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Rooted labelled trees

In a rooted labelled tree, all vertices have a unique label in

{1,2,...,n}.
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» Rooted labelled trees form a simply generated family of trees.
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Rooted labelled trees

» Rooted labelled trees form a simply generated family of trees.

» Uniformly random rooted labelled trees are a special case of

conditioned Galton—Watson trees.

» The number of rooted labelled trees with n vertices is n" 1,

and many other combinatorial formulas are known.

> The height and the average distance from the root are of

order \/n.
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Recursive trees

Recursive trees can be obtained by adding vertices step by step.
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» Recursive trees are special case of a family of increasing trees.

» The number of recursive trees with n vertices is (n — 1)!, and
there are indeed many nice combinatorial connections to
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Recursive trees

» Recursive trees are special case of a family of increasing trees.

» The number of recursive trees with n vertices is (n — 1)!, and
there are indeed many nice combinatorial connections to
permutations.

» The height and the average distance from the root are of
order log n.
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Motivation

We would like a model of random trees that interpolates between
uniformly random rooted labelled trees and recursive trees.
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Motivation

We would like a model of random trees that interpolates between
uniformly random rooted labelled trees and recursive trees.

This is achieved by defining a weight based on descents.
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Descents in rooted labelled trees

A descent is a pair of adjacent vertices labelled i (parent) and j
(child) respectively such that j < i.
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Descents in rooted labelled trees

A descent is a pair of adjacent vertices labelled i (parent) and j
(child) respectively such that j < i.
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The example has four descents: (5,1), (9,2), (6,3) and (10,6).
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The model

Let g be a positive real number. We consider random rooted
labelled trees with n vertices whose probabilities are proportional to

qnumber of descents ' Tha parameter g is allowed to depend on n.
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> Note that we obtain uniformly random rooted labelled trees
for g = 1, random recursive trees as g — 0 and random
recursive trees with labels reversed as g — oo.

Uppsala University | S. Wagner




The model

Let g be a positive real number. We consider random rooted
labelled trees with n vertices whose probabilities are proportional to
gnumber of descents - The parameter q is allowed to depend on n.

» The g-enumeration of labelled trees by descents goes back to
Egecioglu and Remmel (1986).

> Note that we obtain uniformly random rooted labelled trees
for g = 1, random recursive trees as g — 0 and random
recursive trees with labels reversed as g — oo.

» Replacing g by 1/g amounts to reversing all labels. It is
therefore enough to consider g < 1.
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Descents in permutations

As a related model, consider random permutations of {1,2,..., n}
whose probabilities are proportional to gnumber of descents
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As a related model, consider random permutations of {1,2,..., n}
whose probabilities are proportional to gnumber of descents

582469713

The example has three descents: 82, 97 and 71.
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The example has three descents: 82, 97 and 71.
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Descents in permutations

As a related model, consider random permutations of {1,2,..., n}
whose probabilities are proportional to gnumber of descents

582469713

The example has three descents: 82, 97 and 71.

» Permutations of {1,2,...,n} with k descents are counted by
the Eulerian numbers <Z>

» The Eulerian polynomial is

n—1 n [e'S)
k _ o \n+l n_m—1
Z<k>q =(1-q)"> mqgm .
k=0 m=1

» This model is very similar to Mallows permutations (number

of inversions) and Ewens permutations (number of cycles).
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A connection between permutations and
trees

Consider the path from the root to vertex n. The labels of the
vertices on this path follow the descent-biased permutation model.
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Permutations: phases and local limits

1. If g2" — 0, then the permutation is with high probability the
identity.
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Permutations: phases and local limits

1. If g2" — 0, then the permutation is with high probability the
identity.

2. If log(1/q) ~ cn as n — oo, where 0 < ¢ < log 2 is constant,
then there exists a nonnegative integer k. such that, with high
probability, the number of descents is k. or k. + 1. The first r
elements (71, ..., 7, ) converge in distribution to
(Xl,Xl +Xo,..., X1+ + Xr), where the Xj are
geometrically distributed random variables.

Uppsala University | S. Wagner




Permutations: phases and local limits

1. If g2" — 0, then the permutation is with high probability the
identity.

2. If log(1/q) ~ cn as n — oo, where 0 < ¢ < log 2 is constant,
then there exists a nonnegative integer k. such that, with high
probability, the number of descents is k. or k. + 1. The first r
elements (71, ..., 7, ) converge in distribution to
(Xl,Xl +Xo,..., X1+ + Xr), where the Xj are
geometrically distributed random variables.

