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Introduction

In this talk we are concerned with rational maps.

Rational maps

f : P1 → P1

f =
a0z

d1 + · · · ad1
b0zd1 + · · ·+ ad2

∈ Q(z), deg(f ) = max{d1, d2}.

f ◦n = f (f ◦n−1), f ◦0 = Id.
Warning: The symbol z sometimes denotes a variable and
sometimes a closed point. We will freely pass from endomorphisms
to rational functions and back. We also often assume that the field
under consderations is embedded into C.



Examples:

f1 = z2 − 2, f2 = z2, f3 = z2 − 1.

The maps f1, f2 are exceptional. There exist dominant maps

πi : Gm → P1, i = 1, 2

such that πi ◦ [2] = fi ◦ πi , i = 1, 2, where [2] : Gm → Gm is
multiplication by 2 on the algebraic group Gm. For the map f3 no
such maps exist.

Julia set

J(f ) = ∂{z ∈ C; |f ◦n(z)|9∞}

Julia set of f1: [−2, 2].
Julia set of f2:



Ordinary rational maps

Julia set of f3:

Definition
We say that a rational map f is exceptional if there exists an
algebraic group G of dim. 1, an isogeny α : G → G , and a
dominant map π : G → P1 such that

f ◦ π = π ◦ α.

Otherwise we call them ordinary.



Arithmetic of rational maps

We will now talk about arithmetic problems related to dynamical
systems.

Heights

Let h : P1 → R≥0 be the logarithmic Weil height. To each
f ∈ Q(z), deg(f ) ≥ 2 we can associate

ĥf : P1(Q)→ R, ĥf = lim
n→∞

h(f ◦n)

dn

{ĥf (z) = 0} = Preper(f ) = {z ; |{f ◦n(z)}n≥0| <∞}.

Almost all z ∈ Preper(f ) satisfy z ∈ J(f ).

There exists a measure µf of mass 1 on P1(C), that satisfies
f ∗µf = dµf . Its support is J(f ).



Dynamical Bogomolov (Ghioca, Nguyen, Ye)

Let C ⊂ P2
1 be a curve and f1, f2 ∈ Q(z), deg(f1) = deg(f2) ≥ 2 be

ordinary. Then there exists ε,M > 0

{(z1, z2) ∈ C (Q); ĥf1(z1) + ĥf2(z2) < ε} ≤ M

unless C is preperiodic. That is

|{(f ◦n1 , f ◦n2 )(C )}| <∞.

In their proof, both ε and M depend on C .

Families
We consider a function field of a curve K = Q(B) and rational
maps f1, f2 ∈ K (z) of degree d ≥ 2. On an open B0 ⊂ B holds
that the specializations f1,t , f2,t ∈ Q(z) are well-defined and have
degree d , for t ∈ B0(Q). For each t ∈ B0(Q) we have a canonical
height

ĥt : P2
1(Q)→ R≥0

given by ĥt(z1, z2) = ĥf1,t(z1) + ĥf2,t(z2).



Uniform results

Families of curves
Let C ⊂ P2

1 be a curve defined over the function field K and
dominating both factors P1. We consider it as a family C → B
and denote a fibre by Ct ⊂ P2

1 (forgetting t).

Theorem (Mavraki, S.)

Suppose f1, f2 are ordinary. There exist constants ε > 0,M and an
open B ′ ⊂ B0 such that

|{(z1, z2) ∈ Ct(Q); ĥt(z1, z2) < ε}| ≤ M

for all t ∈ B ′(Q) unless C is preperiodic by (f1, f2).

Comment: We prove that there are only finitely many fibres Ct

that are pre-periodic if C is not pre-periodic. The condition on C
to be dominant on both factors is necessary.



Families of polynomials

Uniform results for polynomials were obtained with different
techniques by Demarco, Krieger and Ye.

Common pre-periodic points

Theorem (Demarco, Krieger and Ye)

There exists a constant M = M(d) such that for all t1, t2 ∈ C
holds that either

Preper(zd + t1) ∩ Preper(zd + t2) ≤ M

or t1 = t2.

This is a uniform Manin-Mumford theorem for the diagonal
∆ ⊂ P2

1 and the two dimensional base variety A2 (as opposed to a
curve). Note that the set of parameters were ∆ is pre-periodic
forms a curve in A2. They also prove a statement for small heights
instead of pre-periodic points with a uniform ε.



Proofs and going further

The proof of Mavraki and me serves as a blue-print for further
progress. We use equi-distribution results, recently published by
Yuan and Zhang, and a local Hodge index theorem. Our proof
goes via proving a relative Bogomolov conjecture à la Kühne. With
our proof strategy and some more input one can go towards higher
dimensional bases. A conjecture for higher dimensional bases is:

Conjecture (Demarco, Krieger, Ye)

For all d ≥ 2 there exists a constant M = M(d) such that for all
f1, f2 ∈ C(z) of degree d holds

|Perper(f1) ∩ Preper(f2)| ≤ M

or Perper(f1) = Preper(f2).



Theorem (WIP)

Let f ∈ K [z ] be a family of ordinary polynomials of degree d ≥ 2
over a base curve B (K = Q(B)) such that each specialization is a
polynomial of degree d . There exists a constant M = M(f ,B)
such that for all t1, t2 ∈ B(C) either

|Preper(ft1) ∩ Preper(ft2)| ≤ M

or
Preper(ft1) = Preper(ft2).

Comment: This follows from a relative Bogomolov theorem over a
2 dimensional base and the proof uses Böttcher coordinates. We
also show that the set of (t1, t2) ∈ B2(C) that satisfies
Preper(ft1) = Preper(ft2) forms a finite union of subvarieties of B2.



Thank you!
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