Representation Learning For Computational Imagination

Yong-Yeol (YY) Ahn

Indiana University
yyahn@iu.edu @yy

Word2vec

Machine Learning

Data \rightarrow "feature vectors" \rightarrow Task

Deep Learning

Can we let the machine discover useful features?

Representations live in a vector space.

Can we interpret this literally, as a "space"?

We can find meaningful semantic axes in the space

"Geometry of Culture"

ASA

The Geometry of Culture: Analyzing the Meanings of Class through Word Embeddings
 American Sociological Review 2019, Vol. 84(5) 905-949 © American Sociological Association 2019 DOI: 10.1177/0003122419877135 journals.sagepub.com/home/asr ©SAGE

Austin C. Kozlowski, ${ }^{\text {a }}$ (D) Matt Taddy, ${ }^{\text {b }}$ and James A. Evans ${ }^{\text {a,c (}}$ (D)

Abstrac

We argue word embedding models are a useful tool for the study of culture using a historical analysis of shared understandings of social class as an empirical case. Word embeddings represent semantic relations between words as relationships between vectors in a highdimensional space, spify a relational model of meaning consistent with contemporary dimensional space, specifying a relational model of meaning consistent with contemporary heories of culture. Dimensions induced by word differences (rich - poor) in these spaces correspond to dimensions of cultural meaning, and the projection of words onto these dimensions reflects widely shared associations, which we validate with surveys. Analyzing text from millions of books published over 100 years, we show that the markers of class
continuously shifted amidst the economic transformations of the twentieth century, yet continuously shifted amidst the economic transformations of the twentieth century, yet
the basic cultural dimensions of class remained remarkably stable. The notable exception is education, which became tightly linked to affluence independent of its association with cultivated taste.

A. C. Kozlowski, M. Taddy, and J. Evans, ASR, 2019 https://arxiv.org/abs/1806.05521

Meaningful axes about material properties

Meaningful axes about facial features

Meaningful axes about facial features

The representation space itself is interesting!

We think and imagine spatially

We think and imagine spatially

HAPPY IS UP; SAD IS DOWN

I'm feeling up. That boosted my spirits. My spirits rose. You're in high spirits. Thinking about her always gives me a lift. I'm feeling down. I'm depressed. He's really low these days. I fell into a depression. My spirits sank.

We think and imagine spatially

HAPPY IS UP; SAD IS DOWN

I'm feeling up. That boosted my spirits. My spirits rose. You're in high spirits. Thinking about her always gives me a lift. I'm feeling down. I'm depressed. He's really low these days. I fell into a depression. My spirits sank.

CONSCIOUS IS UP; UNCONSCIOUS IS DOWN
Get up. Wake up. I'm up already. He rises early in the morning. He fell asleep. He dropped off to sleep. He's under hypnosis. He sank into a coma.

We think and imagine spatially

GEORGE LAKOFF AND MARK JOHNSON with a new afterworo

HAPPY IS UP; SAD IS DOWN

I'm feeling u p. That boosted my spirits. My spirits rose. You're in high spirits. Thinking about her always gives me a lift. I'm feeling down. I'm depressed. He's really low these days. I fell into a depression. My spirits sank.

CONSCIOUS IS UP; UNCONSCIOUS IS DOWN
Get $u p$. Wake up. I'm up already. He rises early in the morning. He fell asleep. He dropped off to sleep. He's under hypnosis. He sank into a coma.

HEALTH AND LIFE ARE UP; SICKNESS AND DEATH ARE DOWN
He's at the peak of health. Lazarus rose from the dead. He's in top shape. As to his health, he's way up there. He fell ill. He's sinking fast. He came down with the flu. His health is declining. He dropped dead.

We think and imagine spatially

HAPPY IS UP; SAD IS DOWN

I'm feeling up. That boosted my spirits. My spirits rose. You're in high spirits. Thinking about her always gives me a lift. I'm feeling down. I'm depressed. He's really low these days. I fell into a depression. My spirits sank.

CONSCIOUS IS UP; UNCONSCIOUS IS DOWN
Get $u p$. Wake up. I'm up already. He rises early in the morning. He fell asleep. He dropped off to sleep. He's under hypnosis. He sank into a coma.

