Enumerative and Analytic Combinatorics from Pop-Stack Sorting

Colin Defant

Analytic and Probabilistic Combinatorics BIRS Workshop

November 16, 2022

→ □ → → 三 → → 三 →

臣

The *pop-stack sorting map* $Pop: S_n \to S_n$ acts on a permutation by reversing its descending runs.

< 同 > < 三 > <

The *pop-stack sorting map* $\mathsf{Pop}: S_n \to S_n$ acts on a permutation by reversing its descending runs.

Example: If $\pi = 762491853$, then $Pop(\pi) = 267419358$.

A (10) < A (10) < A (10) </p>

The *pop-stack sorting map* $\mathsf{Pop}: S_n \to S_n$ acts on a permutation by reversing its descending runs.

Example: If $\pi = 762491853$, then $Pop(\pi) = 267419358$.

Theorem (Ungar, 1982)

The maximum number of iterations of Pop needed to send a permutation in S_n to the identity is n-1.

→ 同 ▶ → 臣 ▶ → 臣 ▶

The *pop-stack sorting map* $\mathsf{Pop}: S_n \to S_n$ acts on a permutation by reversing its descending runs.

Example: If $\pi = 762491853$, then $Pop(\pi) = 267419358$.

Theorem (Ungar, 1982)

The maximum number of iterations of Pop needed to send a permutation in S_n to the identity is n-1.

Conjecture (D., 2020)

The average number of iterations of Pop needed to sort a random permutation in S_n is n(1 - o(1)).

(I can prove that the average is at least n/2. Can you prove that it is at least 0.5001n?)

Colin Defant Pop-Stack Sorting

▲圖▶ ▲屋▶ ▲屋▶

æ

A permutation $\pi \in S_n$ is *t-pop sortable* if $\mathsf{Pop}^t(\pi) = 123 \cdots n$.

・ 白 ト ・ ヨ ト ・

A permutation $\pi \in S_n$ is *t-pop sortable* if $\mathsf{Pop}^t(\pi) = 123 \cdots n$.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e., it avoids 231 and 312).

▲ □ ▶ ▲ □ ▶ ▲

A permutation $\pi \in S_n$ is *t-pop sortable* if $\mathsf{Pop}^t(\pi) = 123 \cdots n$.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e., it avoids 231 and 312).

Theorem (Pudwell–Smith, 2019)

The generating function for 2-pop sortable permutations is

$$\frac{1-x-x^2-x^3}{1-2x-x^2-2x^3}$$

A permutation $\pi \in S_n$ is *t-pop sortable* if $\mathsf{Pop}^t(\pi) = 123 \cdots n$.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e., it avoids 231 and 312).

Theorem (Pudwell–Smith, 2019)

The generating function for 2-pop sortable permutations is

$$\frac{1-x-x^2-x^3}{1-2x-x^2-2x^3}.$$

Theorem (Claesson–Guðmundsson, 2019)

For each fixed $t \ge 0$, the generating function for t-pop sortable permutations is rational.

A 回 > A 回 > A

Pop-Stacked Permutations

▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ

Pop-Stacked Permutations

The structure of $\mathsf{Pop}(S_n)$ was studied by Asinowski–Banderier–Hackl and by Asinowski–Banderier–Billey–Hackl–Linusson.

Claesson–Guðmundsson–Pantone gave a polynomial-time algorithm for computing $|\text{Pop}(S_n)|$ and used it to compute these numbers for $n \leq 1000$.

Meet-Semilattices

Colin Defant Pop-Stack Sorting

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

æ

(人間) シスヨン イヨン

・ 同 ト ・ ヨ ト ・ ヨ ト

Meet-semilattice Not meet-semilattice Every meet-semilattice in this talk will be **locally finite** and have a unique minimal element $\hat{0}$.

Meet-semilattice Not meet-semilattice Every meet-semilattice in this talk will be **locally finite** and have a unique minimal element $\hat{0}$.

Write $\bigwedge X$ for the meet of a set $X \subseteq L$.

(1日) (1日) (1日)

Meet-semilattice Not meet-semilattice Every meet-semilattice in this talk will be **locally finite** and have a unique minimal element $\hat{0}$.

Write $\bigwedge X$ for the meet of a set $X \subseteq L$.

