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The problem

INPUT: A set of n multidimensional data points + an
associative query
OUTPUT: Data points matching the query
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In this talk

Two variants of multidimensional trees: median K -d trees
and hybrid median K -d trees
Analysis of the expected internal path length and the
expected cost of partial match queries
Trees are randomly built from n points where each
coordinate xi of a data point x is independently and
uniformly drawn from [0,1]
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Standard K -d trees (Bentley, 1975)

Jon L. Bentley

•
(0.35,0.9)

•(0.4,0.7)

•(0.2,0.1)

•
(0.5,0.2)

•(0.6,0.4)

•
(0.8,0.6)

•(0.9,0.5)

(0.6,0.4){x}

(0.5,0.2){y} (0.8,0.6){y}

(0.2,0.1){x} (0.4,0.7){x} (0.9,0.5){x}

(0.35,0.9){y}
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Internal Path Length and Partial Match

K -d trees provide efficient (on expectation) support for dynamic
insertions, exact searches and several associative queries

We focus here on:
Internal path length (IPL)

cost of building the tree
cost of a successful search = 1 + IPL

n

Partial match (PM) queries
most basic associative query: find all points matching a
query with non-specified coordinates
a fundamental block for the analysis of other associative
queries (orthogonal range, nearest neighbour queries, . . . )
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Partial match queries

A random partial match query (RPM) is a K -dimensional
tuple q = (q0,q1, . . . ,qK−1)〉 where each qi ∈ [0,1]∪ {∗}

The specified coordinates qi ∈ [0,1] are drawn from
the same distribution as the coordinates of the data
points
s = the number of specified coordinates in a query
q; we assume 0 < s < K
Goal: to report all data points x = (x0, . . . , xK−1) in
the tree such that xi = qi whenever qi 6= ∗

Definition
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Example of a random partial match query

•
(0.35,0.9)

•(0.4,0.7)

•(0.2,0.1)

•
(0.5,0.2)

•(0.6,0.4)

•
(0.8,0.6)

•(0.9,0.5)(∗,0.45)

(0.6,0.4){x}

(0.5,0.2){y} (0.8,0.6){y}

(0.2,0.1){x} (0.4,0.7){x} (0.9,0.5){x}

(0.35,0.9){y}
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Known results

IPL ∼ cK n ln n
RPM = Θ(nα), α = α(s,K )

Family IPL (cK ) RPM (α)
s = 1, s = K/2,

K = 2 K →∞ K = 2 K →∞
Standard K -d trees 2 2 0.56155 0.56155
Relaxed K -d trees 2 2 0.618 0.618
Squarish K -d trees 2 2 0.5 0.5
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Median K -d trees and hybrid median K -d trees

In median and hybrid median K -d trees we choose the
discriminant of each node aiming at building more balanced
trees

Median K -d trees: choose as discriminant of each node
the coordinate that is closest, after renormalization, to the
center of the region associated to the node (bounding box)
Hybrid median K -d trees: use the median rule but only with
coordinates that haven’t been used in the current path,
until a full permutation of discriminants has been used
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Median K -d trees

Introduced in Pons’s master thesis (2010)
When a new data point x = (x0, . . . , xK−1) is inserted in the
leaf associated to region R = [`0,u0]× · · · [`K−1,uK−1]
(bounding box) the discriminant j is chosen as follows

j = arg min0≤i<K

{∣∣∣∣xi − `i
ui − `i

− 1
2

∣∣∣∣}
that is, the coordinate such that xj is closest, after
renormalization, to the center
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Example of a median K -d tree

•(0.35,0.9)

•
(0.4,0.7)

•
(0.2,0.1)

•
(0.5,0.2)

•(0.6,0.4)

•(0.8,0.6)

•
(0.9,0.5)

(0.6,0.4){x}

(0.5,0.2){y} (0.8,0.6){x}

(0.2,0.1){y} (0.4,0.7){y} (0.9,0.5){x}

(0.35,0.9){x}
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Hybrid median K -d trees

