Cutting trees revisited

Alois Panholzer

Institut für Diskrete Mathematik und Geometrie
TU Wien, Austria
Alois.Panholzer@tuwien.ac.at

Workshop "Analytic and Probabilistic Combinatorics", BIRS, Banff, Canada, 17.11.2022

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(1) Discard subtree not containing root of T
© Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
© Cut edge e
(9) Discard subtree not containing root of T
(6) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(9) Discard subtree not containing root of T
(3) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(3) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(6) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(6) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(6) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Cutting down procedure

- Meir \& Moon [1970, 1974]:

Cutting down procedure for rooted trees
(1) Take a rooted tree T
(2) Choose edge e of T at random
(3) Cut edge e
(4) Discard subtree not containing root of T
(5) Iterate steps (2) - (4) until root is isolated

Number of cuts to isolate root

Meir \& Moon (1970, 1974): X_{n}, number of cuts of size- n tree for two random tree models:

- random Cayley-trees ($=$ rooted labelled trees)
- random recursive trees ($=$ increasingly labelled trees)

Start the cutting down procedure with random size- n tree
 \rightarrow tree models behave quite different

Expectation/variance for Cayley-trees:

Expectation/variance for recursive trees:

Number of cuts to isolate root

Meir \& Moon (1970, 1974): X_{n}, number of cuts of size- n tree for two random tree models:

- random Cayley-trees (= rooted labelled trees)
- random recursive trees ($=$ increasingly labelled trees)

Start the cutting down procedure with random size- n tree
\rightarrow tree models behave quite different
Expectation/variance for Cayley-trees:

Expectation/variance for recursive trees:

Number of cuts to isolate root

Meir \& Moon (1970, 1974): X_{n}, number of cuts of size- n tree for two random tree models:

- random Cayley-trees (= rooted labelled trees)
- random recursive trees ($=$ increasingly labelled trees)

Start the cutting down procedure with random size- n tree
\rightarrow tree models behave quite different
Expectation/variance for Cayley-trees:

Expectation/variance for recursive trees:

Number of cuts to isolate root

Meir \& Moon (1970, 1974): X_{n}, number of cuts of size- n tree for two random tree models:

- random Cayley-trees (= rooted labelled trees)
- random recursive trees ($=$ increasingly labelled trees)

Start the cutting down procedure with random size- n tree
\rightarrow tree models behave quite different
Expectation/variance for Cayley-trees:

Expectation/variance for recursive trees:

Number of cuts to isolate root

Meir \& Moon (1970, 1974): X_{n}, number of cuts of size- n tree for two random tree models:

- random Cayley-trees (= rooted labelled trees)
- random recursive trees (= increasingly labelled trees)

Start the cutting down procedure with random size- n tree
\rightarrow tree models behave quite different
Expectation/variance for Cayley-trees:

$$
\mathbb{E}\left(X_{n}\right) \sim \sqrt{\frac{\pi n}{2}}, \quad \mathbb{V}\left(X_{n}\right) \sim\left(1-\frac{\pi}{2}\right) \cdot n
$$

Expectation/variance for recursive trees:

Number of cuts to isolate root

Meir \& Moon (1970, 1974): X_{n}, number of cuts of size- n tree for two random tree models:

- random Cayley-trees (= rooted labelled trees)
- random recursive trees (= increasingly labelled trees)

Start the cutting down procedure with random size- n tree
\rightarrow tree models behave quite different
Expectation/variance for Cayley-trees:

$$
\mathbb{E}\left(X_{n}\right) \sim \sqrt{\frac{\pi n}{2}}, \quad \mathbb{V}\left(X_{n}\right) \sim\left(1-\frac{\pi}{2}\right) \cdot n
$$

Expectation/variance for recursive trees:

$$
\mathbb{E}\left(X_{n}\right) \sim \frac{n}{\log n}, \quad \mathbb{E}\left(X_{n}^{2}\right) \sim \frac{n^{2}}{\log ^{2} n} \quad \Rightarrow \quad \mathbb{V}\left(X_{n}\right)=o\left(\frac{n^{2}}{\log ^{2} n}\right)
$$

Recursive approach

Used recursive description:

$$
X_{n} \stackrel{(d)}{=} 1+X_{S_{n}}, \quad S_{n}: \text { size of subtree containing root }
$$

Size of remaining subtree:
Cayley-trees: $\mathbb{P}\left\{S_{n}=m\right\}=\binom{n}{m} \frac{m^{m}(n-m)^{n-m-1}}{(n-1) n^{n-1}}$
Recursive trees: $\mathbb{P}\left\{S_{n}=m\right\}=\frac{n}{(n-1)(n-m)(n-m+1)}$
G. f. treatment of recurrences for first moments yields results

Limitation of approach: only applicable (in direct way) if
randomness is preserved for remaining tree
\rightarrow property only holds for few (important) random tree families

Recursive approach

Used recursive description:

$$
X_{n} \stackrel{(d)}{=} 1+X_{S_{n}}, \quad S_{n}: \text { size of subtree containing root }
$$

Size of remaining subtree:
Cayley-trees: $\mathbb{P}\left\{S_{n}=m\right\}=\binom{n}{m} \frac{m^{m}(n-m)^{n-m-1}}{(n-1) n^{n-1}}$
Recursive trees: $\mathbb{P}\left\{S_{n}=m\right\}=\frac{n}{(n-1)(n-m)(n-m+1)}$
G. f. treatment of recurrences for first moments yields results

Limitation of approach: only applicable (in direct way) if
randomness is preserved for remaining tree
\rightarrow property only holds for few (important) random tree families

Recursive approach

Used recursive description:

$$
X_{n} \stackrel{(d)}{=} 1+X_{S_{n}}, \quad S_{n}: \text { size of subtree containing root }
$$

Size of remaining subtree:
Cayley-trees: $\mathbb{P}\left\{S_{n}=m\right\}=\binom{n}{m} \frac{m^{m}(n-m)^{n-m-1}}{(n-1) n^{n-1}}$
Recursive trees: $\mathbb{P}\left\{S_{n}=m\right\}=\frac{n}{(n-1)(n-m)(n-m+1)}$
G. f. treatment of recurrences for first moments yields results

Limitation of approach: only applicable (in direct way) if
randomness is preserved for remaining tree
\rightarrow property only holds for few (important) random tree families

Recursive approach

Used recursive description:

$$
X_{n} \stackrel{(d)}{=} 1+X_{S_{n}}, \quad S_{n}: \text { size of subtree containing root }
$$

Size of remaining subtree:

$$
\text { Cayley-trees: } \mathbb{P}\left\{S_{n}=m\right\}=\binom{n}{m} \frac{m^{m}(n-m)^{n-m-1}}{(n-1) n^{n-1}}
$$

Recursive trees: $\mathbb{P}\left\{S_{n}=m\right\}=\frac{n}{(n-1)(n-m)(n-m+1)}$
G. f. treatment of recurrences for first moments yields results

Limitation of approach: only applicable (in direct way) if randomness is preserved for remaining tree
\rightarrow property only holds for few (important) random tree families

Further studies via recursive approach

- Pan (2003, 2004, 2006):
- characterization of simply gen. tree families (= cond. GW-trees) satisfying randomness preservation property
- Cayley-trees
- d-ary trees
- generalized ordered trees
- Rayleigh limiting distribution of X_{n}
for such "very simple tree families"

- Cutting down non-crossing trees \rightarrow Rayleigh-limit law
- Cutting down recursive trees
\rightarrow Moments do not characterize limit law