3. If g — 0 and log(1/q) = o(n), then
log(1
Og(n/q)(m,...,m)£>(E1,E1+E2,...,E1+...+Er)’

where the E; are i.i.d. Exp(1)-variables.
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Permutations: phases and local limits

4. If g is constant, then define the following Markov process: X
has density %qx on [0,1], and for all j > 1, Xj;1 has
density

g%

foXj g7dz + f; g7 tldz (a5 (1= )lex),
g

also on [0, 1]. Then

1
(1. (X, Xa, . X).
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Some proof ideas

In the degenerate case (log(1/q) ~ cn), we can use direct
counting: the number of permutations of {1,2,...,n} with k
descents is asymptotically equal to (k + 1)", so the total weight of
~ (k +1)"g* is maximal for k maximizing log(k + 1) — ck.
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Some proof ideas

In the degenerate case (log(1/q) ~ cn), we can use direct
counting: the number of permutations of {1,2,...,n} with k
descents is asymptotically equal to (k + 1)", so the total weight of
~ (k +1)"g* is maximal for k maximizing log(k + 1) — ck.

In particular, if g2" — 0, then the weight of the identity
permutation is greater than that of all others combined.
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Some proof ideas

In the non-degenerate cases, we can make use of generating
functions and the method of moments.

Uppsala University | S. Wagner




Some proof ideas

In the non-degenerate cases, we can make use of generating
functions and the method of moments.

If PX(q) is the weighted number of permutations of {1,2...,n}
whose first element is k, and S(x,y) =3, Pk(q)X>", then

n!

g, B y 1 qy
aS(XaY) - (1_q)1 —y (e(ql)x —q - e(qfl)Xy —q - S(Xv)/)) .

This can be used to analyze the moments of the first element.
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Trees: root degree and local limit

Uppsala University | S. Wagner




Trees: root degree and local limit

For constant g, the root degree has a discrete limit distribution (if
q — 0, it goes to infinity), with probabilities given by

o — qt/(0-9) 1 — gk (log(l/q))"
K 1-qg k! 1—gqg '
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Trees: root degree and local limit

For constant g, the root degree has a discrete limit distribution (if
g — 0, it goes to infinity), with probabilities given by

1/(1=9) 1 — gk /log(1 k
o= q (og( /q)) _

1—gq k! 1—gq

Moreover, we have a local limit, i.e., the distribution of the
neighbourhood of radius r around the root converges for every
fixed r.
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Trees: root component

By root component, we mean the largest subtree containing the
root that forms an increasing tree. Let R,(q) be the size of this
component.

Uppsala University | S. Wagner
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By root component, we mean the largest subtree containing the
root that forms an increasing tree. Let R,(q) be the size of this
component.

» For fixed g, R,(q) converges weakly to a geometric random
variable Geom(q'/(1=9)).
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Trees: root component

By root component, we mean the largest subtree containing the
root that forms an increasing tree. Let R,(q) be the size of this
component.

» For fixed g, R,(q) converges weakly to a geometric random
variable Geom(q'/(1=9)).

» If g — 0, but gn — oo, scaling with g gives a limit:
d
qRn(q) = Exp(1).
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Trees: distances

Recall that the average distance from the root in uniformly random
rooted labelled trees is of order ©(+/n), while it is ©(log n) for
random recursive trees. Our model interpolates in the following
way:
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Trees: distances

Recall that the average distance from the root in uniformly random
rooted labelled trees is of order ©(+/n), while it is ©(log n) for
random recursive trees. Our model interpolates in the following
way:

If g is fixed (and probably if gn — c0), the average distance of a
random vertex from the root is asymptotically equal to

Iog(l/q) \/ﬂqT

Uppsala University | S. Wagner




Some further directions

> “Mesoscopic” limit of permutations: if one considers
descent-weighted permutations in windows of size
©(log(1/qgn)), the number of descents is of constant order,
and one observes a “diagonal pattern”.
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appear to converge to the continuum random tree after
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Some further directions

> “Mesoscopic” limit of permutations: if one considers
descent-weighted permutations in windows of size
O(log(1/gn)), the number of descents is of constant order,
and one observes a “diagonal pattern”.

» Scaling of random trees: for fixed g, descent-weighted trees
appear to converge to the continuum random tree after
suitable scaling. What happens as ¢ — 07

» Further properties and statistics of random trees: what can
one say about distributions? Are quantities such as the
average height or the average number of leaves generally
monotone in g7

» Changing the weight: instead of descents, one could also use
inversions in trees.
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