Specialisations of families of rational maps

Harry Schmidt

Universität Basel
2022

Introduction

Ordinary maps

Arithmetic of rational maps

Families of polynomials

Introduction

In this talk we are concerned with rational maps.

Rational maps

$$
\begin{aligned}
& \qquad: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1} \\
& f=\frac{a_{0} z^{d_{1}}+\cdots a_{d_{1}}}{b_{0} z^{d_{1}}+\cdots+a_{d_{2}}} \in \overline{\mathbb{Q}}(z), \quad \operatorname{deg}(f)=\max \left\{d_{1}, d_{2}\right\} . \\
& f^{\circ n}=f\left(f^{\circ n-1}\right), f^{\circ 0}=\mathrm{Id} .
\end{aligned}
$$

Warning: The symbol z sometimes denotes a variable and sometimes a closed point. We will freely pass from endomorphisms to rational functions and back. We also often assume that the field under consderations is embedded into \mathbb{C}.

Examples:

$$
f_{1}=z^{2}-2, f_{2}=z^{2}, f_{3}=z^{2}-1
$$

The maps f_{1}, f_{2} are exceptional. There exist dominant maps

$$
\pi_{i}: \mathbb{G}_{m} \rightarrow \mathbb{P}_{1}, i=1,2
$$

such that $\pi_{i} \circ[2]=f_{i} \circ \pi_{i}, i=1,2$, where [2]: $\mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ is multiplication by 2 on the algebraic group \mathbb{G}_{m}. For the map f_{3} no such maps exist.

Julia set

$$
J(f)=\partial\left\{z \in \mathbb{C} ;\left|f^{\circ n}(z)\right| \nrightarrow \infty\right\}
$$

Julia set of $f_{1}:[-2,2]$. Julia set of f_{2} :

Ordinary rational maps

Julia set of f_{3} :

Definition

We say that a rational map f is exceptional if there exists an algebraic group G of dim. 1, an isogeny $\alpha: G \rightarrow G$, and a dominant map $\pi: G \rightarrow \mathbb{P}_{1}$ such that

$$
f \circ \pi=\pi \circ \alpha
$$

Otherwise we call them ordinary.

Arithmetic of rational maps

We will now talk about arithmetic problems related to dynamical systems.

Heights

Let $h: \mathbb{P}_{1} \rightarrow \mathbb{R}_{\geq 0}$ be the logarithmic Weil height. To each $f \in \overline{\mathbb{Q}}(z), \operatorname{deg}(\bar{f}) \geq 2$ we can associate

$$
\begin{gathered}
\hat{h}_{f}: \mathbb{P}_{1}(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}, \quad \hat{h}_{f}=\lim _{n \rightarrow \infty} \frac{h\left(f^{\circ n}\right)}{d^{n}} \\
\left\{\hat{h}_{f}(z)=0\right\}=\operatorname{Preper}(f)=\left\{z ;\left|\left\{f^{\circ n}(z)\right\}_{n \geq 0}\right|<\infty\right\} \\
\text { Almost all } z \in \operatorname{Preper}(f) \text { satisfy } z \in J(f) .
\end{gathered}
$$

There exists a measure μ_{f} of mass 1 on $\mathbb{P}_{1}(\mathbb{C})$, that satisfies $f^{*} \mu_{f}=d \mu_{f}$. Its support is $J(f)$.

Dynamical Bogomolov (Ghioca, Nguyen, Ye)
Let $C \subset \mathbb{P}_{1}^{2}$ be a curve and $f_{1}, f_{2} \in \overline{\mathbb{Q}}(z), \operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right) \geq 2$ be ordinary. Then there exists $\epsilon, M>0$

$$
\left\{\left(z_{1}, z_{2}\right) \in C(\overline{\mathbb{Q}}) ; \hat{h}_{f_{1}}\left(z_{1}\right)+\hat{h}_{f_{2}}\left(z_{2}\right)<\epsilon\right\} \leq M
$$

unless C is preperiodic. That is

$$
\left|\left\{\left(f_{1}^{\circ n}, f_{2}^{\circ n}\right)(C)\right\}\right|<\infty .
$$

In their proof, both ϵ and M depend on C.