Further studies via recursive approach

- Pan (2003, 2004, 2006):
- characterization of simply gen. tree families (= cond. GW-trees) satisfying randomness preservation property
- Cayley-trees
- d-ary trees
- generalized ordered trees
- Rayleigh limiting distribution of X_{n} for such "very simple tree families"
$\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)}$ Rayleigh $(\sigma), \quad$ density $\quad f_{\sigma}(x)=\frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}}, \quad x \geq 0$
- Cutting down non-crossing trees \rightarrow Rayleigh-limit law
- Cutting down recursive trees
\rightarrow Moments do not characterize limit law

Further studies via recursive approach

- Pan (2003, 2004, 2006):
- characterization of simply gen. tree families (= cond. GW-trees) satisfying randomness preservation property
- Cayley-trees
- d-ary trees
- generalized ordered trees
- Rayleigh limiting distribution of X_{n} for such "very simple tree families"

$$
\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} \text { Rayleigh }(\sigma), \quad \text { density } \quad f_{\sigma}(x)=\frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}}, \quad x \geq 0
$$

- Cutting down non-crossing trees \rightarrow Rayleigh-limit law
- Cutting down recursive trees
\rightarrow Moments do not characterize limit law

Further studies via recursive approach

- Pan (2003, 2004, 2006):
- characterization of simply gen. tree families (= cond. GW-trees) satisfying randomness preservation property
- Cayley-trees
- d-ary trees
- generalized ordered trees
- Rayleigh limiting distribution of X_{n} for such "very simple tree families"
$\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} \operatorname{Rayleigh}(\sigma), \quad$ density $\quad f_{\sigma}(x)=\frac{x}{\sigma^{2}} e^{-\frac{x^{2}}{2 \sigma^{2}}}, \quad x \geq 0$
- Cutting down non-crossing trees \rightarrow Rayleigh-limit law
- Cutting down recursive trees
\rightarrow Moments do not characterize limit law

Further studies via recursive approach

- Fill, Kapur \& Pan (2006):
each cut costs a toll depending on size of the tree
\rightarrow study total costs of one-sided and two-sided destruction of
"very simple trees"
\rightarrow limiting distribution results via method of moments
- Pan \& Kuba (2007): application of two-sided destruction to analysis of Union-Find-algorithms (maintaining set partitions)
- Drmota, Iksanov, Möhle \& Rösler (2009)
stable limit law of number of cuts X_{n} for recursive trees

Further studies via recursive approach

- Fill, Kapur \& Pan (2006):
each cut costs a toll depending on size of the tree
\rightarrow study total costs of one-sided and two-sided destruction of
"very simple trees"
\rightarrow limiting distribution results via method of moments
- Pan \& Kuba (2007): application of two-sided destruction to analysis of Union-Find-algorithms (maintaining set partitions)
- Drmota, Iksanov, Möhle \& Rösler (2009)
stable limit law of number of cuts X_{n} for recursive trees

Further studies via recursive approach

- Fill, Kapur \& Pan (2006):
each cut costs a toll depending on size of the tree
\rightarrow study total costs of one-sided and two-sided destruction of "very simple trees"
\rightarrow limiting distribution results via method of moments
- Pan \& Kuba (2007): application of two-sided destruction to analysis of Union-Find-algorithms (maintaining set partitions)
- Drmota, Iksanov, Möhle \& Rösler (2009):
stable limit law of number of cuts X_{n} for recursive trees

$$
\frac{X_{n}-\frac{n}{\log ^{n}}-\frac{n \log \log n}{\log ^{2} n}}{\frac{n}{\log ^{2} n}} \xrightarrow{(d)} Y \sim \text { Stable(1) }
$$

characteristic fct. $\quad \varphi_{Y}(t)=e^{i t \log |t|-\frac{\pi}{2}|t|}$

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Probabilistic treatments of cutting trees

- Janson (2006):
- Description of cutting procedure via records in edge-labelled trees
Record: edge-label smaller than labels of all ancestor-edges

Cut \leftrightarrow Edge-record

Probabilistic treatments of cutting trees

- Janson (2006):
- Rayleigh limit law for all conditioned GW-trees (simply generated trees):
$\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)}$ Rayleigh $(\sigma), \quad \sigma$ dependent on offspring-distr.
- Limiting distribution results for deterministic trees
- Edge-cutting procedure behaves asympt. as vertex-cutting procedure

Probabilistic treatments of cutting trees

- Janson (2006):
- Rayleigh limit law for all conditioned GW-trees (simply generated trees):

$$
\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} \text { Rayleigh }(\sigma), \quad \sigma \text { dependent on offspring-distr. }
$$

- Limiting distribution results for deterministic trees
- Edge-cutting procedure behaves asympt. as vertex-cutting procedure

Probabilistic treatments of cutting trees

- Janson (2006):
- Rayleigh limit law for all conditioned GW-trees (simply generated trees):

$$
\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} \text { Rayleigh }(\sigma), \quad \sigma \text { dependent on offspring-distr. }
$$

- Limiting distribution results for deterministic trees
- Edge-cutting procedure behaves asympt. as vertex-cutting procedure

Probabilistic treatments of cutting trees

- Janson (2006):
- Rayleigh limit law for all conditioned GW-trees (simply generated trees):

$$
\frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} \text { Rayleigh }(\sigma), \quad \sigma \text { dependent on offspring-distr. }
$$

- Limiting distribution results for deterministic trees
- Edge-cutting procedure behaves asympt. as vertex-cutting procedure
- Holmgren (2008, 2010, 2011):
- Stable limit laws for large class of $\log n$-trees: split trees (including binary search trees)

Probabilistic treatments of cutting trees

Goldschmidt \& Martin; Möhle \& Iksanov; Addario-Berry, Broutin \& Holmgren; Bertoin \& Miermont; Abraham \& Delmas; Marckert \& Wang; Cai, Devroye, Holmgren \& Skerman; Burghart; . . .
\rightarrow Many further probabilistic treatments related to cutting trees

Question: Might recursive approach also be useful to contribute to study of some of such extensions?

Probabilistic treatments of cutting trees

Goldschmidt \& Martin; Möhle \& Iksanov; Addario-Berry, Broutin \& Holmgren; Bertoin \& Miermont; Abraham \& Delmas; Marckert \& Wang; Cai, Devroye, Holmgren \& Skerman; Burghart; . . .
\rightarrow Many further probabilistic treatments related to cutting trees

- Further tree/graph families, extensions and refinements
- Relations to coalescence models

Question: Might recursive approach also be useful to contribute to study of some of such extensions?

Probabilistic treatments of cutting trees

Goldschmidt \& Martin; Möhle \& Iksanov; Addario-Berry, Broutin \& Holmgren; Bertoin \& Miermont; Abraham \& Delmas; Marckert \& Wang; Cai, Devroye, Holmgren \& Skerman; Burghart; ...
\rightarrow Many further probabilistic treatments related to cutting trees

- Further tree/graph families, extensions and refinements
- Relations to coalescence models

Question: Might recursive approach also be useful to contribute to study of some of such extensions?

Probabilistic treatments of cutting trees

Goldschmidt \& Martin; Möhle \& Iksanov; Addario-Berry, Broutin \& Holmgren; Bertoin \& Miermont; Abraham \& Delmas; Marckert \& Wang; Cai, Devroye, Holmgren \& Skerman; Burghart; . . .
\rightarrow Many further probabilistic treatments related to cutting trees

- Further tree/graph families, extensions and refinements
- Relations to coalescence models

Question: Might recursive approach also be useful to contribute to study of some of such extensions?