Hybrid median K -d trees also introduced by Pons in 2010,
For an arbitrary dimension K ≥ 2, the rule to assign the
discriminants is the following

1 Nodes at levels ` ≡ 0 (mod K ) discriminate w.r.t. the
median rule applied to all K coordinates

2 Nodes at levels ` ≡ j (mod K ), 0 < j < K , discriminate
w.r.t. the median rule applied to all the coordinates not used
as discriminant by any of its j − 1 immediate ascendants

Discriminants along any path from the root to a leaf form a
sequence of permutations of order K , except perhaps for
the last part of the path, which will contain only < K
distinct discriminants
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Example of a hybrid median K -d tree

•(0.35,0.9)

•
(0.4,0.7)

•
(0.2,0.1)

•
(0.5,0.2)

•(0.6,0.4)

•
(0.8,0.6)

•(0.9,0.5)

(0.6,0.4){x}

(0.5,0.2){y} (0.8,0.6){y}

(0.2,0.1){y} (0.4,0.7){y} (0.9,0.5){x}

(0.35,0.9){x}
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Median K -d trees: Expected IPL

The expected IPL of random median K -d tree of size n
is

In = c[med]
K n ln n + o(n log n)

where

c[med]
K =

−K 2K
[
AK +

∑
0≤i<K

(
K − 1

i

)
(−1)iBi+1

]−1

,

with Bj = −(Aj + 1/(j + 1)2) and

Aj =

∫ 1/2

0
z j ln z dz = −1 + (j + 1) ln 2

2j+1(j + 1)2

Theorem (Pons, 2010)
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Hybrid median K -d trees: Expected IPL

The expected IPL of a random hybrid median K -d tree
of size n is

In = c[hm]
K n ln n + o(n log n)

where
c[hm]

K =
K

1
c[med]

1
+ . . .+ 1

c[med]
K

Theorem
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Expected IPL: the coefficients cK

For all K ≥ 2,
1 c[med]

K ≤ c[hm]
K < 2 = c[rlx]

K = c[sqr]
K = c[std]

K

2 c[med ]
K > c[med ]

K +1 and c[hm]
K > c[hm]

K +1,
3

lim
K→∞

c[hm]
K = lim

K→∞
c[med]

K =
1

ln 2
← optimal

Proposition
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Expected IPL: the coefficients cK
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Median K -d trees: Random partial matches

The expected cost of a RPM query with s specified co-
ordinates out of K , 0 < s < K , in a random median K -d
tree of size n is:

Pn = Θ(nα),

where α ∈ [0,1] is the unique real solution of:

2−α
(

K (1− ρ)

K + α
+

Kρ
2(K + α + 1)

)
+K 2K

{
ρB(1/2; K +1, α+1)+(1−ρ) B(1/2; K , α+1)

}
= 1,

with ρ = s/K and B(z; a,b) =
∫ z

0 ta−1(1− t)b−1 dt denot-
ing the incomplete Beta function

Theorem
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Median K -d trees: Random partial matches

Although it is not possible to give a closed form for α in
terms of K and ρ it is possible to compute numerical
approximations with any desired degree of accuracy
It is possible also to find the value of α as K grows and
ρ = s/K is fixed. From known asymptotic expansions of
the incomplete Beta function we get α→ log2(2− ρ) as
K →∞ and ρ = s/K fixed.
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Median K -d trees: Random partial matches
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Hybrid median K -d trees: Random partial
matches

The expected cost of a RPM query with s specified
coordinates out of K , 0 < s < K , in a random hybrid
median K -d tree of size n is

P(K ,s)
n = Θ(nα),

where α ∈ [0,1] is the unique real solution of

det(I −Φ(x)) = 0,

where Φ(x) =
∫ 1

0 Ω(z) zx dz and Ω(z) is the shape ma-
trix corresponding to a system of d divide-and-conquer
recurrences, d = (K − s + 1)(s + 1)− 1

