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Bootstrapping and Double-Exponential Limit Laws
(Prodinger & Wagner, 2015)

�It is a very typical situation that an extremal parameter in a

combinatorial structure follows a discrete double-exponential

distribution, and that �uctuations in the average occur.�

Some examples:

Longest sequence of 1's in a 0-1 sequence.

Longest sequence of a ∈ A, A is an alphabet of size k .

Longest horizontal segment in a Motzkin path.

Maximum outdegree in planted plane trees.

P(Xn ≤ h) = exp(−Anρh)(1+ o(1)),

E(Xn) = logb n + logb A+
γ

log b
+

1

2
+ ϕb(logb An) + o(1).
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Yh(z) g.f. with
�some parameter� ≤ h
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The protection number of a vertex

De�nition

The protection number of a vertex v is the length of the shortest

path from v to any leaf contained in the maximal subtree where v
is a root.
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Maximum protection number: Some examples

A maximum protection number of 0 means the tree is a single

vertex.

Paths (vertices are a leaf or have exactly one child) have a

very high ratio of protection number to number of vertices.

Trees where vertices generally have more than one child have a

low ratio of protection number to number of vertices.

0
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Timeline of work on protection number of trees

Number of vertices with protection number at least 2:

in ordered trees. Cheon and Shapiro (2008).

in k-ary trees, digital search trees, binary search trees,

tries and su�x trees, random recursive trees.

Devroye, Du, Gaither, Holmgren, Homma, Janson, Mahmoud,

Mansour, Prodinger, Sellke, Ward (2010�2015).

Number of vertices with protection number at least k , again in

various types of trees.

Bóna, Copenhaver, Devroye, Heuberger, Janson, Prodinger, Pittel

(2014�2017).

Protection number of the root. Plane trees, simply generated

trees, Pólya trees.

Gittenberger, Goª¦biewski, Heuberger, Klimczak, Larcher, Prodinger,

Sulkowska (2017�2021).
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Simply generated trees

De�nition

A simply generated tree has a generating function Y which satis�es

the functional equation Y (x) = xΦ(Y (x)) where Φ is a weight

generating function Φ(x) =
∑

n≥0 wnx
n, wn ≥ 0.

Complete binary trees: B(x)= x + xB(x)2 = x(1+B(x)2).

Plane trees: P(x)= x + xP(x) + xP(x)2 + · · · = x 1
1−P(x) .

Some things to note:

wn ̸= 0 means the tree can have vertices with exactly n
children.

ρ is the (�nite) radius of convergence or dominant singularity

of Y (x).

τ = Y (ρ), so that Φ(τ) = τΦ′(τ) and ρ = τ/Φ(τ) = 1/Φ′(τ).
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Protection number of simply generated trees

Let Yh,k be the generating function for simply generated trees with:

the maximum protection number of any vertex is ≤ h,

the protection number of the root is ≥ k .

Yh,0(x) = Yh,1(x) + x ,

Yh,k(x) = xΦ(Yh,k−1(x))− xΦ(Yh,h(x)), 1 ≤ k ≤ h.

Sarah J. Selkirk University of Klagenfurt 12



Protection number of simply generated trees

Let Yh,k be the generating function for simply generated trees with:

the maximum protection number of any vertex is ≤ h,

the protection number of the root is ≥ k .

Yh,0(x) = Yh,1(x) + x ,

Yh,k(x) = xΦ(Yh,k−1(x))− xΦ(Yh,h(x)), 1 ≤ k ≤ h.

p.n. ≥ 0
=

p.n. ≥ 1
+

p.n. = 0

Sarah J. Selkirk University of Klagenfurt 12



Protection number of simply generated trees

Let Yh,k be the generating function for simply generated trees with:

the maximum protection number of any vertex is ≤ h,

the protection number of the root is ≥ k .

Yh,0(x) = Yh,1(x) + x ,

Yh,k(x) = xΦ(Yh,k−1(x))− xΦ(Yh,h(x)), 1 ≤ k ≤ h.

p.n. ≥ k

=

x

≥ k − 1
· · ·

≥ k − 1

−
x

≥ h
· · ·

≥ h

Sarah J. Selkirk University of Klagenfurt 12



Protection number of simply generated trees

The system of functional equations:

Yh,0(x) = Yh,1(x) + x ,

Yh,k(x) = xΦ(Yh,k−1(x))− xΦ(Yh,h(x)), 1 ≤ k ≤ h.