- k-cutting trees
- Isolating multiple nodes in trees
- Senarating nodes in trees

Probabilistic treatments of cutting trees

Goldschmidt \& Martin; Möhle \& Iksanov; Addario-Berry, Broutin \& Holmgren; Bertoin \& Miermont; Abraham \& Delmas; Marckert \& Wang; Cai, Devroye, Holmgren \& Skerman; Burghart; ...
\rightarrow Many further probabilistic treatments related to cutting trees

- Further tree/graph families, extensions and refinements
- Relations to coalescence models

Question: Might recursive approach also be useful to contribute to study of some of such extensions?

- k-cutting trees
- Isolating multiple nodes in trees
- Separating nodes in trees

k-cut model for rooted trees

- Cai, Devroye, Holmgren \& Skerman (2019)

Berzunza, Cai \& Holmgren (2020, 2021):
Adapting cutting down procedure:

```
            A vertex has to be cut k-times
before this vertex and its subtrees are discarded.
```

Considered tree models:

- naths and "path-like trees"
- conditioned Galton-Watson trees
\rightarrow Limiting behaviour of required cuts X_{n} to cut down tree
changes

k-cut model for rooted trees

- Cai, Devroye, Holmgren \& Skerman (2019) Berzunza, Cai \& Holmgren (2020, 2021):

Adapting cutting down procedure:
A vertex has to be cut k-times before this vertex and its subtrees are discarded.

Considered tree models:

- naths and "path-like trees"
- conditioned Galton-Watson trees
\rightarrow Limiting behaviour of required cuts X_{n} to cut down tree
changes

k-cut model for rooted trees

- Cai, Devroye, Holmgren \& Skerman (2019)

Berzunza, Cai \& Holmgren (2020, 2021):
Adapting cutting down procedure:
A vertex has to be cut k-times before this vertex and its subtrees are discarded.

Considered tree models:

- paths and "path-like trees"
- conditioned Galton-Watson trees
\rightarrow Limiting behaviour of required cuts X_{n} to cut down tree
changes

k-cut model for rooted trees

- Cai, Devroye, Holmgren \& Skerman (2019)

Berzunza, Cai \& Holmgren (2020, 2021):
Adapting cutting down procedure:
A vertex has to be cut k-times before this vertex and its subtrees are discarded.

Considered tree models:

- paths and "path-like trees"
- conditioned Galton-Watson trees
\rightarrow Limiting behaviour of required cuts X_{n} to cut down tree changes

k-cuts in paths

$k=1$: Cutting down path:
$X_{n} \stackrel{(d)}{=}$ number of records in sequence of n i.i.d. Unif[0, 1] r.v.
(d)
$=$ number of left-to-right maxima/minima in random permutation
(d)
$\stackrel{(d)}{=}$ number of cycles in random permutation

Limiting behaviour of X_{n} :
Goncharov (1942); Shepp-Lloyd (1966)

$$
\frac{X_{n}-\log n}{\sqrt{\log n}} \xrightarrow{(d)} \mathcal{N}(0,1)
$$

k-cuts in paths

$k=1$: Cutting down path:
$X_{n} \stackrel{(d)}{=}$ number of records in sequence of n i.i.d. Unif[0, 1] r.v.
(d)
$\stackrel{(d)}{=}$ number of left-to-right maxima/minima in random permutation
(d)
$\stackrel{(d)}{=}$ number of cycles in random permutation

Limiting behaviour of X_{n} :
Goncharov (1942); Shepp-Lloyd (1966):

$$
\frac{X_{n}-\log n}{\sqrt{\log n}} \xrightarrow{(d)} \mathcal{N}(0,1)
$$

k-cuts in paths

$k \geq 2$: number of cuts $X_{n}^{[k]}$ have complicated behaviour, Cai, Devroye, Holmgren and Skerman (2019):

First two moments:

$$
E_{j} \stackrel{(d)}{=} \operatorname{Exp}(1), \quad U_{j} \stackrel{(d)}{=} \text { Unif[0, 1], } \quad j \geq 1, \quad \text { mutually independent }
$$

k-cuts in paths

$k \geq 2$: number of cuts $X_{n}^{[k]}$ have complicated behaviour, Cai, Devroye, Holmgren and Skerman (2019):

First two moments:

$$
\begin{gathered}
\mathbb{E}\left(X_{n}\right) \sim \eta_{k} n^{1-\frac{1}{k}}, \quad \mathbb{E}\left(X_{n}^{2}\right) \sim \gamma_{k} n^{2-\frac{2}{k}}, \\
\eta_{k}=\frac{(k!)^{\frac{1}{k}} \Gamma\left(\frac{1}{k}\right)}{k-1}, \quad \gamma_{k}=\frac{\Gamma\left(\frac{2}{k}\right)(k!)^{\frac{2}{k}}}{k-1}+2 \cdot \begin{cases}\frac{\pi \cot \left(\frac{\pi}{k}\right) \Gamma\left(\frac{2}{k}\right)(k!)^{\frac{2}{x}}}{2(k-2)(k-1)}, & k>2, \\
\frac{\pi^{2}}{4}, & k=2 .\end{cases}
\end{gathered}
$$

Limiting distribution:

$$
E_{j} \stackrel{(d)}{=} \operatorname{Exp}(1),
$$

$$
U_{j} \stackrel{(d)}{=} \operatorname{Unif}[0,1],
$$

\square mutually independent

k-cuts in paths

$k \geq 2$: number of cuts $X_{n}^{[k]}$ have complicated behaviour, Cai, Devroye, Holmgren and Skerman (2019):

First two moments:

$$
\begin{aligned}
\mathbb{E}\left(X_{n}\right) \sim \eta_{k} n^{1-\frac{1}{k}}, \quad \mathbb{E}\left(X_{n}^{2}\right) \sim \gamma_{k} n^{2-\frac{2}{k}}, \\
\eta_{k}=\frac{(k!)^{\frac{1}{k}} \Gamma\left(\frac{1}{k}\right)}{k-1}, \quad \gamma_{k}=\frac{\Gamma\left(\frac{2}{k}\right)(k!)^{\frac{2}{k}}}{k-1}+2 \cdot \begin{cases}\frac{\pi \cot \left(\frac{\pi}{k}\right) \Gamma\left(\frac{2}{k}\right)(k!)^{\frac{2}{k}}}{2(k-2)(k-1)}, & k>2, \\
\frac{\pi^{2}}{4}, & k=2 .\end{cases}
\end{aligned}
$$

Limiting distribution: $\quad \mathcal{L}\left(\frac{X_{n}^{[k]}}{n^{1-\frac{1}{k}}}\right) \xrightarrow{(d)} \mathcal{L}\left(\mathcal{B}_{k}\right)$,
$\mathcal{B}_{k}:=\sum_{p \geq 1} B_{p}, \quad B_{p}:=\left(1-U_{p}\right)\left(\prod_{1 \leq j<p} U_{j}\right)^{1-\frac{1}{k}} S_{p}, \quad S_{p}:=\left(k!\sum_{1 \leq s \leq p}\left(\prod_{s \leq j<p} U_{j}\right) E_{s}\right)^{\frac{1}{k}}$,
$E_{j} \stackrel{(d)}{=} \operatorname{Exp}(1), \quad U_{j} \stackrel{(d)}{=}$ Unif[0, 1], $j \geq 1, \quad$ mutually independent

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

$\square \quad \rightarrow \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:
\square \mapsto \square
$\square \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn mode" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn mode" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn mode"" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \rightarrow \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path \downarrow

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \rightarrow \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

\mapsto

$\square \quad \mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:
\square \mapsto

$\square \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:
\square \mapsto

$\mapsto \quad$ remove random number of bricks (= cutting off)