Theorem
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Hybrid median K -d trees: Random partial
matches

s
K 1 2 3 4 5
2 0.546

(0.562)
- - - -

3 0.697
(0.716)

0.368
(0.395)

- - -

4 0.771
(0.79)

0.53
(0.562)

0.275
(0.306)

- -

5 0.815
(0.833)

0.624
(0.656)

0.425
(0.463)

0.218
(0.25)

-

6 0.845
(0.862)

0.685
(0.716)

0.522
(0.562)

0.354
(0.395)

0.181
(0.211)

In parentheses the values for standard K -d trees
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A comparison of various K -d trees

Family IPL (cK ) Partial match (α)
s = 1, s = K/2,

K = 2 K →∞ K = 2 K →∞
Standard K -d trees 2 2 0.56155 0.56155
Relaxed K -d trees 2 2 0.618 0.618
Squarish K -d trees 2 2 0.5 0.5

Median K -d trees [this paper] 1.66 → 1.443 0.602 → 0.585
Hybrid median K -d trees [this paper] 1.814 → 1.443 0.546 → 0.5∗

∗conjectured
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Sketch of the proofs

In order to prove previous theorems we follow these steps:

1 Set up recurrences for the expected IPL and expected cost
of PM in median K -d trees

2 Solve the resulting divide-and-conquer recurrences by
means of Roura’s Continuous Master theorem (CMT)

3 For hybrid median K -d trees is more complicated since it
requires considering systems of divide-and-conquer
recurrences —not covered by CMT

4 We have generalized the CMT to solve systems of D&C
recurrences such as those in the analysis of hybrid median
K -d trees
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The Continuous Master Theorem

CMT considers divide-and-conquer recurrences of the following
type:

Fn = tn +
∑

0≤j<n

ωn,jFj , n ≥ n0

for some positive integer n0, a function tn, called the toll
function, and a sequence of weights ωn,j ≥ 0. The weights must
satisfy two conditions:

1 Wn =
∑

0≤j<n ωn,j ≥ 1 (at least one recursive call).

2 Zn =
∑

0≤j<n
j
n ·

ωn,j
Wn

< 1 (the size of the subinstances is a
fraction of the size of the original instance).

The next step is to find a shape function ω(z), a continuous
function approximating the discrete weights ωn,j .
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The Continuous Master Theorem

Given the sequence of weights ωn,j , ω(z) is a shape
function for that set of weights if

1
∫ 1

0 ω(z) dz ≥ 1
2 there exists a constant ρ > 0 such that

∑
0≤j<n

∣∣∣∣∣ωn,j −
∫ (j+1)/n

j/n
ω(z) dz

∣∣∣∣∣ = O(n−ρ)

Definition

A simple trick that works very often:

ω(z) = lim
n→∞

n · ωn,z·n
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The Continuous Master Theorem

Let Fn satisfy the recurrence

Fn = tn +
∑

0≤j<n

ωn,j Fj ,

with tn = Θ(na(log n)b), for some constants a ≥ 0 and b > −1, and let ω(z)

be a shape function for the weights ωn,j . Let H = 1 −
∫ 1

0 ω(z)za dz and H′ =

−(b + 1)
∫ 1

0 ω(z)za ln z dz. Then

Fn =


tn
H + o(tn) if H > 0,
tn
H′ ln n + o(tn log n) if H = 0 and H′ 6= 0,
Θ(nα) if H < 0,

where x = α is the unique non-negative solution of the equation

1−
∫ 1

0
ω(z)zx dz = 0.

Theorem (Roura, 1997)
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Analyzing median K -d trees

Example:
In = expected internal path lenght of a random median K -d tree

In = n − 1 +
∑

0≤j<n

πn,j · (Ij + In), I0 = 0

where πn,j is the probability that the left subtree of a random
median K -d tree of size n is of size j , 0 ≤ j < n

πn,j =

{
1

nK

[
(2j + 2)K − (2j + 1)K ] if j < bn/2c,

1
nK

[
(2(n − j)− 1)K − (2(n − j)− 2)K ] otherwise.

