On Korobov bound concerning Zaremba's conjecture

N. Moshchevitin, B. Murphy and I. Shkredov

N. Moshchevitin, B. Murphy, I. Shkredov On Korobov bound concerning Zaremba's conjecture

(4月) トイヨト イヨト

Zaremba's conjecture

Let $\alpha \in [0, 1]$. The continued fraction expansion for α is

$$\alpha = \frac{1}{c_1 + \frac{1}{c_2 + \dots}} = [c_1, c_2, \dots], \qquad c_j \in \mathbb{N}.$$

Conjecture (Zaremba, 1972)

Let q be a positive integer. Then there exists a, (a, q) = 1 such that

$$\frac{a}{q} = [c_1, c_2, \ldots, c_s]$$

has all $c_j \leq \mathcal{M} = 5$.

Hensley (1994, 1996): for large q, even $\mathcal{M} = 2$ should be enough.

Motivation-I

Theorem (Koksma–Hlawka, 1961)

Let $f : [0,1]^d \to \mathbb{R}$ be a function of bounded variation V(f)and $X \subseteq [0,1]^d$ be a finite set. Then

$$\left|\int_{[0,1]^d} f(u) \, du - \frac{1}{|X|} \sum_{x \in X} f(x)\right| \leq \operatorname{V}(f) \cdot \operatorname{Disc}(X)$$

where

$$\operatorname{Disc}(X) := \sup_{R=\prod_{i=1}^{d} [a_i,b_i]} \left| \frac{|X \cap R|}{|X|} - \mu(R) \right| \, .$$

Theorem (Schmidt, 1972)

For any finite X one has $\operatorname{Disc}(X) \gg \frac{\log |X|}{|X|}$.

N. Moshchevitin, B. Murphy, I. Shkredov

On Korobov bound concerning Zaremba's conjecture

Motivation-II

Monte–Carlo gives
$$\operatorname{Disc}(X) \sim \frac{1}{|X|^{1/2}}$$
.

Now take winding of our two-dimensional torus

$$X = X(a,q) = \left\{ \left(\frac{j}{q}, \frac{aj}{q}\right) \right\}_{j=1}^q \subseteq [0,1]^2.$$

Theorem (Zaremba, 1966)

Let
$$\frac{a}{a} = [c_1, \ldots, c_s]$$
 and $M = \max_{j \leq s} c_j$. Then

$$\operatorname{Disc}(X(a,q)) \leq \left(\frac{4M}{\log(M+1)} + \frac{4M+1}{\log q}\right) \frac{\log q}{q}$$

For the constant M this bound is essentially best possible.

Known bounds

Theorem (Korobov, 1963)

Let p be a prime number. Then there exists a s.t.

$$\frac{a}{p} = [c_1, c_2, \ldots, c_s]$$

has all $c_j \leq \mathcal{M} = O(\log p)$.

Theorem (Rukavishnikova, 2006)

The same holds for all q. Moreover,

$$\frac{1}{\varphi(q)} \left| \left\{ 1 \leqslant a \leqslant q, \, (a,q) = 1 \; : \; \max_{1 \leqslant j \leqslant s(a)} c_j(a) \geqslant T \right\} \right| \ll \frac{\log q}{T}$$

Niederreiter (1986): Zaremba's conjecture holds for $q = 2^n$, $q = 3^n$ with $\mathcal{M} = 4$ and for $q = 5^n$ with $\mathcal{M} = 5$.

N. Moshchevitin, B. Murphy, I. Shkredov On Korobov bound concerning Zaremba's conjecture

Zaremba's conjecture for a.e. q

Theorem (Bourgain–Kontorovich, 2011, 2014)

The number of $q \in \{1, \ldots, N\}$ such that Zaremba's conjecture holds with \mathcal{M} for this q is

$$N - O(N^{1-c(\mathcal{M})/\log \log N}), \qquad c(\mathcal{M}) > 0.$$

Further if $\mathcal{M} = 50$, then there is a positive proportion of such q.

Decreasing \mathcal{M} : Frolenkov–Kan, Kan, Huang, Magge–Oh–Winter.

Theorem (Kan, 2016)

If $\mathcal{M} = 4$, then for all but o(N) numbers $q \in \{1, \dots, N\}$ Zaremba's conjecture takes place.