Recursive approach

Consider $k=2$: 2-Cutting a path

For recursive approach have to take care of auxiliary quantity: number of nodes already cut once
\rightarrow "Urn model" with non-deterministic ball replacement scheme:

$\mapsto \quad$ remove random number of bricks (= cutting off)

Stochastic recurrence

$\tilde{X}_{n, j}$: number of cuts to destroy path of length n starting with j random nodes already cut once

Distributional recurrence:
$\tilde{x}_{n, j} \stackrel{(d)}{=} V_{n, j} \cdot \tilde{x}_{n, j+1}+\left(1-V_{n, j}\right) \cdot \tilde{x}_{S_{1}, S_{2}}, \quad 0 \leq j \leq n, n \geq 1, \quad \tilde{x}_{0,0}=0$,
where

$$
V_{n, j} \stackrel{(d)}{=} \text { Bernoulli }\left(1-\frac{j}{n}\right) \text {, }
$$

$$
\mathbb{P}\left\{\left(S_{1}, S_{2}\right)=\left(n_{1}, j_{1}\right)\right\}=\frac{1}{j} \cdot \frac{\binom{n_{1}}{j_{1}} \cdot\binom{n-1-n_{1}}{j-1-j_{1}}}{\binom{n}{j}}, \quad \begin{aligned}
& 0 \leq j_{1} \leq j-1, \\
& 0 \leq n_{1} \leq n-1
\end{aligned}
$$

Stochastic recurrence

$\tilde{X}_{n, j}$: number of cuts to destroy path of length n starting with j random nodes already cut once

Distributional recurrence:
$\tilde{X}_{n, j} \stackrel{(d)}{=} V_{n, j} \cdot \tilde{X}_{n, j+1}+\left(1-V_{n, j}\right) \cdot \tilde{X}_{S_{1}, S_{2}}, \quad 0 \leq j \leq n, n \geq 1, \quad \tilde{X}_{0,0}=0$, where $\quad V_{n, j} \stackrel{(d)}{=} \operatorname{Bernoulli}\left(1-\frac{j}{n}\right)$,

$$
\mathbb{P}\left\{\left(S_{1}, S_{2}\right)=\left(n_{1}, j_{1}\right)\right\}=\frac{1}{j} \cdot \frac{\binom{n_{1}}{j_{1}} \cdot\binom{n-1-n_{1}}{j-1-j_{1}}}{\binom{n}{j}}, \quad \begin{aligned}
& 0 \leq j_{1} \leq j-1, \\
& 0 \leq n_{1} \leq n-1
\end{aligned}
$$

Generating functions approach

probability generating function $\mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) \rightarrow$ recurrence suitable g.f. $\tilde{F}:=\tilde{F}(z, x, v):=\sum_{n, j \geq 0}\binom{n}{j} \cdot \mathbb{E}\left(v^{\tilde{x}_{n, j}}\right) z^{n} x^{j}$
\rightarrow Linear first-order PDE:

$$
z \tilde{F}_{z}=v\left(\tilde{F}_{x}+\frac{z x}{1-z(1+x)} \tilde{F}\right)
$$

Explicit solution:

$$
\tilde{F}(z, x, v)=e^{\int_{x}^{\infty} \frac{z t e^{\frac{x-t}{v}}}{1-z(1+t) e^{\frac{x-t}{v}}} d t}
$$

Solution of original problem: vanish auxiliary quantity $x=0$

$$
F(z, v):=\tilde{F}(z, 0, v)=\sum_{n \geq 1} \mathbb{\pi}\left(v^{X_{n}}\right) z^{n}
$$

Generating functions approach

probability generating function $\mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) \rightarrow$ recurrence suitable g.f. $\tilde{F}:=\tilde{F}(z, x, v):=\sum_{n, j \geq 0}\binom{n}{j} \cdot \mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) z^{n} x^{j}$
\rightarrow Linear first-order PDE:

$$
z \tilde{F}_{z}=v\left(\tilde{F}_{x}+\frac{z x}{1-z(1+x)} \tilde{F}\right)
$$

Explicit solution:

$$
\tilde{F}(z, x, v)=e^{\int_{x}^{\infty} \frac{z t e^{\frac{x-t}{v}}}{1-z(1+t) e^{\frac{x-t}{v}}} d t}
$$

Solution of original problem: vanish auxiliary quantity $x=0$

$$
F(z, v):=\tilde{F}(z, 0, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{x_{n}}\right) z^{n}
$$

Generating functions approach

probability generating function $\mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) \rightarrow$ recurrence suitable g.f. $\tilde{F}:=\tilde{F}(z, x, v):=\sum_{n, j \geq 0}\binom{n}{j} \cdot \mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) z^{n} x^{j}$
\rightarrow Linear first-order PDE:

$$
z \tilde{F}_{z}=v\left(\tilde{F}_{x}+\frac{z x}{1-z(1+x)} \tilde{F}\right)
$$

Explicit solution:

$$
\tilde{F}(z, x, v)=e^{\int_{x}^{\infty} \frac{z t e^{\frac{x-t}{v}}}{1-z(1+t) e^{\frac{x-t}{v}}} d t}
$$

Solution of original problem: vanish auxiliary quantity $x=0$

$$
F(z, v):=\tilde{F}(z, 0, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{x_{n}}\right) z^{n}
$$

Generating functions approach

probability generating function $\mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) \rightarrow$ recurrence suitable g.f. $\tilde{F}:=\tilde{F}(z, x, v):=\sum_{n, j \geq 0}\binom{n}{j} \cdot \mathbb{E}\left(v^{\tilde{X}_{n, j}}\right) z^{n} x^{j}$
\rightarrow Linear first-order PDE:

$$
z \tilde{F}_{z}=v\left(\tilde{F}_{x}+\frac{z x}{1-z(1+x)} \tilde{F}\right)
$$

Explicit solution:

$$
\tilde{F}(z, x, v)=e^{\int_{x}^{\infty} \frac{z t e^{\frac{x-t}{v}}}{1-z(1+t) e^{\frac{x-t}{v}}} d t}
$$

Solution of original problem: vanish auxiliary quantity $x=0$:

$$
\begin{gathered}
F(z, v):=\tilde{F}(z, 0, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{X_{n}}\right) z^{n} \\
\Rightarrow \quad F(z, v)=e^{\int_{0}^{\infty} \frac{z t e^{-\frac{t}{v}}}{1-z(1+t) e^{-\frac{t}{v}}} d t}
\end{gathered}
$$

Moments

Expectation: $\mathbb{E}\left(X_{n}\right)=H_{n}+\sum_{\ell=1}^{n} \frac{Q(\ell)}{\ell}$,
with $Q(n)=\sum_{\ell=0}^{n-1} \frac{(n-1)^{\underline{\ell}}}{n^{\ell}}=\int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{n-1} e^{-x} d x, \quad$ Ramanujan's Q-function

Asymptotics of m-th integer moments:

Moments

Expectation: $\mathbb{E}\left(X_{n}\right)=H_{n}+\sum_{\ell=1}^{n} \frac{Q(\ell)}{\ell}$,
with $Q(n)=\sum_{l=0}^{n-1} \frac{(n-1)^{\ell}}{n^{\ell}}=\int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{n-1} e^{-x} d x$, Ramanujan's $Q-$ function
Asymptotics of m-th integer moments:

$$
\mathbb{E}\left(\left(\frac{X_{n}}{\sqrt{n}}\right)^{m}\right) \sim \frac{m!}{\Gamma\left(1+\frac{m}{2}\right)} \cdot\left[w^{m}\right] e^{\frac{\sqrt{2} \operatorname{warccos}\left(-\frac{w}{\sqrt{2}}\right)}{\sqrt{1-\frac{w^{2}}{2}}}}, \quad m \geq 0
$$