We set x := ρh (common radius of convergence of system for

�xed h) and ηh,k := Yh,k(ρh), so the system becomes

ηh,0 = ηh,1 + ρh,

ηh,k = ρhΦ(ηh,k−1)− ρhΦ(ηh,h), 1 ≤ k ≤ h.

Determinant of Jacobian:

0 =
h∏

j=1

(
ρhΦ

′(ηh,j)
)
+
(
1− ρhΦ

′(ηh,0)
)(

1+
h∑

k=2

h∏
j=k

(
ρhΦ

′(ηh,j)
))
.
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Theorem of Prodinger and Wagner

For details: Helmut Prodinger and Stephan Wagner. Bootstrapping and

double-exponential limit laws. DMTCS, 2015.
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Goal: Apply the Theorem of Prodinger and Wagner

Problem 1

Show that the dominant singularity for Yh,0 is ρh ∈ R, where

ρh = ρ+ cζh + o(ζh)

as h → ∞ for some constants ρ > 0, c > 0 and 0 < ζ < 1.

The system that we must use to obtain this result is the following:

ηh,0 = ηh,1 + ρh,

ηh,k = ρhΦ(ηh,k−1)− ρhΦ(ηh,h)

0 =
h∏

j=1

(
ρhΦ

′(ηh,j)
)
+
(
1− ρhΦ

′(ηh,0)
)(

1+
h∑

k=2

h∏
j=k

(
ρhΦ

′(ηh,j)
))
.
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Aim: ρh = ρ+ cζh + o(ζh)

Show:

1 ρh → ρ.

2 ηh,k → ηk .

3

h∏
j=1

(
ρhΦ

′(ηh,j)
)
= O((ρΦ′(0))h) and

1+
h∑

k=2

h∏
j=k

(
ρhΦ

′(ηh,j)
)
→ 1

1− ρΦ′(0)
.

4 ηh,0 = τ + O(B1
h) and ρh = ρ+ O(B1

h).

5

h∏
j=1

(
ρhΦ

′(ηh,j)
)
= (ρΦ′(0))hλ2(1+ O(B2

h)) and

1+
h∑

k=2

h∏
j=k

(
ρhΦ

′(ηh,j)
)
=

1

1− ρΦ′(0)(1+ O(B3
h))

.
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Asymptotic behaviour of the singularity

Lemma (Heuberger, SJS, Wagner, 2022+)

As h → ∞, we have that

ρh = ρ+
1

Φ(τ)
(ρΦ′(0))h+1λ1(1− ρΦ′(0)) + o((ρΦ′(0))h),

where

λ1 = η0
∏
i≥1

ηi
ρΦ′(0)ηi−1

.

With some additional analysis. . .
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Result

Theorem (Heuberger, SJS, Wagner, 2022+)

The probability that a random tree of size n has maximum

protection number ≤ h is

yh,n
yn

= exp
(
− 1

τ
Φ′(0)λ1(1− ρΦ′(0))n(ρΦ′(0))h

)
(1+ o(1))

as n → ∞ and h = log(ρΦ′(0))−1 n + O(1).
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Binary trees, Φ(x) = (1+ x)2: Actual data (marks) plotted with the distribution (line)
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Result

Theorem (Heuberger, SJS, Wagner, 2022+)

The expected value of the maximum protection number in a

random tree of size n is

logb(n) + logb

(λ2Φ′(0)

Φ(τ)
(1− ρΦ′(0))

)
+

γ

log(b)
+

1

2

+ ψb

(
logb

(λ2Φ′(0)

Φ(τ)
(1− ρΦ′(0))n

))
+ o(1),

where γ denotes the Euler-Mascheroni constant,

λ2 = η0
∏

i≥1
ηi

ρΦ′(0)ηi−1
, and ψb is the 1-periodic function that is

de�ned by the Fourier series

ψb(x) = − 1

log(b)

∑
k ̸=0

Γ
(
− 2kπi

log(b)

)
e2kπix .
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There's more!

Proofs and results depend on Φ′(0) ̸= 0. So we must consider the

case where Φ′(0) = w1 = 0 separately.

5

4

3

2

1

0

1

1

1

1

1

0

0

0

0

0

0

Set r = min{s ∈ N : Φ(s)(0) ̸= 0}, r ≥ 2.

ρh = ρ+ cζr
h
+ o(ζr

h
).
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