
Enumerative and Analytic Combinatorics from
Pop-Stack Sorting

Colin Defant

Analytic and Probabilistic Combinatorics BIRS Workshop

November 16, 2022

Colin Defant Pop-Stack Sorting



The Pop-Stack Sorting Map

The pop-stack sorting map Pop : Sn → Sn acts on a permutation
by reversing its descending runs.

Example: If π = 762491853, then Pop(π) = 267419358.

Theorem (Ungar, 1982)

The maximum number of iterations of Pop needed to send a
permutation in Sn to the identity is n− 1.

Conjecture (D., 2020)

The average number of iterations of Pop needed to sort a
random permutation in Sn is n(1− o(1)).

(I can prove that the average is at least n/2. Can you prove
that it is at least 0.5001n?)
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t-Pop Sortable Permutations

A permutation π ∈ Sn is t-pop sortable if Popt(π) = 123 · · ·n.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e.,
it avoids 231 and 312).

Theorem (Pudwell–Smith, 2019)

The generating function for 2-pop sortable permutations is

1− x− x2 − x3

1− 2x− x2 − 2x3
.

Theorem (Claesson–Gukmundsson, 2019)

For each fixed t ≥ 0, the generating function for t-pop sortable
permutations is rational.
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Pop-Stacked Permutations

The structure of Pop(Sn) was studied by
Asinowski–Banderier–Hackl and by
Asinowski–Banderier–Billey–Hackl–Linusson.

Claesson–Gukmundsson–Pantone gave a polynomial-time
algorithm for computing |Pop(Sn)| and used it to compute these
numbers for n ≤ 1000.
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Meet-Semilattices

A meet-semilattice is a poset L such that all x, y ∈ L have a
greatest lower bound, which is called their meet and denoted
x ∧ y.

Meet-semilattice Not meet-semilattice

Every meet-semilattice in this talk will be locally finite and
have a unique minimal element 0̂.

Write
∧
X for the meet of a set X ⊆ L.

A lattice is a meet-semilattice whose dual is also a
meet-semilattice.
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The Weak Order on Sn

For π, σ ∈ Sn, write π ⋖ σ if π can be obtained from σ by
reversing a single descent. For example, 346251⋖ 364251. These
relations form the cover relations of the weak order on Sn.

The weak order is a lattice.
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Pop-Stack Sorting for Meet-Semilattices

For σ ∈ Sn, we have Pop(σ) =
∧
{π ∈ Sn : π ⋖− σ}.

Definition (D., 2022)

Given a meet-semilattice L, define the pop-stack sorting
operator Pop : L → L by

Pop(x) =
∧

{y ∈ L : y ⋖− x}.

Say an element x ∈ L is t-pop sortable if Popt(x) = 0̂.
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Ungar’s Theorem for Coxeter Groups

Let W be a finite Coxeter group with Coxeter number h. The
weak order on W is a lattice.

Theorem (D., 2022)

The maximum number of iterations of Pop needed to send an
element of W to the identity is h− 1.
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Rational Generating Functions in Other Types

Theorem (D., 2022)

For each fixed t ≥ 0, the generating function that counts t-pop
sortable elements of the hyperoctahedral group Bn is rational.

Theorem (D., 2022)

For each fixed t ≥ 0, the generating function that counts t-pop
sortable elements of the affine symmetric group Ãn is rational.
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ν-Tamari Lattices

Fix a lattice path ν. Let Tam(ν) be the set of lattice paths
lying weakly above ν. Make Tam(ν) into a lattice with the
following cover relations µ⋖ µ′:

Tam((NEm)n) is the n-th m-Tamari lattice Tamn(m).

Tam((NE)n) is the n-th Tamari lattice Tamn.
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Pop-Stack Sorting on Tam3(2)
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Pop-Stack Sorting on Tam3(2)
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Pop-Stack Sorting on m-Tamari Lattices

Let M(Tam(ν)) be the maximum
number of iterations of Pop needed
to send every element of Tam(ν) to
0̂ = ν.
Let N(Tam(ν)) be the number of
elements of Tam(ν) requiring
M(Tam(ν)) iterations.

I have computed M(Tam(ν)) for all ν.

Theorem (D., 2022)

We have M(Tamn(m)) = m+ n− 2 and

N(Tamn(m)) =
1

n− 1

(
(m+ 1)(n− 2) +m− 1

n− 2

)
.

In particular, N(Tamn) = Cn−2.
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More Rational Generating Functions

Let ht(m,n) be the number of t-pop sortable elements of
Tamn(m).

Conjecture (D., 2022)

For fixed t,m ≥ 1, the generating function
∑

n≥1 ht(m,n)xn is
rational.

Theorem (D., 2022)

The above conjecture is true when t ≤ 2.

Theorem (Hong, 2022)

The above conjecture is true when m = 1. In fact,∑
n≥1

ht(1, n)x
n =

x

1− 2x−
∑t

j=2Cj−1xj
.
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Rowmotion

For any distributive lattice L, there is a bijective rowmotion
operator Row: L → L. Rowmotion has been studied extensively
for specific distributive lattices in dynamical algebraic
combinatorics.

Nathan Williams and I introduced a much broader family of
lattices called semidistrim lattices. We described how to define
a bijective rowmotion operator on any semidistrim lattice.
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Semidistrim Lattices

Every semidistrim lattice L has an associated Galois graph GL.

Theorem (D.–Williams, 2022+)

Let L be semidistrim, and let L∗ be its dual. Then

|{x ∈ L : Row(x) ≤ x}| = |Pop(L)| = |Pop(L∗)|

= |{independent dominating sets in GL}|.

The equality |Pop(L)| = |Pop(L∗)| does not hold for arbitrary
finite lattices.
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Distributive Dyck Path Lattices

Let Ln be the lattice of Dyck paths of semilength n ordered by
“lying weakly above.”

Theorem (Sapounakis–Tasoulas–Tsikouras, 2006)

Then

|Pop(Ln)| =
n+1∑
k=0

1

k + 1

(
2k

k

)(
n+ k + 1

3k

)
.
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More Pop Images

Theorem (Hong, 2022)

|Pop(Tamn)| is the Motzkin number Mn−1.

Tamn is isomorphic to the sublattice of the weak order on Sn

formed by Avn(312). Hong showed that

Pop(Tamn) = {π ∈ Avn(312) :πn = n and π has no double descents}.

Nathan Williams and I stated several enumerative conjectures
about the image of Pop for Tamari lattices, the weak order of
Bn, lattice of order ideals of root posets, type-B Tamari lattices,
and bipartite Cambrian lattices. All but the last were resolved
in a recent preprint by Yunseo Choi and Nathan Sun.

Question

What is |Pop(Tamn(m))| when m ≥ 2?
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Infinite Meet-Semilattices

Problem

Let L be an interesting infinite meet-semilattice. Let at be the
number of t-pop sortable elements of L. What is

∑
t≥0 atx

t? Is
it rational?

Potential candidates for L include

The weak order of an infinite Coxeter group such as the
affine symmetric group.

The affine Tamari meet-semilattice (312-avoiding affine
permutations under the weak order).

The weak order on the positive braid monoid.
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Thank You!
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