Э

Hensley's conjecture

Theorem (Hensley, 1989–1992)

For any M

$$w_{M} := \mathcal{HD} \left(\left\{ \alpha = [c_{1}, c_{2}, \dots] \in [0, 1] : \forall c_{j} \leq M \right\} \right) =$$

= $1 - \frac{6}{\pi^{2}M} - \frac{72 \log M}{\pi^{4}M^{2}} + O\left(\frac{1}{M^{2}}\right), \qquad M \to \infty.$

 $w_2 = 0.5312805062772051416244686... > \frac{1}{2}$

Thus $w_M = 1 - O(1/M)$, $M \to \infty$ (Khinchin).

イロト イポト イヨト イヨト

Э

$$w_{\mathcal{M}} = \mathcal{HD}\left(\{\alpha = [c_1, c_2, \dots] \in [0, 1] : \forall c_j \leq M\}\right) = \mathcal{HD}(\mathcal{F}_{\mathcal{M}}),$$

where \mathcal{F}_M corresponds to the alphabet $\mathcal{A} = \{1, 2, \dots, M\}$.

Conjecture (Hensley, 1996)

Let $\mathcal{A} \subset \mathbb{N}$ be a finite alphabet and

 $\mathcal{HD}(\mathcal{F}_{\mathcal{A}})>1/2$.

Then Zaremba's conjecture takes place: $\forall q \geq q_0$ there is *a* s.t.

$$\frac{a}{q} = [c_1, c_2, \ldots, c_s], \qquad c_j \in \mathcal{A}.$$

Literally speaking, for general alphabet the Hensley's conjecture is wrong (Bourgain–Kontorovich, 2011).

N. Moshchevitin, B. Murphy, I. Shkredov On Korobov bound concerning Zaremba's conjecture

Corollary (Hensley)

Let $t \in \mathbb{N}$. Consider the set $F_M(t)$:

$$\left\{\frac{u}{v} = [c_1, c_2, \dots, c_s] : (u, v) = 1, 1 \le u < v \le t, \forall c_j \le M\right\}$$

Then

$$|F_M(t)| \sim t^{2w_M}$$
 .

We are interested in 1-parametric set (let q = p)

$$\mathcal{Z}_M(p) = \left\{1 \leq a \leq p-1 \ : \ rac{a}{p} = [c_1, c_2, \dots, c_s], \ orall c_j \leq M
ight\} \ .$$

If we believe in the uniform distribution in v, then

Zaremba's conjecture, strong form

$$orall p: |\mathcal{Z}_M(p)| \sim_M rac{p^{2w_M}}{p} = p^{2w_M-1} \gg 1, ext{ provided } w_M > rac{1}{2}.$$

N. Moshchevitin, B. Murphy, I. Shkredov

On Korobov bound concerning Zaremba's conjecture

Our results-I: upper bounds

Conjecture (Zaremba, again)

$$\forall p: \qquad |\mathcal{Z}_M(p)| \sim_M p^{2w_M-1}$$

Theorem (Moshchevitin–Murphy–S., 2019)

For any prime p and $\varepsilon > 0$ there is $M = M(\varepsilon)$ such that

$$|\mathcal{Z}_M(p)| \ll_M p^{2w_M - 1 + \varepsilon(1 - w_M)}$$

Theorem (Moshchevitin–Murphy–S., 2019)

For any prime p and $\varepsilon > 0$ there is $M = M(\varepsilon)$ and $1 \le a < p$ such that

$$\frac{a}{p} = [c_1, \ldots, c_s], \quad c_j \leq M, \quad \forall j \notin \left(\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon\right) \cdot s.$$

N. Moshchevitin, B. Murphy, I. Shkredov

On Korobov bound concerning Zaremba's conjecture

Our results-II: modular Zaremba

Theorem (S., 2020)

Let $\epsilon \in (0, 1]$. There exists $M = M(\epsilon)$ s.t. for any prime p there is

$$q = O(p^{1+\epsilon}), \qquad q \equiv 0 \pmod{p}$$

with a, (a, q) = 1 s.t.

$$\frac{a}{q} = [c_1,\ldots,c_s], \quad c_j \leq M.$$

Thus, $\epsilon = 0$ gives Zaremba's conjecture.

Increasing q we can choose M = 2.

Previously (Moshchevitin–S., 2019): $1 + \epsilon \rightarrow 30$.

