Expected Entropy of Random Range-Min\&Max

Sebastian Wild*

November 14, 2022

Let \mathcal{S}_{n} denote the set of permutations from $[n]=\{1, \ldots, n\}$ to $[n]$. Let \mathcal{T}_{n} denote the set of binary trees on n vertices, i.e., trees where each node has a left and a right child; each of which could be the empty tree $\Lambda \in \mathcal{T}_{0}$.

Define minTree $\left(x_{1}, \ldots, x_{n}\right)$ recursively as follows. minTree ()$=\Lambda$. minTree $\left(x_{1}, \ldots, x_{n}\right)$ for $n \geq 1$ is a new root with minTree $\left(x_{1}, \ldots, x_{i}\right)$ and minTree $\left(x_{i+1}, \ldots, x_{n}\right)$ as left resp. right subtree, where $i=\arg \min _{1 \leq j \leq n} x_{j}$. maxTree is defined similarly using $i=\arg \max _{1 \leq j \leq n} x_{j}$.
We write $\min \operatorname{Tree}(\pi)$ for $\min \operatorname{Tree}(\pi(1), \pi(2), \ldots, \pi(n))$ for $\pi \in \mathcal{S}_{n}$.
The connection between minTree and range-minimum queries is explained in detail here https://www. wild-inter. net/publications/entropy-trees.

Warmup: Range-min only

For $T \in \mathcal{T}_{n}$, we define

$$
p(T)=\frac{\left|\left\{\pi \in \mathcal{S}_{n}: \operatorname{minTree}(\pi)=T\right\}\right|}{n!} .
$$

Goal: What is the entropy of the distribution over \mathcal{T}_{n}

$$
H_{1}(n)=\sum_{T \in \mathcal{T}_{n}} p(T) \log _{2}(1 / p(T))=\frac{1}{n!} \sum_{\pi \in \mathcal{S}_{n}} \log _{2}(1 / p(\operatorname{minTree}(\pi))) ?
$$

In this case, one can express $p(T)$ explicitly as the product of reciprocals of subtree sizes

$$
p(T)=\prod_{v \in T} \frac{1}{\mathrm{nrDescendents}(\mathrm{v})}
$$

inserting this into the sum above, one can obtain a recurrence relation for $H_{1}(n)$:

$$
\begin{align*}
H_{1}(0)=H_{1}(1) & =0 \tag{1}\\
H_{1}(n) & =\lg n+\frac{1}{n} \sum_{i=1}^{n}\left(H_{1}(i-1)+H_{1}(n-i)\right), \quad(n \geq 2) \tag{2}
\end{align*}
$$

[^0]Kieffer, Yang and Szpankowski [3] resp. Hwang and Neininger [2] shows that this solves to

$$
\begin{aligned}
H_{1}(n) & =\lg (n)+2(n+1) \sum_{i=2}^{n-1} \frac{\lg i}{(i+2)(i+1)} \\
& \sim 2 n \sum_{i=2}^{\infty} \frac{\lg i}{(i+2)(i+1)} \\
& \approx 1.7363771 n
\end{aligned}
$$

Open Problem: Range-min and max

Here, for $T_{\min }, T_{\max } \in \mathcal{T}_{n}$, define

$$
p\left(T_{\min }, T_{\max }\right)=\frac{\mid\left\{\pi \in \mathcal{S}_{n}: \min \operatorname{Tree}(\pi)=T_{\min } \text { and } \max \operatorname{Tree}(\pi)=T_{\max }\right\} \mid}{n!} .
$$

What is

$$
H_{2}(n)=\frac{1}{n!} \sum_{T \in \mathcal{T}_{n}} \log _{2}(1 / p(\operatorname{minTree}(\pi), \max \operatorname{Tree}(\pi))) ?
$$

A great result would be a (somewhat) explicit form for $p\left(T_{\min }, T_{\max }\right)$.

What is known.. One can uniquely construct from $\left(T_{\min }, T_{\max }\right)$ a Baxter permutation π so that $\left(T_{\min }, T_{\max }\right)=(\operatorname{minTree}(\pi), \operatorname{maxTree}(\pi))[1]$. Hence $H_{2}(n) \leq \lg \left|\operatorname{Baxter}_{n}\right| \sim 3 n$.
Empirically, we should have $H_{2}(n) \approx 2.64 n$, (I am not sure if the accuracy of that estimate really is two decimal places; it's expensive to sample).

References

[1] Paweł Gawrychowski and Patrick K. Nicholson. Optimal encodings for range top-k, selection, and min-max. In International Colloquium on Automata, Languages, and Programming (ICALP), pages 593-604, 2015. doi:10. 1007/978-3-662-47672-7_48.
[2] Hsien-Kuei Hwang and Ralph Neininger. Phase change of limit laws in the quicksort recurrence under varying toll functions. SIAM Journal on Computing, 31(6):1687-1722, jan 2002. doi:10. 1137/s009753970138390x.
[3] John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural complexity of random binary trees. In 2009 IEEE International Symposium on Information Theory. IEEE, jun 2009. doi:10.1109/isit. 2009. 5205704.

[^0]: *University of Liverpool, UK, wild@liverpool.ac.uk