Families

We consider a function field of a curve $K=\overline{\mathbb{Q}}(B)$ and rational maps $f_{1}, f_{2} \in K(z)$ of degree $d \geq 2$. On an open $B^{0} \subset B$ holds that the specializations $f_{1, t}, f_{2, t} \in \overline{\mathbb{Q}}(z)$ are well-defined and have degree d, for $t \in B^{0}(\overline{\mathbb{Q}})$. For each $t \in B^{0}(\overline{\mathbb{Q}})$ we have a canonical height

$$
\hat{h}_{t}: \mathbb{P}_{1}^{2}(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}_{\geq 0}
$$

given by $\hat{h}_{t}\left(z_{1}, z_{2}\right)=\hat{h}_{f_{1}, t}\left(z_{1}\right)+\hat{h}_{f_{2}, t}\left(z_{2}\right)$.

Uniform results

Families of curves

Let $C \subset \mathbb{P}_{1}^{2}$ be a curve defined over the function field K and dominating both factors \mathbb{P}_{1}. We consider it as a family $C \rightarrow B$ and denote a fibre by $C_{t} \subset \mathbb{P}_{1}^{2}$ (forgetting t).
Theorem (Mavraki, S.)
Suppose f_{1}, f_{2} are ordinary. There exist constants $\epsilon>0, M$ and an open $B^{\prime} \subset B^{0}$ such that

$$
\left|\left\{\left(z_{1}, z_{2}\right) \in C_{t}(\overline{\mathbb{Q}}) ; \hat{h}_{t}\left(z_{1}, z_{2}\right)<\epsilon\right\}\right| \leq M
$$

for all $t \in B^{\prime}(\overline{\mathbb{Q}})$ unless C is preperiodic by $\left(f_{1}, f_{2}\right)$.
Comment: We prove that there are only finitely many fibres C_{t} that are pre-periodic if C is not pre-periodic. The condition on C to be dominant on both factors is necessary.

Families of polynomials

Uniform results for polynomials were obtained with different techniques by Demarco, Krieger and Ye.

Common pre-periodic points
Theorem (Demarco, Krieger and Ye)
There exists a constant $M=M(d)$ such that for all $t_{1}, t_{2} \in \mathbb{C}$ holds that either

$$
\operatorname{Preper}\left(z^{d}+t_{1}\right) \cap \operatorname{Preper}\left(z^{d}+t_{2}\right) \leq M
$$

or $t_{1}=t_{2}$.
This is a uniform Manin-Mumford theorem for the diagonal $\Delta \subset \mathbb{P}_{1}^{2}$ and the two dimensional base variety \mathbb{A}^{2} (as opposed to a curve). Note that the set of parameters were Δ is pre-periodic forms a curve in \mathbb{A}^{2}. They also prove a statement for small heights instead of pre-periodic points with a uniform ϵ.

Proofs and going further

The proof of Mavraki and me serves as a blue-print for further progress. We use equi-distribution results, recently published by Yuan and Zhang, and a local Hodge index theorem. Our proof goes via proving a relative Bogomolov conjecture à la Kühne. With our proof strategy and some more input one can go towards higher dimensional bases. A conjecture for higher dimensional bases is:

Conjecture (Demarco, Krieger, Ye)

For all $d \geq 2$ there exists a constant $M=M(d)$ such that for all $f_{1}, f_{2} \in \mathbb{C}(z)$ of degree d holds

$$
\left|\operatorname{Perper}\left(f_{1}\right) \cap \operatorname{Preper}\left(f_{2}\right)\right| \leq M
$$

or $\operatorname{Perper}\left(f_{1}\right)=\operatorname{Preper}\left(f_{2}\right)$.

Theorem (WIP)

Let $f \in K[z]$ be a family of ordinary polynomials of degree $d \geq 2$ over a base curve $B(K=\overline{\mathbb{Q}}(B))$ such that each specialization is a polynomial of degree d. There exists a constant $M=M(f, B)$ such that for all $t_{1}, t_{2} \in B(\mathbb{C})$ either

$$
\left|\operatorname{Preper}\left(f_{t_{1}}\right) \cap \operatorname{Preper}\left(f_{t_{2}}\right)\right| \leq M
$$

or

$$
\operatorname{Preper}\left(f_{t_{1}}\right)=\operatorname{Preper}\left(f_{t_{2}}\right) .
$$

Comment: This follows from a relative Bogomolov theorem over a 2 dimensional base and the proof uses Böttcher coordinates. We also show that the set of $\left(t_{1}, t_{2}\right) \in B^{2}(\mathbb{C})$ that satisfies $\operatorname{Preper}\left(f_{t_{1}}\right)=\operatorname{Preper}\left(f_{t_{2}}\right)$ forms a finite union of subvarieties of B^{2}.

Thank you!

