Enumerative and Analytic Combinatorics from Pop-Stack Sorting

Colin Defant IIIIT

Analytic and Probabilistic Combinatorics BIRS Workshop
November 16, 2022

The Pop-Stack Sorting Map

The Pop-Stack Sorting Map

The pop-stack sorting map Pop: $S_{n} \rightarrow S_{n}$ acts on a permutation by reversing its descending runs.

The Pop-Stack Sorting Map

The pop-stack sorting map Pop: $S_{n} \rightarrow S_{n}$ acts on a permutation by reversing its descending runs.

Example: If $\pi=762491853$, then $\operatorname{Pop}(\pi)=267419358$.

The Pop-Stack Sorting Map

The pop-stack sorting map Pop: $S_{n} \rightarrow S_{n}$ acts on a permutation by reversing its descending runs.

Example: If $\pi=762491853$, then $\operatorname{Pop}(\pi)=267419358$.

Theorem (Ungar, 1982)

The maximum number of iterations of Pop needed to send a permutation in S_{n} to the identity is $n-1$.

The Pop-Stack Sorting Map

The pop-stack sorting map Pop: $S_{n} \rightarrow S_{n}$ acts on a permutation by reversing its descending runs.

Example: If $\pi=762491853$, then $\operatorname{Pop}(\pi)=267419358$.

Theorem (Ungar, 1982)

The maximum number of iterations of Pop needed to send a permutation in S_{n} to the identity is $n-1$.

Conjecture (D., 2020)

The average number of iterations of Pop needed to sort a random permutation in S_{n} is $n(1-o(1))$.
(I can prove that the average is at least $n / 2$. Can you prove that it is at least $0.5001 n ?$)

t-Pop Sortable Permutations

t-Pop Sortable Permutations

A permutation $\pi \in S_{n}$ is t-pop sortable if $\operatorname{Pop}^{t}(\pi)=123 \cdots n$.

t-Pop Sortable Permutations

A permutation $\pi \in S_{n}$ is t-pop sortable if $\operatorname{Pop}^{t}(\pi)=123 \cdots n$.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e., it avoids 231 and 312).

t-Pop Sortable Permutations

A permutation $\pi \in S_{n}$ is t-pop sortable if $\operatorname{Pop}^{t}(\pi)=123 \cdots n$.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e., it avoids 231 and 312).

Theorem (Pudwell-Smith, 2019)

The generating function for 2-pop sortable permutations is

$$
\frac{1-x-x^{2}-x^{3}}{1-2 x-x^{2}-2 x^{3}}
$$

t-Pop Sortable Permutations

A permutation $\pi \in S_{n}$ is t-pop sortable if $\operatorname{Pop}^{t}(\pi)=123 \cdots n$.

Theorem (Easy)

A permutation is 1-pop sortable if and only if it is layered (i.e., it avoids 231 and 312).

Theorem (Pudwell-Smith, 2019)

The generating function for 2-pop sortable permutations is

$$
\frac{1-x-x^{2}-x^{3}}{1-2 x-x^{2}-2 x^{3}}
$$

Theorem (Claesson-Guðmundsson, 2019)
For each fixed $t \geq 0$, the generating function for t-pop sortable permutations is rational.

Pop-Stacked Permutations

Pop-Stacked Permutations

The structure of $\operatorname{Pop}\left(S_{n}\right)$ was studied by Asinowski-Banderier-Hackl and by
Asinowski-Banderier-Billey-Hackl-Linusson.
Claesson-Guðmundsson-Pantone gave a polynomial-time algorithm for computing $\left|\operatorname{Pop}\left(S_{n}\right)\right|$ and used it to compute these numbers for $n \leq 1000$.

Meet-Semilattices

Meet-Semilattices

A meet-semilattice is a poset L such that all $x, y \in L$ have a greatest lower bound, which is called their meet and denoted $x \wedge y$.

Meet-Semilattices

A meet-semilattice is a poset L such that all $x, y \in L$ have a greatest lower bound, which is called their meet and denoted $x \wedge y$.

Meet-semilattice

Not meet-semilattice

Meet-Semilattices

A meet-semilattice is a poset L such that all $x, y \in L$ have a greatest lower bound, which is called their meet and denoted $x \wedge y$.

Meet-semilattice
Every meet-semilattice in this talk will be locally finite and have a unique minimal element $\widehat{0}$.