Exponent $\quad \varphi(w):=\frac{\sqrt{2} w \arccos \left(-\frac{w}{\sqrt{2}}\right)}{\sqrt{1-\frac{w^{2}}{2}}}=\sum_{m \geq 1} \frac{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{m}{2}+1\right)}{m!} w^{m}$

Moment generating function

Fréchet and Shohat moment conv. thm. $\Rightarrow \frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} X$, with X characterized via moments: $\mathbb{E}\left(X^{m}\right)=\frac{m!}{\Gamma\left(1+\frac{m}{2}\right)}\left[w^{m}\right] e^{\varphi(w)}$

Moment generating function $M(s)=\mathbb{E}\left(e^{s X}\right)=\sum_{m \geq 0} \frac{s^{m}}{\Gamma\left(1+\frac{m}{2}\right)} \cdot\left[w^{m}\right] e^{\varphi(\omega)}$ Use Mittag-Leffler-transform

Representation of m.g.f.:

Moment generating function

Fréchet and Shohat moment conv. thm. $\Rightarrow \frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} X$, with X characterized via moments: $\mathbb{E}\left(X^{m}\right)=\frac{m!}{\Gamma\left(1+\frac{m}{2}\right)}\left[w^{m}\right] e^{\varphi(w)}$

Moment generating function $M(s)=\mathbb{E}\left(e^{s x}\right)=\sum_{m \geq 0} \frac{\frac{s}{m}_{\Gamma\left(1+\frac{m}{2}\right)}^{2}}{} \cdot\left[w^{m}\right] e^{\varphi(w)}$

Representation of m.g.f.:

Moment generating function

Fréchet and Shohat moment conv. thm. $\Rightarrow \frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} X$, with X characterized via moments: $\mathbb{E}\left(X^{m}\right)=\frac{m!}{\Gamma\left(1+\frac{m}{2}\right)}\left[w^{m}\right] e^{\varphi(w)}$

Moment generating function $M(s)=\mathbb{E}\left(e^{s x}\right)=\sum_{m \geq 0} \frac{s^{m}}{\Gamma\left(1+\frac{m}{2}\right)} \cdot\left[w^{m}\right] e^{\varphi(\omega)}$ Use Mittag-Leffler-transform:

$$
f(z)=\sum_{n \geq 0} f_{n} z^{n} \xrightarrow{\mathcal{B}_{\alpha}} \hat{f}(z)=\sum_{n \geq 0} f_{n} \frac{z^{n}}{\Gamma(1+\alpha n)}
$$

$\mathcal{B}_{\alpha}(f(z))=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} \frac{E_{\alpha}(z t)}{t} f\left(\frac{1}{t}\right) d t, \quad$ Mittag-Leffler-fct. $E_{\alpha}(z)=\sum_{n \geq 0} \frac{z^{n}}{\Gamma(1+\alpha n)}$
Representation of m.g.f.:

Moment generating function

Fréchet and Shohat moment conv. thm. $\Rightarrow \frac{X_{n}}{\sqrt{n}} \xrightarrow{(d)} X$, with X characterized via moments: $\mathbb{E}\left(X^{m}\right)=\frac{m!}{\Gamma\left(1+\frac{m}{2}\right)}\left[w^{m}\right] e^{\varphi(w)}$

Moment generating function $M(s)=\mathbb{E}\left(e^{s x}\right)=\sum_{m \geq 0} \frac{s^{m}}{\Gamma\left(1+\frac{m}{2}\right)} \cdot\left[w^{m}\right] e^{\varphi(\omega)}$ Use Mittag-Leffler-transform:

$$
f(z)=\sum_{n \geq 0} f_{n} z^{n} \xrightarrow{\mathcal{B}_{\alpha}} \hat{f}(z)=\sum_{n \geq 0} f_{n} \frac{z^{n}}{\Gamma(1+\alpha n)}
$$

$\mathcal{B}_{\alpha}(f(z))=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} \frac{E_{\alpha}(z t)}{t} f\left(\frac{1}{t}\right) d t, \quad$ Mittag-Leffler-fct. $E_{\alpha}(z)=\sum_{n \geq 0} \frac{z^{n}}{\Gamma(1+\alpha n)}$
Representation of m.g.f.:

$$
\begin{aligned}
& \text { Representation of m.g.f.: } \\
& M(s)=\frac{1}{2 \pi i} \int_{C-\infty}^{C+i \infty}\left(1+\frac{2}{\sqrt{\pi}} \int_{0}^{s^{2} t^{2}} e^{-\tau^{2}} d \tau\right) e^{s^{2} t^{2}+\frac{\sqrt{\frac{\sqrt{2}}{2} \arccos \left(-\frac{1}{\sqrt{2})}\right.}}{\sqrt{1-\frac{1}{2 t^{2}}}}} d t, \quad \mathfrak{B C}>\frac{1}{\sqrt{2}}
\end{aligned}
$$

Recursive approach for general k

General k: adaptions for recursive approach

- Require $k-1$ auxiliary quantities:
j_{1} nodes cut once, \ldots, j_{k-1} nodes cut $(k-1)$-times
- "Urn model"-description with k types of balls
- Generating functions approach \rightarrow linear first-order PDE:

- PDE is explicitly solvable
- Vanishing all auxiliary variables $x_{1}, \ldots, x_{k-1}=0$ \rightarrow explicit solution for g.f. $F_{k}(z, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{x_{n}^{k j}}\right) z^{n}$.

$$
F_{k}(z, v)=e^{\int_{0} \frac{(k-1)!}{1-z\left(1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right) e^{-\frac{t}{v}}} d t}
$$

Recursive approach for general k

General k : adaptions for recursive approach

- Require $k-1$ auxiliary quantities:
j_{1} nodes cut once, \ldots, j_{k-1} nodes cut ($k-1$)-times
- "Urn model"-description with k types of balls
- Generating functions approach \rightarrow linear first-order PDE

- PDE is explicitly solvable
- Vanishing all auxiliary variables $x_{1}, \ldots, x_{k-1}=0$
\rightarrow explicit solution for g.f. $F_{k}(z, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{\chi_{n}^{n}}\right) z^{n}$

Recursive approach for general k

General k : adaptions for recursive approach

- Require $k-1$ auxiliary quantities:
j_{1} nodes cut once, \ldots, j_{k-1} nodes cut ($k-1$)-times
- "Urn model"-description with k types of balls
- Generating functions approach \rightarrow linear first-order PDE:

- PDE is explicitly solvable
- Vanishing all auxiliary variables $x_{1}, \ldots, x_{k-1}=0$
\rightarrow explicit solution for g.f. $F_{k}(z, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{\chi_{n}}\right) z^{n}$:

Recursive approach for general k

General k : adaptions for recursive approach

- Require $k-1$ auxiliary quantities:
j_{1} nodes cut once, \ldots, j_{k-1} nodes cut ($k-1$)-times
- "Urn model"-description with k types of balls
- Generating functions approach \rightarrow linear first-order PDE:
$z \tilde{F}_{z}=v\left(\tilde{F}_{x_{1}}+x_{1} \tilde{F}_{x_{2}}+x_{2} \tilde{F}_{x_{3}}+\cdots+x_{k-2} \tilde{F}_{x_{k-1}}+\frac{x_{k-1} z \tilde{F}}{1-z\left(1+x_{1}+x_{2}+\cdots+x_{k-1}\right)}\right)$
- PDE is explicitly solvable
- Vanishing all auxiliary variables $x_{1}, \ldots, x_{k-1}=0$
\rightarrow explicit solution for g.f. $F_{k}(z, v)=\sum_{n=1} \mathbb{E}\left(v^{x_{n}^{k}}\right) z^{n}$