HEALTH AND LIFE ARE UP; SICKNESS AND DEATH ARE DOWN

He's at the peak of health. Lazarus rose from the dead. He's in top shape. As to his health, he's way up there. He fell ill. He's sinking fast. He came down with the flu. His health is declining. He dropped dead.

GOOD IS UP; BAD IS DOWN

Things are looking up. We hit a peak last year, but it's been downhill ever since. Things are at an all-time low. He does high-quality work.

Representation learning
 \sim matrix factorization

[^0]Yoav Goldberg
Department of Computer Science
Bar-Ilan University
yoav. goldberg@gmail.com

Abstract

trends suggest that neural -inspired word embedding models orm traditional count-based distri1 models on word similarity and detection tasks. We reveal that

A recent study by Baroni et al. (2014) conducts a set of systematic experiments comparing word2vec embeddings to the more traditional distributional methods, such as pointwise mutual information (PMI) matrices (see Turney and Pantel (2010) and Baroni and Lenci (2010)

How should we represent them? How to encode the "meaning"?

hello world!

01101000011001010110110001101100
01101111001000000111011101101111
01110010011011000110010000100001

How should we represent them? How to encode the "meaning"?

"Among all the individuals that are linked together by speech, some sort of average will be set up: all will reproduce - not exactly of course, but approximately - the same signs united with the same concepts."
"Among all the individuals that are linked together by speech, some sort of average will be set up: all will reproduce - not exactly of course, but approximately - the same signs united with the same concepts."

Distributional hypothesis: words that occur in the same contexts tend to have similar meanings.

We can study language by analyzing how it is used in a corpus.
"Among all the individuals that are linked together by speech, some sort of average will be set up: all will reproduce - not exactly of course, but approximately - the same signs united with the same concepts."

Distributional hypothesis: words that occur in the same contexts tend to have similar meanings.

We can study language by analyzing how it is used in a corpus.

"You shall know a word by the company it keeps."

Contexts ~ Meaning

The quick brown __ jumps over the lazy dog. He is cunning as $a \ldots$.

The___ was already in your chicken house.

Contexts ~ Meaning

The quick brown __ jumps over the lazy dog. He is cunning as a \qquad
The ___ was already in your chicken house.

What do you mean by "contexts"?

Encoding contexts: term-document matrix

	cat	dog	fox	wolf	coyote	\ldots
D1	15	10	0	0	8	\ldots
D2	2	6	2	2	0	\ldots
D3	0	1	16	15	6	\ldots
\ldots						

$$
\text { Document } \rightarrow \text { term } \sim \text { Document } \rightarrow \text { Topic } \rightarrow \text { Term }
$$

Terms

Topics

Terms

Non-negative Matrix Factorization

$$
\text { Document } \rightarrow \text { term } \sim \text { Document } \rightarrow \text { Topic } \rightarrow \text { Term }
$$

Terms

Topics

Terms

Non-negative Matrix Factorization

(Latent Dirichlet Allocation can be thought as a "softer" Bayesian method to do this.)

$$
\text { Document } \rightarrow \text { term } \sim \text { Document } \rightarrow \text { Topic } \rightarrow \text { Term }
$$

Terms

Topics

Terms

A word as a low-dimensional vector

Document \rightarrow term \sim Document \rightarrow Topic \rightarrow Term

Using documents as "contexts" led to nice models and representations.

Can we think of nearby words as contexts?

Neural Language Model as a Matrix Factorization

Words

??

Words

A word as a low-dimensional vector

A word as a
low-dimensional vector

Neural Language Model as a Matrix Factorization

The idea of "language model"

What is the probability of this sentence?

A good language model should assign high probability for real sentences and low probability for nonsensical sentences.

The idea of "language model"

What is the probability of this sentence?

A good language model should assign high probability for real sentences and low probability for nonsensical sentences.

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=?
$$

The idea of "language model"

What is the probability of this sentence?