Our results-II: modular Hensley's conjecture

Theorem (S., 2020)

Let $\mathcal{A} \subset \mathbb{N}$ be a finite alphabet s.t.

$$\mathcal{HD}(\mathcal{F}_{\mathcal{A}}) \geq rac{1}{2} + \delta\,, \qquad \delta > 0\,.$$

There is $C = C_{\mathcal{A}}(\delta) > 0$ s.t. for any prime p there exists

$$q = O_{\mathcal{A}}(p^{\mathcal{C}}), \qquad q \equiv 0 \pmod{p}$$

with a, (a, q) = 1 s.t.

$$\frac{a}{q} = [c_1, \ldots, c_s], \quad c_j \in \mathcal{A}.$$

Thus the modular form of Hensley's conjecture takes place.

New results

Theorem (Moshchevitin–Murphy–S., 2022+)

Let q be a positive integer with sufficiently large prime factors. Then there is a positive integer a, (a, q) = 1 and

$$M = O\left(\frac{\log q}{\log\log q}\right) \tag{1}$$

such that

$$\frac{a}{q} = [c_1, \ldots, c_s], \qquad c_j \leq M, \qquad \forall j \in [s].$$
 (2)

Also, if q is a sufficiently large square-free number, then (1), (2) take place.

Thus we have improved Korobov's bound by $\log \log q$.

Ideas of the proof

Lemma (classical)

Let
$$(a,q) = 1$$
 and $a/q = [c_1, \ldots, c_s]$. Consider the equation

$$ax \equiv y \pmod{q}, \qquad 1 \leq x < q, \quad 1 \leq |y| < q.$$
 (3)

If for all solutions (x, y) of the equation above one has x|y| ≥ q/M, then c_j ≤ M, j ∈ [s].
On the other hand, if for all j ∈ [s] the following holds c_j ≤ M, then all solutions (x, y) of (3) satisfy x|y| ≥ q/4M.

Symmetry $x \to x^{-1} \pmod{q}$:

$$\frac{a^{-1}}{q} = [c_s, c_{s-1} \dots, c_1] \quad \text{if } s \text{ is even}$$
$$\frac{a^{-1}}{q} = [1, c_s - 1, c_{s-1} \dots, c_1] \quad \text{if } s \text{ is odd.}$$

N. Moshchevitin, B. Murphy, I. Shkredov On Korobov bound concerning Zaremba's conjecture

Recall (let $t \leq \sqrt{q}$ be a parameter)

$$F_M(t) = \left\{ \frac{u}{v} = [c_1, c_2, \dots, c_s] : 1 \le u < v \le t, \forall c_j \le M \right\},$$

and

$$\mathcal{Z}_{M}(t) = \left\{ a \ : \ rac{a}{q} = [c_1, c_2, \dots, c_s], \ orall c_j \leq M, K(c_1, \dots, c_j) < t
ight\}$$

Also, let

$$\partial F_M(t) = \left\{ \frac{u}{v} = [c_1, c_2, \dots, c_s] \in F_M(t) : K(c_1, \dots, c_s, 1) \geq t \right\}$$

Lemma (Moshchevitin, 2007)

Let $t \leq \sqrt{q}$ and $T = |\partial F_M(t)|$. Then

$$\mathcal{Z}_M(t) = B_1 \bigsqcup \cdots \bigsqcup B_T \,, \qquad c_1 t^{2w_M} \leq T \leq c_2 t^{2w_M} \,,$$

where B_j are some disjoint intervals and for all $j \in [T]$ the following holds $[q/t^2] \le |B_j|$.

N. Moshchevitin, B. Murphy, I. Shkredov On Korobov bound concerning Zaremba's conjecture

Main lemma: prime case

Main lemma

Let p be a prime number, and $A, B \subseteq \mathbb{F}_p$ be sets. Then $\exists \kappa > 0$ such that

$$|\{(a+c)(b+c) = 1 : a \in A, b \in B, c \in 2 \cdot [N]\}| - \frac{N|A||B|}{p}$$

 $\ll \sqrt{|A||B|N^{1-\kappa}}$.

Previously, Kloosterman sums were used and it gives the error term depending on
$$p$$
.

In our regime $N \sim (\log p)^C$ and such bounds are irrelevant.