CMT solves “easily” the complicated recurrence above with the
shape function

ω(z) =

{
K 2K zK−1 if z ≤ 1/2,
K 2K (1− z)K−1 if z ≥ 1/2.
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Analyzing hybrid median K -d trees

For hybrid median K -d trees you need to set up systems of
divide-and-conquer recurrences.

Example:
P(i,`)

n = expected cost of a random PM in a random hybrid
median K -d tree of size n such that there are only i (1 ≤ i ≤ K )
possible choices for the discriminant at the root and ` of these i
coordinates are specified in the query (0 ≤ ` ≤ s)
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Analyzing hybrid median K -d trees

If i > 1 and 0 < ` < i then

P(i,`)
n = 1 +

`

i

n−1∑
j=0

(
π

(i)
n,j + π

(i)
n,n−1−j

) j + 1
n + 1

P(i−1,`−1)
j

+
i − `

i

n−1∑
j=0

(π
(i)
n,j + π

(i)
n,n−1−j)P

(i−1,`)
j ,

with π(i)
n,j as in median K -d trees (but only i available

coordinates, not K )

Other cases (i = 1, i = `, ` = 0) are handled similarly
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Analyzing hybrid median K -d trees

For example, with K = 3 and s = 2 we must set up a 5× 5
system of linear recurrences and define an shape matrix Ω

(3,2)

1

(2,2) 2 (2,1)3

(1,1)

4

(1,0)

5

w (1,2) w (1,3)

w (2,4) w (3,4) w (3,5)

w (4,1)

w (5,1)

Ω =

1 2 3 4 5


1 0 w (1,2) w (1,3) 0 0
2 0 0 0 w (2,4) 0
3 0 0 0 w (3,4) w (3,5)

4 w (4,1) 0 0 0 0
5 w (5,1) 0 0 0 0
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Analyzing hybrid median K -d trees

(3,2)

1

(2,2) 2 (2,1)3

(1,1)

4

(1,0)

5

w (1,2) w (1,3)

w (2,4) w (3,4) w (3,5)

w (4,1)

w (5,1)

• w(1,2) = shape function for the weight 1
3 (π

(3)
n,j + π

(3)
n,n−1−j )→ Algorithm #1 with cost P(3,2)

n calls recursively

algorithm #2 with cost P(2,2)
j

• w(1,3) = shape function for the weight 2
3

j+1
n+1 (π

(3)
n,j + π

(3)
n,n−1−j )→ Algorithm #1 (P(3,2)

n ) calls recursively

algorithm #3 (P(2,1)
j )

• . . .
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Conclusions and final remarks

Both median and hybrid median K -d trees are simple and
easy to implement, and neither requires significant extra
space
Both are more balanced than most other well known
variants of K -d trees; their expected IPL is ∼ cK n ln n with
cK < 2 for all K ≥ 2, and cK → 1/ ln 2 (optimal) as K →∞
Their expected cost for PM is Θ(nα); for any s and K ≥ 2
we have

1− s
K
≤ α[hm] < α[std] < α[med] < α[rlx] =

1
2

(√
9− 8

s
K
− 1

)
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Conclusions and final remarks

Hybrid median K -d trees outperfom standard, median and
relaxed K -d trees and we conjecture that they approach
the optimal exponent α = 1− s/K as K gets larger
The special structure of the linear systems of recurrences
for the IPL and RPM of hybrid median K -d trees can be
exploited to find the constants cK and the equations
satisfied by the exponents α(s,K ); we have developed a
limited extension of the CMT to cope with these systems of
recurrences
This work is a new example of the power of the CMT as a
fundamental tool in the analysis of algorithms, for example
to analyze the expected cost of quicksort, quickselect,
binary search trees, . . . but it hasn’t found its way into our
algorithms textbooks yet
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Please like and subscribe to my channel

just kidding. . . THANK YOU FOR YOUR ATTENTION!
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