS DOWN

Get

up. Wake up. I'm up already. He rises early in the morning. He fell asleep. He

dropped off to sleep. He’s under hypnosis. He sank into a coma.

HEALTH AND LIFE ARE UP; SICKNESS AND DEATH ARE DOWN

He'’s at the peak of health. Lazarus rose from the dead. He’s in top shape. As to his

heal
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th, he’s way up there. He fell ill. He’s sinking fast. He came down with the flu. His

th is declining. He dropped dead.

GOOD IS UP; BAD ISDOWN

Things are looking up. We hit a peak last year, but it’s been downhill ever since.

Things are at an all-time low. He does high-quality work.



Representation learning

~ matrix

Neural Word Embedding
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Improving Distributional Similarity
with Lessons Learned from Word Embeddings
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Abstract

trends suggest that neural-
k-inspired word embedding models
orm traditional count-based distri-
I models on word similarity and
v detection taske We reveal that

A recent study by Baroni et al. (2014) con-
ducts a set of systematic experiments compar-
ing word2vec embeddings to the more tradi-
tional distributional methods, such as pointwise
mutual information (PMI) matrices (see Turney
and Pantel (2010) and Baroni and Lenci (2010)

far coomnrehencive ecnnirvave)l Thece recnilte ennooact



How should we represent them?
How to encode the "meaning”?

hello world!

!

01101000 01100101 01101100 01101100
01101111 00100000 01110111 01101111
01110010 01101100 01100100 00100001



How should we represent them?
How to encode the "meaning”?
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Harris, Z. (1954). Distributional structure. Word, 10(23): 146-162.
Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis, pp. 1-32. Oxford: Philological Society. Reprinted in F.R. Palmer (ed.)



‘Among all the indwriduals that are hinked together by speech, some sort of average will be set up :
all will reproduce — not exactly of course, but approximately — the same signs united with the
same concepts.”

£

Ferdinand de Saussure

Harris, Z. (1954). Distributional structure. Word, 10(23): 146-162.
Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis, pp. 1-32. Oxford: Philological Society. Reprinted in F.R. Palmer (ed.)
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We can study language by analyzing how 1t 1s used win a corpus.
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erdinand de saussure Distributional hypothests: words that occur in the same contexts

tend to have sumilar meanings.

We can study language by analyzing how 1t 1s used win a corpus.

Zellig S. Harris

“You shall know a word by the
company it keeps.”

John R. Firth

Harris, Z. (1954). Distributional structure. Word, 10(23): 146-162.
Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis, pp. 1-32. Oxford: Philological Society. Reprinted in F.R. Palmer (ed.)
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1 he quack brown Jqumps over the lazy dog.

He 1s cunming as a

1 he was already wn your chicken house.
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What do you mean by “contexts™?



Encoding contexts: term-document matrix
IR

2 6 2 2 0

0 1 16 15 6
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Documents

SVD (LSA)

Document — term ~ Document — Topic — Term
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Non-negative Matrix
Factorization

Document — term ~ Document — Topic — Term



Documents

Terms Topics Terms

Topics

Non-negative Matrix
Factorization

Documents

(Latent Dirichlet Allocation can be thought
as a “softer” Bayesian method to do this.)

Document — term ~ Document — Topic — Term



Terms Topics Terms
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Documents

A word as a

\ low-dimensional vector

A document as a
low-dimensional vector

Document — term ~ Document — Topic — Term



Using documents as “contexts” led to nice
models and representations.

Can we think of nearby words as contexts?



Neural Language Model as a Matrix Factorization
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A word as a
low-dimensional vector
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Neural Language Model as a Matrix Factorization

Words ?? Words
-
B 3B
5 ~ 5
= = /
: A word as a
\ low-dimensional vector
f A word as a
Don’t bother to calculate this low-dimensional vector

L et’s use a neural network!



The idea of “language model”

What is the probab:ility of this sentence?

A good language model should assign high probability for real sentences and low
probability for nonsensical sentences.



The idea of “language model”

What is the probab:ility of this sentence?

A good language model should assign high probability for real sentences and low
probability for nonsensical sentences.

P(W19W2’ ,Wn) — ?



The idea of “language model”

What is the probab:ility of this sentence?

A good language model should assign high probability for real sentences and low
probability for nonsensical sentences.

P(W19W2’ ,Wn) — ?