A good language model should assign high probability for real sentences and low probability for nonsensical sentences.

$$
\begin{gathered}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=? \\
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) P\left(w_{n-1} \mid w_{1}, \ldots, w_{n-2}\right) \\
\times P\left(w_{n-2} \mid w_{1}, \ldots, w_{n-3}\right) \times \cdots \times P\left(w_{1}\right)
\end{gathered}
$$

The idea of "language model"

$$
\begin{array}{r}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) P\left(w_{n-1} \mid w_{1}, \ldots, w_{n-2}\right) \\
\times P\left(w_{n-2} \mid w_{1}, \ldots, w_{n-3}\right) \times \cdots \times P\left(w_{1}\right)
\end{array}
$$

The idea of "language model"

$$
\begin{array}{r}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) P\left(w_{n-1} \mid w_{1}, \ldots, w_{n-2}\right) \\
\times P\left(w_{n-2} \mid w_{1}, \ldots, w_{n-3}\right) \times \cdots \times P\left(w_{1}\right)
\end{array}
$$

What is the probability of the next word?

The idea of "language model"

$$
\begin{array}{r}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) P\left(w_{n-1} \mid w_{1}, \ldots, w_{n-2}\right) \\
\times P\left(w_{n-2} \mid w_{1}, \ldots, w_{n-3}\right) \times \cdots \times P\left(w_{1}\right)
\end{array}
$$

What is the probability of the next word?

$$
P\left(w_{t} \mid w_{1}, \ldots, w_{t-1}\right)=?
$$

The idea of "language model"

$$
\begin{array}{r}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) P\left(w_{n-1} \mid w_{1}, \ldots, w_{n-2}\right) \\
\times P\left(w_{n-2} \mid w_{1}, \ldots, w_{n-3}\right) \times \cdots \times P\left(w_{1}\right)
\end{array}
$$

What is the probability of the next word?

$$
P\left(w_{t} \mid w_{1}, \ldots, w_{t-1}\right)=?
$$

Target

The idea of "language model"

$$
\begin{array}{r}
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right) P\left(w_{n-1} \mid w_{1}, \ldots, w_{n-2}\right) \\
\times P\left(w_{n-2} \mid w_{1}, \ldots, w_{n-3}\right) \times \cdots \times P\left(w_{1}\right)
\end{array}
$$

What is the probability of the next word?

$$
P\left(w_{t} \mid w_{1}, \ldots, w_{t-1}\right)=?
$$

Target Context

A slightly different formulation

A slightly different formulation

What is the probability of the target zoord given the contexts around it?

A slightly different formulation

What is the probability of the target word given the contexts around it?

The quick brown ___ jumps over the lazy dog.

A slightly different formulation

What is the probability of the target word given the contexts around it?

The quick brown __ jumps over the lazy dog.

A slightly different formulation

What is the probability of the target word given the contexts around it?

The quick brown __ jumps over the lazy dog.

A slightly different formulation

What is the probability of the target word given the contexts around it?
The quick brown __ jumps over the lazy dog.

A slightly different formulation

What is the probability of the target word given the contexts around it?

A slightly different formulation

What is the probability of the target word given the contexts around it?

Even the most sophisticated methods are still rooted in this simple core idea.

BERT:
predict the masked word

GPT:

predict the next word

The quick brown fox jumps
word2vec: Skip-gram model (single-word context)

$$
P\left(w_{t} \mid w_{t-n}, \ldots, w_{t-1}\right)=?
$$

Can we just think about one word at a time ("skipping" the others)?
word2vec: Skip-gram model (single-word context)

$$
P\left(w_{t} \mid w_{t-n}, \ldots, w_{t-1}\right)=?
$$

Can we just think about one word at a time ("skipping" the others)?

word2vec: Skip-gram model (single-word context)

$$
P\left(w_{t} \mid w_{t-n}, \ldots, w_{t-1}\right)=?
$$

Can we just think about one word at a time ("skipping" the others)?

$$
P\left(w_{t} \mid w_{c}\right)=?
$$

A single context word from the

n-gram window

word2vec: Skip-gram model (single-word context)

$$
P\left(w_{t} \mid w_{t-n}, \ldots, w_{t-1}\right)=?
$$

Can we just think about one word at a time ("skipping" the others)?