Theorem (S., 2022+)

Let N > 1 be a sufficiently large integer, $N < p^{c\delta}$ for an absolute constant c > 0, $A, B \subseteq \mathbb{F}_p$ be sets, and $g \in \mathrm{SL}_2(\mathbb{F}_p)$ be a non-linear map. Suppose that S is a set, $S \subseteq [N] \times [N]$, $|S| > N^{1+\delta}$. Then $\exists \kappa = \kappa(\delta) > 0$ such that $|\{g(\alpha + a) = \beta + b : (\alpha, \beta) \in S, a \in A, b \in B\}| - \frac{|S||A||B|}{|A||B|}$ $\ll_{\mathfrak{g}} \sqrt{|A||B|} |S|^{1-\kappa}$.

Exm. Taking gx = -1/x, we obtain the previous equation.

イロト イポト イヨト イヨト 二日

Lemmas imply the main result

We take $t = q^{1/2-\varepsilon}$, $\varepsilon > 0$ is a parameter.

By Moshchevitin's lemma $\mathcal{Z}_M(t) = B_1 \bigsqcup \cdots \bigsqcup B_T$, $T \sim t^{2w_M}$ and hence

$$\mathcal{Z}_M(t) \approx I \dotplus S, \qquad |I| = N.$$

By $x o x^{-1}$ symmetry we need to solve the equation $z_1z_2\equiv 1\pmod{q}, \qquad z_1,z_2\in \mathcal{Z}_{\mathcal{M}}(t)\,,$

and this is a consequence of

$$egin{array}{ll} |\{(a+2i)(b+2i)=1 \; : \; a,b\in S,\, i\in [N]\}| \ \geq \displaystylerac{N|S|^2}{q} - C|S|N^{1-\kappa} > 0 \, . \end{array}$$

The last inequality takes place if

$$\varepsilon \gg rac{1}{M}$$
 .

Thus we have

$$ax \equiv y \pmod{q}$$

for all

$$|x|y| \ge \frac{q}{4M}$$
 for $x \in [t]$ and $x \in \left[\frac{q}{4Mt}, q\right)$.
Choosing $t = \frac{q}{4Mt}$ or, equivalently, $t = \sqrt{q/4M} = q^{1/2-\varepsilon}$, we get (recall that $\varepsilon \sim 1/M$)

 $M \log M \gg \log q$

as required.

CF and SL_2 , I

Having
$$\frac{p_s}{q_s} = [c_1, \dots, c_s], \frac{p_{s-1}}{q_{s-1}} = [c_1, \dots, c_{s-1}]$$
$$\begin{pmatrix} 0 & 1\\ 1 & c_1 \end{pmatrix} \dots \begin{pmatrix} 0 & 1\\ 1 & c_s \end{pmatrix} = \begin{pmatrix} p_{s-1} & p_s\\ q_{s-1} & q_s \end{pmatrix} \in \pm \mathcal{C} \subset \mathrm{SL}_2(\mathbb{F}_p)$$

under the restrictions

$$c_j \leq M$$
 and $q_s < t$.

By Hensley's lemma t < p

$$|\mathcal{C}| \sim t^{2w_M} = t^{2-O(1/M)}$$
 .

To compare: $|SL_2(\mathbb{F}_p)| = p^3 - p$, so \mathcal{C} is small.

・ロト ・日ト ・ヨト ・ヨト

CF and SL_2 , II

We have

 $(a+c)(b+c) \equiv 1 \pmod{p}, \qquad a \in A, \ b \in B, \ c \in 2 \cdot [N].$

The last equation is equivalent to

$$a = g_j b, \qquad a \in A, \ b \in B, \ j \in [N]$$

where

$$g_j = \begin{pmatrix} -2j & 1-4j^2 \\ 1 & 2j \end{pmatrix}, \quad j \in [N]$$
 (4)

with $det(g_j) = -1$.

Our task is to study growth of the set

$$G = -\{g_j\}_{j=1}^N \subset \mathrm{SL}_2(\mathbb{F}_p).$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Theorem (Helfgott, 2008)

Take $A \subset SL_2(\mathbb{F}_p)$ such that A generates $SL_2(\mathbb{F}_p)$. Then either $AAA = SL_2(\mathbb{F}_p)$ or

$$|AAA| \geq |A|^{1+c}\,, \qquad c>0 \quad ext{ is an absolute}\,.$$

Theorem (Bourgain–Gamburd, 2008)