A *lattice* is a meet-semilattice whose dual is also a meet-semilattice.

The Weak Order on S_n

Colin Defant Pop-Stack Sorting

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

臣

The Weak Order on S_n

For $\pi, \sigma \in S_n$, write $\pi < \sigma$ if π can be obtained from σ by reversing a single descent. For example, 346251 < 364251. These relations form the cover relations of the *weak order* on S_n .

The Weak Order on S_n

For $\pi, \sigma \in S_n$, write $\pi < \sigma$ if π can be obtained from σ by reversing a single descent. For example, 346251 < 364251. These relations form the cover relations of the *weak order* on S_n .

The weak order is a lattice.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

For $\sigma \in S_n$, we have $\mathsf{Pop}(\sigma) = \bigwedge \{ \pi \in S_n : \pi \leq \sigma \}.$

▲冊▶ ▲臣▶ ★臣▶

For
$$\sigma \in S_n$$
, we have $\mathsf{Pop}(\sigma) = \bigwedge \{ \pi \in S_n : \pi \leq \sigma \}.$

Definition (D., 2022)

Given a meet-semilattice L, define the *pop-stack sorting* operator Pop: $L \to L$ by

$$\mathsf{Pop}(x) = \bigwedge \{ y \in L : y \leq x \}.$$

Say an element $x \in L$ is *t-pop sortable* if $\mathsf{Pop}^t(x) = \widehat{0}$.

・ 戸 ト ・ ヨ ト ・

For
$$\sigma \in S_n$$
, we have $\mathsf{Pop}(\sigma) = \bigwedge \{ \pi \in S_n : \pi \leq \sigma \}.$

Definition (D., 2022)

Given a meet-semilattice L, define the *pop-stack sorting* operator Pop: $L \to L$ by

$$\mathsf{Pop}(x) = \bigwedge \{ y \in L : y \leq x \}.$$

Say an element $x \in L$ is *t*-pop sortable if $\mathsf{Pop}^t(x) = \widehat{0}$.

Ungar's Theorem for Coxeter Groups

æ

Ungar's Theorem for Coxeter Groups

Let W be a finite Coxeter group with Coxeter number h. The weak order on W is a lattice.

Theorem (D., 2022)

The maximum number of iterations of Pop needed to send an element of W to the identity is h - 1.

A (10) < (10) < (10) </p>

Rational Generating Functions in Other Types

日とくほとく

크

Rational Generating Functions in Other Types

Theorem (D., 2022)

For each fixed $t \ge 0$, the generating function that counts t-pop sortable elements of the hyperoctahedral group B_n is rational.

Theorem (D., 2022)

For each fixed $t \ge 0$, the generating function that counts t-pop sortable elements of the affine symmetric group \widetilde{A}_n is rational.

|▲間▶||▲国▶||▲国▶

ν -Tamari Lattices

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

æ

$\nu\textsc{-}\mathrm{Tamari}$ Lattices

Fix a lattice path ν . Let $\operatorname{Tam}(\nu)$ be the set of lattice paths lying weakly above ν . Make $\operatorname{Tam}(\nu)$ into a lattice with the following cover relations $\mu < \mu'$:

$\nu\textsc{-}Tamari$ Lattices

Fix a lattice path ν . Let $\operatorname{Tam}(\nu)$ be the set of lattice paths lying weakly above ν . Make $\operatorname{Tam}(\nu)$ into a lattice with the following cover relations $\mu < \mu'$:

 $\operatorname{Tam}((\operatorname{NE}^m)^n)$ is the *n*-th *m*-*Tamari* lattice $\operatorname{Tam}_n(m)$. $\operatorname{Tam}((\operatorname{NE})^n)$ is the *n*-th *Tamari* lattice Tam_n .

Pop-Stack Sorting on $Tam_3(2)$

Colin Defant Pop-Stack Sorting

イロト イヨト イヨト イヨト

臣

Pop-Stack Sorting on $Tam_3(2)$

||◆ 同 ト || 三 ト || 三 ト

Pop-Stack Sorting on *m*-Tamari Lattices

御下 くヨト く

표 표

Pop-Stack Sorting on *m*-Tamari Lattices

Let $M(\operatorname{Tam}(\nu))$ be the maximum number of iterations of Pop needed to send every element of $\operatorname{Tam}(\nu)$ to $\widehat{0} = \nu$.