$$
P\left(w_{t} \mid w_{c}\right)=?
$$

$$
P\left(w_{t} \mid \text { context }\right) \approx \prod_{c \in C} P\left(w_{t} \mid w_{c}\right)
$$

A single context word from the

n -gram window
word2vec: Skip-gram model (single-word context)

$$
P\left(w_{t} \mid w_{t-n}, \ldots, w_{t-1}\right)=?
$$

Can we just think about one word at a time ("skipping" the others)?

$$
P\left(w_{t} \mid w_{c}\right)=?
$$

$$
P\left(w_{t} \mid \text { context }\right) \approx \prod_{c \in C} P\left(w_{t} \mid w_{c}\right)
$$

A single context word from the

$$
C=\{t-w, \ldots, t-1, t+1, \ldots, t+w\}
$$

word2vec: Skip-gram model (single-word context)

$$
\begin{gathered}
P\left(w_{t} \mid \text { context }\right) \approx \prod_{c \in C} P\left(w_{t} \mid w_{c}\right) \\
P\left(w_{1}, \ldots, w_{n}\right) \approx \prod_{t} \prod_{c \in C} P\left(w_{t} \mid w_{c}\right) \\
\text { Maximize: } \frac{1}{T} \sum_{t}^{T} \sum_{c \in C} \log P\left(w_{t} \mid w_{c}\right)
\end{gathered}
$$

word2vec: using two vectors to evaluate the language model

$$
\frac{1}{T} \sum_{t}^{T} \sum_{c \in C} \log P\left(w_{t} \mid w_{c}\right) \quad P\left(w_{t} \mid w_{c}\right)=?
$$

Let's assume that we have really good (two) vector representations for each word.
$\left(\mathbf{q}_{i}, \mathbf{k}_{i}\right)$ Each word has a 'query' and a 'key' vector $P\left(w_{t} \mid w_{c}\right) \approx f\left(\mathbf{k}_{t}, \mathbf{q}_{c}\right)$ that approximates the conditional probability.

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

word2vec

Representations that produce a good language model also capture "meaning"!

Correspondence between word2vec model and the gravity law of mobility

Gravity law of mobility

"You are less likely to go somewhere farther away than somewhere close."

$$
F_{1}=F_{2}=G \frac{m_{1} \times m_{2}}{r^{2}}
$$

Data: Scientific mobility (2008-2019), and several others

 \title{
1 Clarivate
 \title{
1 Clarivate Analytics
} Analytics
}

Derive flux between organizations from scientists' trajectories

Does this embedding better explains flows than geographic distance? Yes!

U.S. Flight Itineraries

Reservation

Embedding explains the flux best

Murray, Dakota, Jisung Yoon, Sadamori Kojaku, Rodrigo Costas, Woo-Sung Jung, Staša Milojević, and Yong-Yeol Ahn. "Unsupervised embedding of trajectories captures the latent structure of mobility." arXiv preprint arXiv:2012.02785 (2020)

Why?

Let's go back to the word2vec model

$\left(\mathbf{q}_{i}, \mathbf{k}_{i}\right)$ Each Word Has a 'Query' and a 'Key' Vector $P\left(w_{t} \mid w_{c}\right) \approx f\left(\mathbf{k}_{t}, \mathbf{q}_{c}\right)$
That Approximates the Conditional Probability.

A Simple Choice: $\quad P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}$

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)} \longleftarrow \text { nasty! }
$$

Negative sampling! Let's formulate a classification task.