Meet-Semilattices

A meet-semilattice is a poset L such that all $x, y \in L$ have a greatest lower bound, which is called their meet and denoted $x \wedge y$.

Meet-semilattice

Not meet-semilattice

Every meet-semilattice in this talk will be locally finite and have a unique minimal element $\widehat{0}$.

Write $\bigwedge X$ for the meet of a set $X \subseteq L$.

Meet-Semilattices

A meet-semilattice is a poset L such that all $x, y \in L$ have a greatest lower bound, which is called their meet and denoted $x \wedge y$.

Meet-semilattice

Not meet-semilattice

Every meet-semilattice in this talk will be locally finite and have a unique minimal element $\widehat{0}$.

Write $\bigwedge X$ for the meet of a set $X \subseteq L$.
A lattice is a meet-semilattice whose dual is also a meet-semilattice.

The Weak Order on S_{n}

The Weak Order on S_{n}

For $\pi, \sigma \in S_{n}$, write $\pi \lessdot \sigma$ if π can be obtained from σ by reversing a single descent. For example, $346251 \lessdot 364251$. These relations form the cover relations of the weak order on S_{n}.

The Weak Order on S_{n}

For $\pi, \sigma \in S_{n}$, write $\pi \lessdot \sigma$ if π can be obtained from σ by reversing a single descent. For example, $346251 \lessdot 364251$. These relations form the cover relations of the weak order on S_{n}.

The weak order is a lattice.

Pop-Stack Sorting for Meet-Semilattices

Pop-Stack Sorting for Meet-Semilattices

For $\sigma \in S_{n}$, we have $\operatorname{Pop}(\sigma)=\bigwedge\left\{\pi \in S_{n}: \pi \lessdot \sigma\right\}$.

Pop-Stack Sorting for Meet-Semilattices

For $\sigma \in S_{n}$, we have $\operatorname{Pop}(\sigma)=\bigwedge\left\{\pi \in S_{n}: \pi \lessdot \sigma\right\}$.

Definition (D., 2022)

Given a meet-semilattice L, define the pop-stack sorting operator Pop: $L \rightarrow L$ by

$$
\operatorname{Pop}(x)=\bigwedge\{y \in L: y \leftrightarrows x\}
$$

Say an element $x \in L$ is t-pop sortable if $\operatorname{Pop}^{t}(x)=\widehat{0}$.

Pop-Stack Sorting for Meet-Semilattices

For $\sigma \in S_{n}$, we have $\operatorname{Pop}(\sigma)=\bigwedge\left\{\pi \in S_{n}: \pi \lessdot \sigma\right\}$.

Definition (D., 2022)

Given a meet-semilattice L, define the pop-stack sorting operator Pop: $L \rightarrow L$ by

$$
\operatorname{Pop}(x)=\bigwedge\{y \in L: y \leftrightarrows x\}
$$

Say an element $x \in L$ is t-pop sortable if $\operatorname{Pop}^{t}(x)=\widehat{0}$.

Ungar's Theorem for Coxeter Groups

Ungar's Theorem for Coxeter Groups

Let W be a finite Coxeter group with Coxeter number h. The weak order on W is a lattice.

Theorem (D., 2022)

The maximum number of iterations of Pop needed to send an element of W to the identity is $h-1$.

Rational Generating Functions in Other Types

Rational Generating Functions in Other Types

Theorem (D., 2022)

For each fixed $t \geq 0$, the generating function that counts t-pop sortable elements of the hyperoctahedral group B_{n} is rational.

Theorem (D., 2022)

For each fixed $t \geq 0$, the generating function that counts t-pop sortable elements of the affine symmetric group \widetilde{A}_{n} is rational.

ν-Tamari Lattices

ν-Tamari Lattices

Fix a lattice path ν. Let $\operatorname{Tam}(\nu)$ be the set of lattice paths lying weakly above ν. Make $\operatorname{Tam}(\nu)$ into a lattice with the following cover relations $\mu \lessdot \mu^{\prime}$:

ν-Tamari Lattices

Fix a lattice path ν. Let $\operatorname{Tam}(\nu)$ be the set of lattice paths lying weakly above ν. Make $\operatorname{Tam}(\nu)$ into a lattice with the following cover relations $\mu \lessdot \mu^{\prime}$:

$\operatorname{Tam}\left(\left(\mathrm{NE}^{m}\right)^{n}\right)$ is the n-th m-Tamari lattice $\operatorname{Tam}_{n}(m)$.
$\operatorname{Tam}\left((\mathrm{NE})^{n}\right)$ is the n-th Tamari lattice Tam_{n}.