Recursive approach for general k

General k : adaptions for recursive approach

- Require $k-1$ auxiliary quantities:
j_{1} nodes cut once, \ldots, j_{k-1} nodes cut ($k-1$)-times
- "Urn model"-description with k types of balls
- Generating functions approach \rightarrow linear first-order PDE:

$$
z \tilde{F}_{z}=v\left(\tilde{F}_{x_{1}}+x_{1} \tilde{F}_{x_{2}}+x_{2} \tilde{F}_{x_{3}}+\cdots+x_{k-2} \tilde{F}_{x_{k-1}}+\frac{x_{k-1} z \tilde{F}}{1-z\left(1+x_{1}+x_{2}+\cdots+x_{k-1}\right)}\right)
$$

- PDE is explicitly solvable
- Vanishing all auxiliary variables $x_{1}, \ldots, x_{k-1}=0$

Recursive approach for general k

General k : adaptions for recursive approach

- Require $k-1$ auxiliary quantities:
j_{1} nodes cut once, \ldots, j_{k-1} nodes cut $(k-1)$-times
- "Urn model"-description with k types of balls
- Generating functions approach \rightarrow linear first-order PDE:

$$
z \tilde{F}_{z}=v\left(\tilde{F}_{x_{1}}+x_{1} \tilde{F}_{x_{2}}+x_{2} \tilde{F}_{x_{3}}+\cdots+x_{k-2} \tilde{F}_{x_{k-1}}+\frac{x_{k-1} z \tilde{F}}{1-z\left(1+x_{1}+x_{2}+\cdots+x_{k-1}\right)}\right)
$$

- PDE is explicitly solvable
- Vanishing all auxiliary variables $x_{1}, \ldots, x_{k-1}=0$
\rightarrow explicit solution for g.f. $F_{k}(z, v)=\sum_{n \geq 1} \mathbb{E}\left(v^{x_{n}^{[k]}}\right) z^{n}$:

$$
F_{k}(z, v)=e^{\int_{0}^{\infty} \frac{z \frac{t^{k-1}}{(k-1)!}!^{-\frac{t}{v}}}{1-z\left(1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right) e^{-\frac{t}{v}}} d t}
$$

Limiting behaviour

Asymptotic behaviour of m-th integer moment:

$$
\mathbb{E}\left(\left(\frac{X_{n}}{n^{1-\frac{1}{k}}}\right)^{m}\right) \sim \frac{m!}{\Gamma\left(1+\frac{(k-1) m}{k}\right)} \cdot\left[w^{m}\right] e^{\varphi(w)},
$$

with exponent:

$$
\begin{aligned}
\varphi(w) & =\sum_{m=1}^{\infty} \frac{(k!)^{\frac{m}{k}} \Gamma\left(\frac{m}{k}+1\right) \Gamma\left(\frac{(k-1) m}{k}\right)}{m!} w^{m} \\
& =k!w \int_{0}^{\infty} \frac{d x}{x^{k}-k!w x+k!} \\
& =\sum_{j=1}^{k} \frac{x_{j} w}{k-(k-1) x_{j} w} \ln \left(-x_{j}\right), \quad x_{j} \text { roots of } p(x)=x^{k}-k!w x+k!
\end{aligned}
$$

Limiting behaviour

Convergence in distribution $\frac{X_{n}}{n^{1-\frac{1}{k}}} \xrightarrow{(d)} X$,
X characterized via moments:

$$
\mathbb{E}\left(X^{m}\right)=\frac{m!}{\Gamma\left(1+\frac{(k-1) m}{k}\right)} \cdot\left[w^{m}\right] e^{\varphi(w)}
$$

Moment generating function

$$
M(s)=\mathbb{E}\left(e^{s X}\right)=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} \frac{E_{1-\frac{1}{k}}(s t)}{t} e^{\varphi\left(\frac{1}{t}\right)} d t
$$

with $E_{\alpha}(z)$: Mittag-Leffler-function

Limiting behaviour

Convergence in distribution $\frac{X_{n}}{n^{1-\frac{1}{k}}} \xrightarrow{(d)} X$,
X characterized via moments:

$$
\mathbb{E}\left(X^{m}\right)=\frac{m!}{\Gamma\left(1+\frac{(k-1) m}{k}\right)} \cdot\left[w^{m}\right] e^{\varphi(w)}
$$

Moment generating function

$$
M(s)=\mathbb{E}\left(e^{s X}\right)=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} \frac{E_{1-\frac{1}{k}}(s t)}{t} e^{\varphi\left(\frac{1}{t}\right)} d t
$$

with $E_{\alpha}(z)$: Mittag-Leffler-function

k-cutting trees

Berzunza, Cai \& Holmgren (2020, 2021); Wang (2021): Limiting distribution result for conditioned GW-trees:

$$
\frac{X_{n}}{\sigma^{\frac{1}{k}} n^{1-\frac{1}{2 k}}} \xrightarrow{(d)} X
$$

with X characterized via moments or via functional of Brownian continuum random tree

Recursive approach:

- only applicable for "very simple trees"
- yields first-order linear PDE (for Cayley-trees)
- PDE does not seem to be explicitly solvable
- only moments could be computed iteratively

k-cutting trees

Berzunza, Cai \& Holmgren (2020, 2021); Wang (2021): Limiting distribution result for conditioned GW-trees:

$$
\frac{X_{n}}{\sigma^{\frac{1}{k}} n^{1-\frac{1}{2 k}}} \xrightarrow{(d)} X,
$$

with X characterized via moments or via functional of Brownian continuum random tree

Recursive approach:

- only applicable for "very simple trees"
- yields first-order linear PDE (for Cayley-trees)
- PDE does not seem to be explicitly solvable
- only moments could be computed iteratively

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing anv vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Isolating a set of nodes in trees

Cutting algorithm for isolating multiple nodes:

- Take a tree T with a distinguished set $S \subseteq V(T)$ of nodes
- Select a vertex/edge at random
- Remove vertex/edge and discard all subtrees not containing any vertex of S
- Iterate procedure and terminate when all nodes of S are isolated/removed

Previous studies for number of cuts

- Addario-Berry, Broutin \& Holmgren (2014): isolating ℓ random nodes in Cayley-trees:

$$
\frac{X_{n}^{[\ell]}}{\sqrt{n}} \xrightarrow{(d)} \chi_{\ell},
$$

χ_{ℓ} : chi-distributed r.v. with 2ℓ degrees of freedom,
density $f_{\ell}(x)=\frac{x^{2 \ell-1}}{2^{\ell-1}(\ell-1)!} e^{-\frac{x^{2}}{2}}, x>0$
Kuba \& Panholzer (2014):
isolating ℓ random nodes in recursive trees:

Previous studies for number of cuts

- Addario-Berry, Broutin \& Holmgren (2014): isolating ℓ random nodes in Cayley-trees:

$$
\frac{X_{n}^{[\ell]}}{\sqrt{n}} \xrightarrow{(d)} \chi_{\ell},
$$

χ_{ℓ} : chi-distributed r.v. with 2ℓ degrees of freedom, density $f_{\ell}(x)=\frac{x^{2 \ell-1}}{2^{\ell-1}(\ell-1)!} e^{-\frac{x^{2}}{2}}, x>0$