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)} \longleftarrow \text { nasty! }
$$

Negative sampling! Let's formulate a classification task.

$$
P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\frac{1}{1+\exp \left(-\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)},
$$

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)} \leftarrow \quad \text { nasty! }
$$

Negative sampling! Let's formulate a classification task.

$$
\begin{gathered}
P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\frac{1}{1+\exp \left(-\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)}, \\
\mathcal{J}^{\mathrm{NS}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)+\left(1-Y_{j}\right) \log P^{\mathrm{NS}}\left(Y_{j}=0 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)\right],
\end{gathered}
$$

Noise contrastive estimation and negative sampling

"Noise Contrastive Estimation" [Gutmann \& Hyvärinen, 2010], an unbiased estimator, is subtly different.

$$
P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\frac{1}{1+\exp \left(-\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)},
$$

$\mathcal{J}^{\mathrm{NS}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)+\left(1-Y_{j}\right) \log P^{\mathrm{NS}}\left(Y_{j}=0 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)\right]$,

Noise contrastive estimation and negative sampling

"Noise Contrastive Estimation" [Gutmann \& Hyvärinen, 2010], an unbiased estimator, is subtly different.

$$
P^{\mathrm{NCE}}\left(Y_{j}=1 \mid j\right)=\frac{1}{1+\exp \left[-\ln f\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)+\ln p_{0}(j)+c\right]},
$$

$P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\frac{1}{1+\exp \left(-\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)}$,
$\mathcal{J}^{\mathrm{NS}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)+\left(1-Y_{j}\right) \log P^{\mathrm{NS}}\left(Y_{j}=0 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)\right]$,

Noise contrastive estimation and negative sampling

"Noise Contrastive Estimation" [Gutmann \& Hyvärinen, 2010], an unbiased estimator, is subtly different.

$$
\begin{aligned}
& P^{\mathrm{NCE}}\left(Y_{j}=1 \mid j\right)=\frac{1}{1+\exp \left[-\ln f\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)+\ln p_{0}(j)+c\right]}, \\
& \mathcal{J}^{\mathrm{NCE}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\left.P^{\mathrm{NCE}}\left(Y_{j}=1 \mid j\right)+\left(1-Y_{j}\right) \log P^{\mathrm{NCE}}\left(Y_{j}=0 \mid j\right)\right] .}\right.
\end{aligned}
$$

$$
P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\frac{1}{1+\exp \left(-\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)},
$$

$\mathcal{J}^{\mathrm{NS}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\mathrm{Ns}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)+\left(1-Y_{j}\right) \log P^{\mathrm{Ns}}\left(Y_{j}=0 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)\right]$,

Noise contrastive estimation and negative sampling

"Noise Contrastive Estimation" [Gutmann \& Hyvärinen, 2010], an unbiased estimator, is subtly different.

$$
\begin{gathered}
P^{\mathrm{NCE}}\left(Y_{j}=1 \mid j\right)=\frac{1}{1+\exp \left[-\ln f\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)+\ln p_{0}(j)+c\right)}, \\
\mathcal{J}^{\mathrm{NCE}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\mathrm{NCE}}\left(Y_{j}=1 \mid j\right)+\left(1-Y_{j}\right) \log P^{\mathrm{NCE}}\left(Y_{j}=0 \mid j\right)\right] .
\end{gathered}
$$

$$
P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)=\frac{1}{1+\exp \left(-\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)},
$$

$\mathcal{J}^{\mathrm{NS}}=\sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{D}}\left[Y_{j} \log P^{\mathrm{NS}}\left(Y_{j}=1 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)+\left(1-Y_{j}\right) \log P^{\mathrm{NS}}\left(Y_{j}=0 ; \boldsymbol{v}_{i}, \boldsymbol{u}_{j}\right)\right]$,

SGNS word2vec actually optimzes...

$$
P^{N S}(j \mid i)=P_{m}^{N S}\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)=\frac{P^{\gamma}(j) \exp \left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)}{Z_{i}^{\prime}}
$$

Sadamori Kojaku

SGNS word2vec actually optimzes...

$$
\begin{aligned}
& P\left(w_{t} \mid w_{c}\right) \approx \frac{\exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)} \\
& P^{N S}(j \mid i)=P_{m}^{N S}\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)=\frac{P^{\gamma}(j) \exp \left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)}{Z_{i}^{\prime}}
\end{aligned}
$$

SGNS word2vec actually optimzes...

$$
P^{N S}(j \mid i)=P_{m}^{N S}\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)=\frac{P^{\gamma}(j) \exp \left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)}{Z_{i}^{\prime}}
$$

Sadamori Kojaku

SGNS word2vec actually optimzes...

$$
P^{N S}(j \mid i)=P_{m}^{N S}\left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)=\frac{P^{\gamma}(j) \exp \left(\boldsymbol{u}_{j} \cdot \boldsymbol{v}_{i}\right)}{Z_{i}^{\prime}}
$$

What happens if we apply word2vec to mobility trajectories?