Let $N(\operatorname{Tam}(\nu))$ be the number of elements of $\operatorname{Tam}(\nu)$ requiring $M(\operatorname{Tam}(\nu))$ iterations.

Pop-Stack Sorting on m-Tamari Lattices

Let $M(\operatorname{Tam}(\nu))$ be the maximum number of iterations of Pop needed to send every element of $\operatorname{Tam}(\nu)$ to $\widehat{0} = \nu$.

Let $N(\operatorname{Tam}(\nu))$ be the number of elements of $\operatorname{Tam}(\nu)$ requiring $M(\operatorname{Tam}(\nu))$ iterations.

.

I have computed $M(\operatorname{Tam}(\nu))$ for all ν .

Theorem (D., 2022)

We have $M(\operatorname{Tam}_n(m)) = m + n - 2$ and

$$N(\operatorname{Tam}_{n}(m)) = \frac{1}{n-1} \binom{(m+1)(n-2) + m - 1}{n-2}$$

In particular, $N(\operatorname{Tam}_n) = C_{n-2}$.

御下 くヨト く

표 표

Let $h_t(m, n)$ be the number of t-pop sortable elements of $\operatorname{Tam}_n(m)$.

Conjecture (D., 2022)

For fixed $t, m \ge 1$, the generating function $\sum_{n\ge 1} h_t(m, n) x^n$ is rational.

Let $h_t(m, n)$ be the number of t-pop sortable elements of $\operatorname{Tam}_n(m)$.

Conjecture (D., 2022)

For fixed $t, m \ge 1$, the generating function $\sum_{n\ge 1} h_t(m, n) x^n$ is rational.

Theorem (D., 2022)

The above conjecture is true when $t \leq 2$.

Let $h_t(m, n)$ be the number of t-pop sortable elements of $\operatorname{Tam}_n(m)$.

Conjecture (D., 2022)

For fixed $t, m \ge 1$, the generating function $\sum_{n\ge 1} h_t(m, n) x^n$ is rational.

Theorem (D., 2022)

The above conjecture is true when $t \leq 2$.

Theorem (Hong, 2022)

The above conjecture is true when m = 1. In fact,

$$\sum_{n \ge 1} h_t(1, n) x^n = \frac{x}{1 - 2x - \sum_{j=2}^t C_{j-1} x^j}$$

4 ∰ ► < 3</p>

Rowmotion

Colin Defant Pop-Stack Sorting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Rowmotion

For any distributive lattice L, there is a bijective *rowmotion* operator Row: $L \rightarrow L$. Rowmotion has been studied extensively for specific distributive lattices in dynamical algebraic combinatorics.

A 回 > A 回 > A

Rowmotion

For any distributive lattice L, there is a bijective *rowmotion* operator Row: $L \rightarrow L$. Rowmotion has been studied extensively for specific distributive lattices in dynamical algebraic combinatorics.

Nathan Williams and I introduced a much broader family of lattices called *semidistrim lattices*. We described how to define a bijective rowmotion operator on any semidistrim lattice.

Semidistrim Lattices

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Semidistrim Lattices

Every semidistrim lattice L has an associated Galois graph G_L .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Semidistrim Lattices

Every semidistrim lattice L has an associated Galois graph G_L .

Theorem (D.–Williams, 2022+)

Let L be semidistrim, and let L^* be its dual. Then

$$|\{x \in L : \operatorname{Row}(x) \le x\}| = |\mathsf{Pop}(L)| = |\mathsf{Pop}(L^*)|$$

= $|\{$ independent dominating sets in $G_L\}|.$

Every semidistrim lattice L has an associated Galois graph G_L .

Theorem (D.–Williams, 2022+)

Let L be semidistrim, and let L^* be its dual. Then

$$|\{x \in L : \operatorname{Row}(x) \le x\}| = |\mathsf{Pop}(L)| = |\mathsf{Pop}(L^*)|$$

= $|\{$ independent dominating sets in $G_L\}|.$

The equality $|\mathsf{Pop}(L)| = |\mathsf{Pop}(L^*)|$ does **not** hold for arbitrary finite lattices.