- Kuba \& Panholzer (2014): isolating ℓ random nodes in recursive trees:

$$
\frac{\log n}{n} X_{n}^{[\ell]} \xrightarrow{(d)} \operatorname{Beta}(\ell, 1)
$$

Isolation of multiple nodes

Consider multiple isolation in Cayley-trees:

- "random path": all nodes on path from root to random node
- "random ancestor-tree": all nodes on each path from root to ℓ random nodes

Isolation of multiple nodes

Consider multiple isolation in Cayley-trees:

- "random path": all nodes on path from root to random node

- "random ancestor-tree": all nodes on each path from root to ℓ random nodes

Isolation of multiple nodes

Consider multiple isolation in Cayley-trees:

- "random path": all nodes on path from root to random node

- "random ancestor-tree": all nodes on each path from root to ℓ random nodes

Recursive approach

$X_{n, \ell}$: number of cuts to isolate all nodes in ancestor-tree of ℓ random nodes

Recursive approach

$X_{n, \ell}$: number of cuts to isolate all nodes in ancestor-tree of ℓ random nodes

- Suitable g.f. $F(z, u, v):=\sum_{n, \ell} \frac{n^{n-1}}{n!}\binom{n}{\ell} \cdot \mathbb{E}\left(v^{x_{n, \ell}}\right) z^{n} u^{\ell}$
- \rightarrow quasi-linear first-order PDE
- Explicit solution: $\left(T(x)=x e^{T(x)}\right.$ tree function)

- Method of moments \rightarrow limiting distribution (ℓ fixed)

Recursive approach

$X_{n, \ell}$: number of cuts to isolate all nodes in ancestor-tree of ℓ random nodes

- Suitable g.f. $F(z, u, v):=\sum_{n, \ell} \frac{n^{n-1}}{n!}\binom{n}{\ell} \cdot \mathbb{E}\left(v^{x_{n, \ell}}\right) z^{n} u^{\ell}$
- \rightarrow quasi-linear first-order PDE
- Explicit solution: $\left(T(x)=x e^{T(x)}\right.$ tree function)

- Method of moments \rightarrow limiting distribution (ℓ fixed)

Recursive approach

$X_{n, \ell}$: number of cuts to isolate all nodes in ancestor-tree of ℓ random nodes

- Suitable g.f. $F(z, u, v):=\sum_{n, \ell} \frac{n^{n-1}}{n!}\binom{n}{\ell} \cdot \mathbb{E}\left(v^{X_{n, \ell}}\right) z^{n} u^{\ell}$
- \rightarrow quasi-linear first-order PDE
- Explicit solution: $\left(T(x)=x e^{T(x)}\right.$ tree function)

$$
F(z, u, v)=\frac{1-v}{v} \log \left(\frac{1}{1-v T(z)}\right)+T\left((1+u) \cdot \frac{T(z)-\frac{1-v}{v} \log \left(\frac{1}{1-v T(z)}\right)}{e^{T(z)-\frac{1-v}{v} \log \left(\frac{1}{1-v T(z)}\right)}}\right)
$$

- Method of moments \rightarrow limiting distribution (ℓ fixed):

Recursive approach

$X_{n, \ell}$: number of cuts to isolate all nodes in ancestor-tree of ℓ random nodes

- Suitable g.f. $F(z, u, v):=\sum_{n, \ell} \frac{n^{n-1}}{n!}\binom{n}{\ell} \cdot \mathbb{E}\left(v^{X_{n, \ell}}\right) z^{n} u^{\ell}$
- \rightarrow quasi-linear first-order PDE
- Explicit solution: $\left(T(x)=x e^{T(x)}\right.$ tree function)

$$
F(z, u, v)=\frac{1-v}{v} \log \left(\frac{1}{1-v T(z)}\right)+T\left((1+u) \cdot \frac{T(z)-\frac{1-v}{v} \log \left(\frac{1}{1-v T(z)}\right)}{e^{T(z)-\frac{1-v}{v} \log \left(\frac{1}{1-v T(z)}\right)}}\right)
$$

- Method of moments \rightarrow limiting distribution (ℓ fixed):

$$
\frac{X_{n, \ell}}{\frac{\sqrt{n} \log n}{2}} \stackrel{(d)}{\longrightarrow} \chi_{\ell}, \quad \text { chi distributed r.v. }
$$

Recursive approach

Suitable to gain further results on multiple isolation in Cayley-trees (very simple trees):

- isolating all descendants of random node or ℓ random nodes
- isolating all leaves in tree
- behaviour if number ℓ of nodes grows with size n

Recursive approach

Suitable to gain further results on multiple isolation in Cayley-trees (very simple trees):

- isolating all descendants of random node or ℓ random nodes
- isolating all leaves in tree
- behaviour if number ℓ of nodes grows with size n

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in
tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Separating nodes in trees

Burghart (2022): far-reaching generalization of cutting procedure to separating nodes in graphs

Specific case: separating a set $P \subseteq V(T)$ of nodes from root r in tree T
\rightarrow Stop cutting procedure to isolate root if remaining subtree does not contain any node from P

Analysis of separation procedure

Interesting quantities:

Y_{n} : number of cuts until all nodes from P are separated R_{n} : size of the remainder tree when all nodes are separated

Apply recursive approach to separation procedures in Cayley-trees:
 - separation of ℓ random nodes
 - separation of all leaves

Analysis of separation procedure

Interesting quantities:

Y_{n} : number of cuts until all nodes from P are separated R_{n} : size of the remainder tree when all nodes are separated

Apply recursive approach to separation procedures in Cayley-trees:

- separation of ℓ random nodes
- separation of all leaves

Separating ℓ random nodes

Recursive approach \rightarrow easily gives explicit solution for g.f.
$=1$: separating a single node: $\frac{Y_{n, 1}}{\sqrt{n}} \xrightarrow{(d)} Y_{1}$,
integer moments:

$m \geq 0$,
density:
$f_{1}(x)=\int$
$e^{-\frac{t^{2}}{2}} d t$,
$x>0$
$\ell=2:$ separating two nodes: $\frac{Y_{n, 2}}{\sqrt{n}} \xrightarrow{(d)} Y_{2}$,
integer moments: $\mathbb{E}\left(Y_{2}^{m}\right)=\frac{(2 m+3) 2^{\frac{m}{2}+1} \Gamma\left(\frac{m}{2}+2\right)}{(m+1)(m+2)(m+3)}, \quad m \geq 0$,
density:
$f_{2}(x)=\int_{x}^{\infty} \frac{(t-x)(t+3 x)}{2}$ e^{-}

Separating ℓ random nodes

Recursive approach \rightarrow easily gives explicit solution for g.f.
$\ell=1$: separating a single node: $\frac{Y_{n, 1}}{\sqrt{n}} \xrightarrow{(d)} Y_{1}$,
integer moments: $\mathbb{E}\left(Y_{1}^{m}\right)=\frac{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}+1\right)}{m+1}, \quad m \geq 0$,
density: $f_{1}(x)=\int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t, \quad x>0$
$=2$: separating two nodes: $\frac{Y_{n, 2}}{\sqrt{n}} \xrightarrow{(d)} Y_{2}$,
integer moments:

density:

Separating ℓ random nodes

Recursive approach \rightarrow easily gives explicit solution for g.f.
$\ell=1$: separating a single node: $\frac{Y_{n, 1}}{\sqrt{n}} \xrightarrow{(d)} Y_{1}$,

$$
\begin{gathered}
\text { integer moments: } \mathbb{E}\left(Y_{1}^{m}\right)=\frac{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}+1\right)}{m+1}, \quad m \geq 0, \\
\text { density: } \quad f_{1}(x)=\int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t, \quad x>0
\end{gathered}
$$