What happens if we apply word2vec to mobility trajectories?

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

What happens if we apply word2vec to mobility trajectories?

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

$$
\hat{T}_{i j} \propto P(j \mid i) P(i) \propto \frac{P(i) P(j) \exp \left(\mathbf{k}_{j} \cdot \mathbf{q}_{i}\right)}{\sum_{j^{\prime}} P\left(j^{\prime}\right) \exp \left(\mathbf{k}_{j^{\prime}} \cdot \mathbf{q}_{i}\right)}
$$

What happens if we apply word2vec to mobility trajectories?

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

$$
\hat{T}_{i j} \propto P(j \mid i) P(i) \propto \frac{P(i) P(j) \exp \left(\mathbf{k}_{j} \cdot \mathbf{q}_{i}\right)}{\sum_{j^{\prime}} P\left(j^{\prime}\right) \exp \left(\mathbf{k}_{j^{\prime}} \cdot \mathbf{q}_{i}\right)}
$$

What happens if we apply word2vec to mobility trajectories?

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

$$
\hat{T}_{i j} \propto P(j \mid i) P(i) \propto \frac{P(i) P(j) \exp \left(\mathbf{k}_{j} \cdot \mathbf{q}_{i}\right)}{\sum_{j^{\prime}} P\left(j^{\prime}\right) \exp \left(\mathbf{k}_{j^{\prime}} \cdot \mathbf{q}_{i}\right)}
$$

What happens if we apply word2vec to mobility trajectories?

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

What happens if we apply word2vec to mobility trajectories?

$$
P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

$$
\hat{T}_{i j}=\hat{T}_{j i} \propto P(i) P(j) \exp \left(\mathbf{k}_{i} \cdot \mathbf{k}_{j}\right)
$$

word2vec model ~ gravity law

The space where the institutions are arranged so that the flux and distance between them satisfies the gravity law of mobility!

Implications in Graph Embedding

Random walk \rightarrow "Sentences" (DeepWalk, node2vec, etc.)

Random walk is biased

Friendship paradox. When we follow an edge, the expected degree is proportional to the degree

$$
\sim p(k)
$$

$$
\sim k p(k)
$$

Random walk is biased

Fraction of core nodes in the graph

Time spent in core node

What's the Implication?

Random Walk Bias \rightarrow Biased Embedding Space

DeepWalk

But word2vec's bias negates this random walk bias!

$$
\text { Recall } P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

If negative samples are proportionally sampled based on their degree, SGNS negates the bias of the random walker!

But word2vec's bias negates this random walk bias!

$$
\text { Recall } P\left(w_{t} \mid w_{c}\right) \approx \frac{p_{n}(t) \exp \left(\mathbf{k}_{t} \cdot \mathbf{q}_{c}\right)}{\sum_{i} p_{n}(i) \exp \left(\mathbf{k}_{i} \cdot \mathbf{q}_{c}\right)}
$$

If negative samples are proportionally sampled based on their degree, SGNS negates the bias of the random walker!
(3) Can we remove other statistical biases as well?

Residual2vec

We can extract out the expected conditional probability based on a null model.

Residual2vec

We can extract out the expected conditional probability based on a null model.

Sadamori Kojaku, Jisung Yoon, Isabel Constantino, Yong-Yeol, "Residual2Vec: Debiasing graph embedding with random graphs", NeurIPS'21

It also allows us to remove specific structural biases

It also allows us to remove specific structural biases

Sadamori Kojaku, Jisung Yoon, Isabel Constantino, Yong-Yeol, "Residual2Vec: Debiasing graph embedding with random graphs", NeurIPS'21

Summary

Summary

- It is possible to identify meaningful dimensions and axes in the representation space obtained from neural networks. We can use them to orient entities in the space.