Pop-Stack Sorting on $\operatorname{Tam}_{3}(2)$

Pop-Stack Sorting on $\mathrm{Tam}_{3}(2)$

Pop-Stack Sorting on m-Tamari Lattices

Pop-Stack Sorting on m-Tamari Lattices

Let $M(\operatorname{Tam}(\nu))$ be the maximum number of iterations of Pop needed to send every element of $\operatorname{Tam}(\nu)$ to $\widehat{0}=\nu$.
Let $N(\operatorname{Tam}(\nu))$ be the number of elements of $\operatorname{Tam}(\nu)$ requiring $M(\operatorname{Tam}(\nu))$ iterations.

Pop-Stack Sorting on m-Tamari Lattices

Let $M(\operatorname{Tam}(\nu))$ be the maximum number of iterations of Pop needed to send every element of $\operatorname{Tam}(\nu)$ to $\widehat{0}=\nu$.
Let $N(\operatorname{Tam}(\nu))$ be the number of elements of $\operatorname{Tam}(\nu)$ requiring $M(\operatorname{Tam}(\nu))$ iterations.

I have computed $M(\operatorname{Tam}(\nu))$ for all ν.

Theorem (D., 2022)

We have $M\left(\operatorname{Tam}_{n}(m)\right)=m+n-2$ and

$$
N\left(\operatorname{Tam}_{n}(m)\right)=\frac{1}{n-1}\binom{(m+1)(n-2)+m-1}{n-2}
$$

In particular, $N\left(\operatorname{Tam}_{n}\right)=C_{n-2}$.

More Rational Generating Functions

More Rational Generating Functions

Let $h_{t}(m, n)$ be the number of t-pop sortable elements of $\operatorname{Tam}_{n}(m)$.

Conjecture (D., 2022)

For fixed $t, m \geq 1$, the generating function $\sum_{n \geq 1} h_{t}(m, n) x^{n}$ is rational.

More Rational Generating Functions

Let $h_{t}(m, n)$ be the number of t-pop sortable elements of $\operatorname{Tam}_{n}(m)$.

Conjecture (D., 2022)

For fixed $t, m \geq 1$, the generating function $\sum_{n \geq 1} h_{t}(m, n) x^{n}$ is rational.

Theorem (D., 2022)

The above conjecture is true when $t \leq 2$.

More Rational Generating Functions

Let $h_{t}(m, n)$ be the number of t-pop sortable elements of $\operatorname{Tam}_{n}(m)$.

Conjecture (D., 2022)

For fixed $t, m \geq 1$, the generating function $\sum_{n \geq 1} h_{t}(m, n) x^{n}$ is rational.

Theorem (D., 2022)

The above conjecture is true when $t \leq 2$.

Theorem (Hong, 2022)
The above conjecture is true when $m=1$. In fact,

$$
\sum_{n \geq 1} h_{t}(1, n) x^{n}=\frac{x}{1-2 x-\sum_{j=2}^{t} C_{j-1} x^{j}}
$$

Rowmotion

Rowmotion

For any distributive lattice L, there is a bijective rowmotion operator Row: $L \rightarrow L$. Rowmotion has been studied extensively for specific distributive lattices in dynamical algebraic combinatorics.

Rowmotion

For any distributive lattice L, there is a bijective rowmotion operator Row: $L \rightarrow L$. Rowmotion has been studied extensively for specific distributive lattices in dynamical algebraic combinatorics.

Nathan Williams and I introduced a much broader family of lattices called semidistrim lattices. We described how to define a bijective rowmotion operator on any semidistrim lattice.

Semidistrim Lattices

Semidistrim Lattices

Every semidistrim lattice L has an associated Galois graph G_{L}.

Semidistrim Lattices

Every semidistrim lattice L has an associated Galois graph G_{L}.

Theorem (D.-Williams, 2022+)

Let L be semidistrim, and let L^{*} be its dual. Then

$$
\begin{aligned}
& |\{x \in L: \operatorname{Row}(x) \leq x\}|=|\operatorname{Pop}(L)|=\left|\operatorname{Pop}\left(L^{*}\right)\right| \\
& \quad=\mid\left\{\text { independent dominating sets in } G_{L}\right\} \mid .
\end{aligned}
$$

Semidistrim Lattices

Every semidistrim lattice L has an associated Galois graph G_{L}.