$\ell=2$: separating two nodes: $\frac{Y_{n, 2}}{\sqrt{n}} \xrightarrow{(d)} Y_{2}$,

$$
\begin{gathered}
\text { integer moments: } \quad \mathbb{E}\left(Y_{2}^{m}\right)=\frac{(2 m+3) 2^{\frac{m}{2}+1} \Gamma\left(\frac{m}{2}+2\right)}{(m+1)(m+2)(m+3)}, \quad m \geq 0, \\
\text { density: } \quad f_{2}(x)=\int_{x}^{\infty} \frac{(t-x)(t+3 x)}{2} \cdot e^{-\frac{t^{2}}{2}} d t, \quad x>0
\end{gathered}
$$

Separating ℓ random nodes

Recursive approach \rightarrow easily gives explicit solution for g.f.
$\ell=1$: separating a single node: $\frac{Y_{n, 1}}{\sqrt{n}} \xrightarrow{(d)} Y_{1}$,

$$
\begin{gathered}
\text { integer moments: } \mathbb{E}\left(Y_{1}^{m}\right)=\frac{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}+1\right)}{m+1}, \quad m \geq 0, \\
\text { density: } \quad f_{1}(x)=\int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t, \quad x>0
\end{gathered}
$$

$\ell=2$: separating two nodes: $\frac{Y_{n, 2}}{\sqrt{n}} \xrightarrow{(d)} Y_{2}$,

$$
\begin{gathered}
\text { integer moments: } \quad \mathbb{E}\left(Y_{2}^{m}\right)=\frac{(2 m+3) 2^{\frac{m}{2}+1} \Gamma\left(\frac{m}{2}+2\right)}{(m+1)(m+2)(m+3)}, \quad m \geq 0, \\
\text { density: } \quad f_{2}(x)=\int_{x}^{\infty} \frac{(t-x)(t+3 x)}{2} \cdot e^{-\frac{t^{2}}{2}} d t, \quad x>0
\end{gathered}
$$

general ℓ : moments could be extracted

Separating all leaves

Recursive approach more involved:
\rightarrow requires auxiliary parameters

- \# leaves that are "active" during cutting procedure (leaf has not been separated)
- \# leaves that are "inactive" during cutting procedure (internal node in original tree)
\rightarrow linear first-order PDE involving evaluations of tree function
\rightarrow explicit solution for g.f., somewhat involved'

Separating all leaves

Recursive approach more involved:
\rightarrow requires auxiliary parameters

- \# leaves that are "active" during cutting procedure (leaf has not been separated)
- \# leaves that are "inactive" during cutting procedure (internal node in original tree)
\rightarrow linear first-order PDE involving evaluations of tree function
\rightarrow explicit solution for g.f., somewhat involved

Separating all leaves

Recursive approach more involved:
\rightarrow requires auxiliary parameters

- \# leaves that are "active" during cutting procedure (leaf has not been separated)
- \# leaves that are "inactive" during cutting procedure (internal node in original tree)
\rightarrow linear first-order PDE involving evaluations of tree function
\rightarrow explicit solution for g.f., somewhat involved

Separating all leaves

Recursive approach more involved:
\rightarrow requires auxiliary parameters

- \# leaves that are "active" during cutting procedure (leaf has not been separated)
- \# leaves that are "inactive" during cutting procedure (internal node in original tree)
\rightarrow linear first-order PDE involving evaluations of tree function
\rightarrow explicit solution for g.f., somewhat involved

Results for separating leaves

Size R_{n} of remainder tree: $R_{n} \xrightarrow{(d)} R, R$ discrete law
Probability g.f. $p(v)=\mathbb{E}\left(v^{R}\right)$:
$p(v)=1-\frac{1}{e} \int_{0}^{1} \frac{1}{1-K(t)} d t$
$+\frac{1}{e} \int_{0}^{1} \frac{v(1-K)+\left(-1-v+e^{-1} t v(1-v)+e^{-1} K+v K^{2}\right) M+(2+v-v K) M^{2}-M^{3}}{(1-K)(1-M)^{3}} d t$,

$$
\text { with } \quad K:=K(t)=T\left(t e^{-\left(1+e^{-1}\right) t}\right), \quad M:=M(t)=T\left(t e^{-\left(1+v e^{-1}\right) t}\right)
$$

Probabilities for small remainder tree size/expectation:

$$
\begin{aligned}
\mathbb{P}\{R=0\} & =1-\frac{1}{e} \int_{0}^{1} \frac{1}{1-K(t)} d t \approx 0.462117, \quad \text { (separating }=\text { isolating) } \\
\mathbb{P}\{R=1\} & =\frac{1}{e}-\frac{1}{e} \int_{0}^{1} \frac{t e^{-t}}{1-K(t)} d t \approx 0.217584, \\
\mathbb{E}(R) & =\frac{1}{e} \int_{0}^{1} \frac{1-\left(1+2 e^{-1} t\right) K(t)+2 K^{2}(t)}{(1-K(t))^{4}} d t \approx 1.385782
\end{aligned}
$$

Results for separating leaves

Size R_{n} of remainder tree: $R_{n} \xrightarrow{(d)} R, R$ discrete law
Probability g.f. $p(v)=\mathbb{E}\left(v^{R}\right)$:
$p(v)=1-\frac{1}{e} \int_{0}^{1} \frac{1}{1-K(t)} d t$
$+\frac{1}{e} \int_{0}^{1} \frac{v(1-K)+\left(-1-v+e^{-1} t v(1-v)+e^{-1} K+v K^{2}\right) M+(2+v-v K) M^{2}-M^{3}}{(1-K)(1-M)^{3}} d t$,
with $\quad K:=K(t)=T\left(t e^{-\left(1+e^{-1}\right) t}\right), \quad M:=M(t)=T\left(t e^{-\left(1+v e^{-1}\right) t}\right)$
Probabilities for small remainder tree size/expectation:

Results for separating leaves

Size R_{n} of remainder tree: $R_{n} \xrightarrow{(d)} R, R$ discrete law
Probability g.f. $p(v)=\mathbb{E}\left(v^{R}\right)$:

$$
\begin{aligned}
& p(v)=1-\frac{1}{e} \int_{0}^{1} \frac{1}{1-K(t)} d t \\
& +\frac{1}{e} \int_{0}^{1} \frac{v(1-K)+\left(-1-v+e^{-1} t v(1-v)+e^{-1} K+v K^{2}\right) M+(2+v-v K) M^{2}-M^{3}}{(1-K)(1-M)^{3}} d t, \\
& \text { with } K:=K(t)=T\left(t e^{-\left(1+e^{-1}\right) t}\right), \quad M:=M(t)=T\left(t e^{-\left(1+v e^{-1}\right) t}\right)
\end{aligned}
$$

Probabilities for small remainder tree size/expectation:

$$
\begin{aligned}
\mathbb{P}\{R=0\} & =1-\frac{1}{e} \int_{0}^{1} \frac{1}{1-K(t)} d t \approx 0.462117, \quad \text { (separating }=\text { isolating) } \\
\mathbb{P}\{R=1\} & =\frac{1}{e}-\frac{1}{e} \int_{0}^{1} \frac{t e^{-t}}{1-K(t)} d t \approx 0.217584, \\
\mathbb{E}(R) & =\frac{1}{e} \int_{0}^{1} \frac{1-\left(1+2 e^{-1} t\right) K(t)+2 K^{2}(t)}{(1-K(t))^{4}} d t \approx 1.385782
\end{aligned}
$$

End of talk