Let $A \subset \operatorname{SL}_2(\mathbb{F}_p)$ and $K \ge 1$. Suppose that for any proper subgroup $H \le \operatorname{SL}_2(\mathbb{F}_p)$ and $\omega \in \operatorname{SL}_2(\mathbb{F}_p)$ one has

 $|A \cap \omega H| \le |A|/K.$

Then for any $s \in SL_2(\mathbb{F}_p)$

$$|\{s = a_1 \dots a_{2^k} : a_j \in A\}| = \frac{|A|^{2^k}}{|\operatorname{SL}_2(\mathbb{F}_p)|} + O\left(\frac{|A|^{2^k}}{K^{ck}}\right)$$

N. Moshchevitin, B. Murphy, I. Shkredov

On Korobov bound concerning Zaremba's conjecture

.

Main lemma: general case

Theorem (Bourgain–Gamburd–Sarnak, 2010)

Let q be a square-free number, $q = \prod_{p \in \mathcal{P}} p$. Also, let $A \subset \operatorname{SL}_2(\mathbb{Z}/q\mathbb{Z})$ be a set, $\kappa_0, \kappa_1 > 0$ be constants such that $q^{\kappa_0} < |A| < q^{3-\kappa_0}$, further

$$|\pi_{q_1}(A)| > q_1^{\kappa_1}\,, \qquad orall q_1 | q\,, \qquad q_1 > q^{\kappa_0/40}$$

and for all $t \in \mathbb{Z}/q\mathbb{Z}$, for any $b \in \operatorname{Mat}_2(q)$, $\pi_p(b) \neq 0$, $p \in \mathcal{P}$ we have

$$|\{x \in A : \gcd(q, \operatorname{Tr}(bx) - t) > q^{\kappa_2}\}| = o(|A|),$$

where $\kappa_2 = \kappa_2(\kappa_0, \kappa_1) > 0$. Then

$$|A^3|>q^{\kappa(\kappa_0,\kappa_1)}|A|$$
 .

э

Theorem (Bourgain–Varjú, 2012)

Let $S \subset \mathrm{SL}_d(\mathbb{Z})$ be a finite and symmetric set. Assume that S generates a subgroup $G < \mathrm{SL}_d(\mathbb{Z})$ which is Zariski dense in SL_d .

Then $\operatorname{Cay}(\pi_q(G), \pi_q(A))$ form a family of expanders, when S is fixed and q runs through the integers. Moreover, there is an integer q_0 such that $\pi_q(G) = \operatorname{SL}_d(\mathbb{Z}/q\mathbb{Z})$ if q is coprime to q_0 .

The proof uses a deep result from of Bourgain–Furman–Lindenstrauss–Mozes, 2011 which is irrelevant in our regime (roughly speaking, they consider just fixed N, plus the dependence on N is bad although computable).

In our case d = 2.

Theorem (Helfgott, 2008, again)

Take $A \subset SL_2(\mathbb{F}_p)$ such that A generates $SL_2(\mathbb{F}_p)$. Then either $AAA = SL_2(\mathbb{F}_p)$ or

$$|AAA| \ge |A|^{1+c}\,, \qquad c>0 \quad ext{ is an absolute }.$$

Theorem (Kowalski, 2013)

Suppose that A is sufficiently large. Then one can take $c = \frac{1}{1526}$.

Theorem (Rudnev–S., 2018)

One can take $c = \frac{1}{20}$. Moreover, put $d = \log_{\frac{3}{2}} 8 \approx 5.13$. Then the Cayley graph Cay(A) relative to A, has diameter

$$O\left(rac{\log|\mathrm{SL}_2(\mathbb{F}_p)|}{\log|A|}
ight)^d$$

Using a more direct and more simple purely $\rm SL_2\text{-}method$ of Rudnev–S., 2018, we obtain

Main lemma, again

Let q be a positive integer with sufficiently large prime factors, and A, $B \subseteq \mathbb{Z}/q\mathbb{Z}$ be sets. Then $\exists \kappa > 0$ such that

$$|\{(a+c)(b+c)=1 : a \in A, b \in B, c \in 2 \cdot [N]\}| - \frac{N|A||B|}{q}$$

$$\ll \sqrt{|A||B|} N^{1-\kappa}$$

Also, if q is a sufficiently large square-free number, then the same takes place.

(日)

Thank you for your attention!

N. Moshchevitin, B. Murphy, I. Shkredov On Korobov bound concerning Zaremba's conjecture

Э.