Theorem (D.-Williams, 2022+)

Let L be semidistrim, and let L^{*} be its dual. Then

$$
\begin{aligned}
& |\{x \in L: \operatorname{Row}(x) \leq x\}|=|\operatorname{Pop}(L)|=\left|\operatorname{Pop}\left(L^{*}\right)\right| \\
& \quad=\mid\left\{\text { independent dominating sets in } G_{L}\right\} \mid .
\end{aligned}
$$

The equality $|\operatorname{Pop}(L)|=\left|\operatorname{Pop}\left(L^{*}\right)\right|$ does not hold for arbitrary finite lattices.

Distributive Dyck Path Lattices

Distributive Dyck Path Lattices

Let \mathcal{L}_{n} be the lattice of Dyck paths of semilength n ordered by "lying weakly above."

Distributive Dyck Path Lattices

Let \mathcal{L}_{n} be the lattice of Dyck paths of semilength n ordered by "lying weakly above."

Theorem (Sapounakis-Tasoulas-Tsikouras, 2006)
Then

$$
\left|\operatorname{Pop}\left(\mathcal{L}_{n}\right)\right|=\sum_{k=0}^{n+1} \frac{1}{k+1}\binom{2 k}{k}\binom{n+k+1}{3 k}
$$

More Pop Images

More Pop Images

Theorem (Hong, 2022)

$\left|\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)\right|$ is the Motzkin number M_{n-1}.

More Pop Images

Theorem (Hong, 2022)

$\left|\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)\right|$ is the Motzkin number M_{n-1}.
Tam_{n} is isomorphic to the sublattice of the weak order on S_{n} formed by $\operatorname{Av}_{n}(312)$. Hong showed that
$\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)=\left\{\pi \in \operatorname{Av}_{n}(312): \pi_{n}=n\right.$ and π has no double descents $\}$.

More Pop Images

Theorem (Hong, 2022)

$\left|\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)\right|$ is the Motzkin number M_{n-1}.
Tam_{n} is isomorphic to the sublattice of the weak order on S_{n} formed by $\operatorname{Av}_{n}(312)$. Hong showed that
$\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)=\left\{\pi \in \operatorname{Av}_{n}(312): \pi_{n}=n\right.$ and π has no double descents $\}$.
Nathan Williams and I stated several enumerative conjectures about the image of Pop for Tamari lattices, the weak order of B_{n}, lattice of order ideals of root posets, type-B Tamari lattices, and bipartite Cambrian lattices. All but the last were resolved in a recent preprint by Yunseo Choi and Nathan Sun.

More Pop Images

Theorem (Hong, 2022)

$\left|\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)\right|$ is the Motzkin number M_{n-1}.
Tam_{n} is isomorphic to the sublattice of the weak order on S_{n} formed by $\operatorname{Av}_{n}(312)$. Hong showed that
$\operatorname{Pop}\left(\operatorname{Tam}_{n}\right)=\left\{\pi \in \operatorname{Av}_{n}(312): \pi_{n}=n\right.$ and π has no double descents $\}$.
Nathan Williams and I stated several enumerative conjectures about the image of Pop for Tamari lattices, the weak order of B_{n}, lattice of order ideals of root posets, type-B Tamari lattices, and bipartite Cambrian lattices. All but the last were resolved in a recent preprint by Yunseo Choi and Nathan Sun.

Question

What is $\left|\operatorname{Pop}\left(\operatorname{Tam}_{n}(m)\right)\right|$ when $m \geq 2$?

Infinite Meet-Semilattices

Infinite Meet-Semilattices

Problem

Let L be an interesting infinite meet-semilattice. Let a_{t} be the number of t-pop sortable elements of L. What is $\sum_{t \geq 0} a_{t} x^{t}$? Is it rational?

Infinite Meet-Semilattices

Problem

Let L be an interesting infinite meet-semilattice. Let a_{t} be the number of t-pop sortable elements of L. What is $\sum_{t \geq 0} a_{t} x^{t}$? Is it rational?

Potential candidates for L include

- The weak order of an infinite Coxeter group such as the affine symmetric group.
- The affine Tamari meet-semilattice (312-avoiding affine permutations under the weak order).
- The weak order on the positive braid monoid.

Thank You!