Pwy,wy, ...ow ) =Pw, |w;,...w_DPWw, _|w,....,w _5)
X P(Wn_2 ‘ Wl’ ...,Wn_3) X °*e° X P(WI)



The idea of “language model”

Pwy,wy, ...ow ) =Pw, |w,...,w,_)PWwW,_|wi,...,w _5)
X P(Wn_z ‘ Wl’ ""Wn—3) X *e° X P(WI)



The idea of “language model”

Pwy,wy, ...ow ) =Pw, |w,...,w,_)PWwW,_|wi,...,w _5)
X P(Wn_2 ‘ Wl’ ...,Wn_3) X *e° X P(WI)

What is the probability of the next word?



The idea of “language model”

Pwy,wy, ...ow ) =Pw, |w,...,w,_)PWwW,_|wi,...,w _5)
X P(Wn_2 ‘ Wl’ ...,Wn_3) X *e° X P(WI)

What is the probability of the next word?

P(Wt‘wl, ""Wt—l) — ?



The idea of “language model”

Pwy,wy, ...ow ) =Pw, |w,...,w,_)PWwW,_|wi,...,w _5)
X P(Wn_2 ‘ Wl’ ...,Wn_3) X *e° X P(WI)

What is the probability of the next word?

P(Wt‘wl, ""Wt—l) — ?



The idea of “language model”
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A slightly different formulation

What is the probability of the target word given the
contexts around 1t?

1 he quack brown Jqumps over the lazy dog.

Context Tlarget Context



Even the most sophisticated methods are
still rooted in this simple core idea.

RERT: 1 he quack brown Jqumps over the lazy dog.

predict the masked word Context Context

GPT: 1 he quick brown fox jumps

predict the next word Context



word2vec: Skip-gram model (single-word context)
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Can we just think about one word at a time (“skipping” the others)?
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word2vec: Skip-gram model (single-word context)

Pw\w,_,,...w_;) =" T

Can we just think about one word at a time (“skipping” the others)?

P(w,w.) =" P(w,| context) ~ [ | P(w,|w,)

ceC
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word2vec: Skip-gram model (single-word context)

T~
I

P(w,| context) ~ HP(wt W)

ceC C={t—w,..,t—1,t+1,..,1+w)

Powy,....w) = | || Pow, 1w,

t ceC

Maximize:




word2vec: using two vectors to evaluate the language model

| L
?Z Z log P(w,|w,) P(w,w.) ="

t ceC

Let’s assume that we have really good (two) vector representations for each word.

Fach word has a ‘query’ and a ‘key’ vector
n'e query Y P ~
(q;, k) that approximates the conditional probability. (welwo) = fik, q.)

exp(k; - q,)
A Simple Choice: | P 1wp) = t

Zi CXP (kl ' q(:)




word2vec

) Italy Madrid

A \
Germany - Rome
man walked = Berlin
O @ Turkey \
Sy o’ Ankara
O L N woman |-
king ® O | S Russia Moscow
T A' walking P ‘ Canada Ottawa
queen ‘ R Japan Tokyo
By O Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital

Representations that produce a good language model also capture “meaning”!



Correspondence between
word2vec model and the gravity
law of mobility



| Gravity law of mobility

“You are less lLikely to go somewhere
Jarther away than somewhere close.”

/\

, T;; = Cmym; f(r;;)

B B m,x m, / K
h=h=06"p Flux a decaying
Population function



https://commons.wikimedia.org/w/index.php?title=User:Dna-webmaster&action=edit&redlink=1







Data: Scientific mobility (2008 - 2019), and several others
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Derive flux between organizations from scientists’ trajectories
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Does this embedding better explains flows than

geographic distance”? Yes!
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Flux explained (correlation)

Embedding explains the flux best

Root mean squared error
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Murray, Dakota, Jisung Yoon, Sadamori Kojaku, Rodrigo Costas, Woo-Sung Jung, Stasa Milojevic,
and Yong-Yeol Ahn. "Unsupervised embedding of trajectories captures the latent structure of mobility."
arXiv preprint arXiv:2012.02785 (2020).



Why?



Let's go back to the word2vec model

(q,. k) Fach Word Has a ‘Query’ and a ‘Key’ Vector — P(w, | w,) ~ f(K, q,)
© V" That Approximates the Conditional Probability.

eXp (kt . q(;)

A Simple Ghoice: Pw,|w) 8 ————
Zi CXP (kl ' qc)
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NS = Z Z Y log P(Y; = L;viu;) + (1-Y) log P (Y; = 03vi,u5) ]
€A jeD



Noise contrastive estimation and negative sampling

“Noise Gontrastive Estimation” [Gutmann & Hyvarinen, 2010], an
unbiased estimator, 1s subtly difterent.