(日)

Distributive Dyck Path Lattices

▲御▶ ▲理▶ ▲理≯

æ

Distributive Dyck Path Lattices

Let \mathcal{L}_n be the lattice of Dyck paths of semilength n ordered by "lying weakly above."

Distributive Dyck Path Lattices

Let \mathcal{L}_n be the lattice of Dyck paths of semilength n ordered by "lying weakly above."

Theorem (Sapounakis–Tasoulas–Tsikouras, 2006)

Then

$$|\mathsf{Pop}(\mathcal{L}_n)| = \sum_{k=0}^{n+1} \frac{1}{k+1} \binom{2k}{k} \binom{n+k+1}{3k}.$$

イロト イポト イヨト イヨト

э

Colin Defant Pop-Stack Sorting

イロト イヨト イヨト イヨト

æ

Theorem (Hong, 2022)

 $|\mathsf{Pop}(\mathrm{Tam}_n)|$ is the Motzkin number M_{n-1} .

イロト イロト イヨト イヨト 三日

Theorem (Hong, 2022)

 $|\mathsf{Pop}(\mathrm{Tam}_n)|$ is the Motzkin number M_{n-1} .

Tam_n is isomorphic to the sublattice of the weak order on S_n formed by Av_n(312). Hong showed that

 $\operatorname{Pop}(\operatorname{Tam}_n) = \{ \pi \in \operatorname{Av}_n(312) : \pi_n = n \text{ and } \pi \text{ has no double descents} \}.$

(4) 開き (4) 目を (4) 目を (4) 目的

Theorem (Hong, 2022)

 $|\mathsf{Pop}(\mathrm{Tam}_n)|$ is the Motzkin number M_{n-1} .

 Tam_n is isomorphic to the sublattice of the weak order on S_n formed by $\operatorname{Av}_n(312)$. Hong showed that

 $\operatorname{Pop}(\operatorname{Tam}_n) = \{ \pi \in \operatorname{Av}_n(312) : \pi_n = n \text{ and } \pi \text{ has no double descents} \}.$

Nathan Williams and I stated several enumerative conjectures about the image of Pop for Tamari lattices, the weak order of B_n , lattice of order ideals of root posets, type-B Tamari lattices, and bipartite Cambrian lattices. All but the last were resolved in a recent preprint by Yunseo Choi and Nathan Sun.

Theorem (Hong, 2022)

 $|\mathsf{Pop}(\mathrm{Tam}_n)|$ is the Motzkin number M_{n-1} .

 Tam_n is isomorphic to the sublattice of the weak order on S_n formed by $\operatorname{Av}_n(312)$. Hong showed that

 $\operatorname{Pop}(\operatorname{Tam}_n) = \{ \pi \in \operatorname{Av}_n(312) : \pi_n = n \text{ and } \pi \text{ has no double descents} \}.$

Nathan Williams and I stated several enumerative conjectures about the image of Pop for Tamari lattices, the weak order of B_n , lattice of order ideals of root posets, type-B Tamari lattices, and bipartite Cambrian lattices. All but the last were resolved in a recent preprint by Yunseo Choi and Nathan Sun.

Question	
What is $ Pop(\mathrm{Tam}_n(m)) $ when $m \ge 2$?	
	< ロ > < 部 > < 注 > < 注 > 注 のの
Colin Defant	Pop-Stack Sorting

Infinite Meet-Semilattices

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Infinite Meet-Semilattices

Problem

Let L be an interesting infinite meet-semilattice. Let a_t be the number of t-pop sortable elements of L. What is $\sum_{t\geq 0} a_t x^t$? Is it rational?

▲冊 ▶ ▲ 臣 ▶ ▲

Infinite Meet-Semilattices

Problem

Let L be an interesting infinite meet-semilattice. Let a_t be the number of t-pop sortable elements of L. What is $\sum_{t\geq 0} a_t x^t$? Is it rational?

Potential candidates for L include

- The weak order of an infinite Coxeter group such as the affine symmetric group.
- The affine Tamari meet-semilattice (312-avoiding affine permutations under the weak order).
- The weak order on the positive braid monoid.

A (10) < A (10) </p>

Thank You!

・ロト ・御ト ・ヨト ・ヨト

臣