Summary

- It is possible to identify meaningful dimensions and axes in the representation space obtained from neural networks. We can use them to orient entities in the space.
- Word2vec (SGNS) is biased! But, thanks to this bias, the word2vec's objective function corresponds to the gravity law of mobility.

Summary

- It is possible to identify meaningful dimensions and axes in the representation space obtained from neural networks. We can use them to orient entities in the space.
- Word2vec (SGNS) is biased! But, thanks to this bias, the word2vec's objective function corresponds to the gravity law of mobility.
- This bias also negates the random walk bias in graph embedding!

Summary

- It is possible to identify meaningful dimensions and axes in the representation space obtained from neural networks. We can use them to orient entities in the space.
- Word2vec (SGNS) is biased! But, thanks to this bias, the word2vec's objective function corresponds to the gravity law of mobility.
- This bias also negates the random walk bias in graph embedding!
- We can further leverage this to remove specific biases from a model.

Summary

- It is possible to identify meaningful dimensions and axes in the representation space obtained from neural networks. We can use them to orient entities in the space.
- Word2vec (SGNS) is biased! But, thanks to this bias, the word2vec's objective function corresponds to the gravity law of mobility.
- This bias also negates the random walk bias in graph embedding!
- We can further leverage this to remove specific biases from a model.
- Simple models, when understood well, can take us quite far.

Summary

- It is possible to identify meaningful dimensions and axes in the representation space obtained from neural networks. We can use them to orient entities in the space.
- Word2vec (SGNS) is biased! But, thanks to this bias, the word2vec's objective function corresponds to the gravity law of mobility.
- This bias also negates the random walk bias in graph embedding!
- We can further leverage this to remove specific biases from a model.
- Simple models, when understood well, can take us quite far.
- What could be the ways to obtain useful, compact representation of dynamic, functional brain networks?

How about dense representation of dynamic neural networks?

https://twitter.com/spornslab/status/1319390214767378432

Olaf Sporns
@spornslab
A short thread on this new pub: pnas.org/content/early/...

Movie below shows functional connectivity unwrapped into 'edge time series' (data: single rs-fMRI scan, 200 nodes, 1100 frames, $\mathrm{TR}=720 \mathrm{~ms}$)

Note: the mean of all frames is exactly equal to 'classic' FC

3:28 PM • Oct 22, 2020 • Twitter Web App
https://twitter.com/spornslab/status/1319390214767378432

Olaf Sporns
@spornslab
A short thread on this new pub: pnas.org/content/early/...

Movie below shows functional connectivity unwrapped into 'edge time series' (data: single rs-fMRI scan, 200 nodes, 1100 frames, $\mathrm{TR}=720 \mathrm{~ms}$)

Note: the mean of all frames is exactly equal to 'classic' FC

3:28 PM • Oct 22, 2020 • Twitter Web App

Can we identify universal \& individual

cofluctuation patterns?

Representation learning as Matrix Factorization

Representation learning as Matrix Factorization

Higher-Rank Tensor?

Rank 0
Tensor
scalar

Rank 1
Tensor
vector

Rank 2
Tensor
matrix

Rank 3
Tensor

Rank 4 Tensor

Tensor Decomposition

Edge co-fluctuation components from tensor decomposition

What could be the useful, compact representations of the brain's dynamics?

Can we imagine it as a meaningful space?

Thanks!

Jisun An

Jaehyuk Park

Haewoon Kwak

Fabio Rojas

Sadamori Kojaku

Hao Peng

Isabel Constantino

Jisung Yoon

Qing Ke

Ceren Budak

Supun Nakandala

Dakota Murray

Giovanni Luca Ciampaglia

Daniel Romero

Norman Makoto Su

Other Science Genome \& CADRE team: Alessandro Flammini, Filippo Menczer, Sriraam Natarajan, Attila Varga, Xiaoran Yan, Filipi Silva, Clara Boothby, Valentin Pentchev, Matthew Hutchinson, Chathuri Peli Kankanamalage

[^0]: Omer Levy
 Omer Levy
 Department of Computer Science
 Bar-Ilan University
 omerlevy@gmail.com