1
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Noise contrastive estimation and negative sampling

“Noise Gontrastive Estimation” [Gutmann & Hyvarinen, 2010], an
unbiased estimator, 1s subtly difterent.
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SGNS word2vec actually optimzes...
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Sadamori Kojaku
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word2vec model ~ gravity law
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Implications in Graph Embedding

Random walk — “Sentences” (DeepWalk, node2vec, etc.)



Random walk is biased

Friendship paradox. When we tollow an edge, the

expected degree 1s proportional to the degree

~ p(k) ~ kp(k)



Random walk is biased

A - O B Trajectory of random walks
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What’s the Implication?



Random Walk Bias — Biased Embedding Space

il . DeepWalk
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But word2vec's bias negates this random walk bias!

p.(Hexpk, - q.)
P ~
R@Call Wi lwe) Zi p.(0exp(k; - q.)

It negative samples are proportionally sampled based on their
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But word2vec's bias negates this random walk bias!

p.(Hexpk, - q.)
P ~
R@Call Wi lwe) Zi p.(0exp(k; - q.)

It negative samples are proportionally sampled based on their
degree, SGNS negates the bias of the random walker!

) CGan we remove other statistical biases as well?



Residual2vec

We can extract out the expected conditional probability based on a null model.

null model “recidual 7

o Po(g | 2)exp(u,; v;) hot agtured ™
Sadamori Kojaku PI‘ZV (] | Z) — ( | ) Z/ ( J) +h‘ nelb MM~

Sadamori Kojaku, Jisung Yoon, Isabel Constantino, Yong-Yeol, “Residual2Vec:
Debiasing graph embedding with random graphs”, NeurlPS'21



Residual2vec

We can extract out the expected conditional probability based on a null model.
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Input graph . .?'. % > (Random walks)
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Sentence generator
(Random walks or other analytical solutions)

==

Sadamori Kojaku, Jisung Yoon, Isabel Constantino, Yong-Yeol, “Residual2Vec: Debiasing graph
embedding with random graphs”, NeurlPS'21



It also allows us to remove specific structural biases

Journals
A B C

2019 Cﬁ
2018 ﬁ}

2017 Q

Years

QO

\

O Journal- Year pair / Citations
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It also allows us to remove specific structural biases

Glove node2vec o r2v-dcSBM Year of journals
| e 1920
| e 1940
e 1960
e 1980
o 2000
Glove node2vec r2v-dcSBM Subject category
TR @ Engineering @ Plant Sciences
O Chemistry O Clinical Neurology
@ Computer Science @ Physics
O Mathematics @© Pharmacology & Pharmacy
@ Materials Science @ (Cardiac & Cardiovascular
O Biochemistry & Systems
Molecular Biology ~ (O) Public
@ Madiohne @ Veterinary Sciences
© Oncology (O Neurosciences
. © Geosciences @ Muttidisciplinary Sciences
O Endocrinology & Metabolism
@ Nursing

Sadamori Kojaku, Jisung Yoon, Isabel Constantino, Yong-Yeol, “Residual2Vec: Debiasing graph
embedding with random graphs”, NeurlPS'21
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Summary

e [t 1s possible to identity meaningtul dimensions and axes in the representation
space obtained from neural networks. We can use them to orent entities in the
space.

e Word2vec (SGNN) 1s buased! But, thanks to this bias, the word2vec’s objective

function corresponds to the gravity law of mobility.
* ['his bias also negates the random walk bias in graph embedding!
* We can turther leverage this to remove specific biases from a model.
* Simple models, when understood well, can take us quite far.

* What could be the ways to obtain useful, compact representation of
dynamic, functional brain networks?



How about dense representation
of dynamic neural networks?
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Representation learning as Matrix Factorization
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Representation learning as Matrix Factorization

Words ?? Words
-
B 3B
5 ~ 5
= = /
: A word as a
\ low-dimensional vector
f A word as a
Don’t bother to calculate this low-dimensional vector

L et’s use a neural network!



Higher-Rank lensor?

Rank O Rank 1 Rank 2 Rank 3 Rank 4
Tensor Tensor Tensor Tensor Tensor
scalar vector matrix
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What could be the usetul, compact
representations of the brain’s
dynamics?

(Can we 1magine 1t as a meaningtul
space’
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