On Korobov bound concerning Zaremba's conjecture

N. Moshchevitin, B. Murphy and I. Shkredov

Zaremba's conjecture

Let $\alpha \in[0,1]$. The continued fraction expansion for α is

$$
\alpha=\frac{1}{c_{1}+\frac{1}{c_{2}+\ldots}}=\left[c_{1}, c_{2}, \ldots\right], \quad c_{j} \in \mathbb{N}
$$

Conjecture (Zaremba, 1972)

Let q be a positive integer. Then there exists $a,(a, q)=1$ such that

$$
\frac{a}{q}=\left[c_{1}, c_{2}, \ldots, c_{s}\right]
$$

has all $c_{j} \leq \mathcal{M}=5$.

Hensley (1994, 1996): for large q, even $\mathcal{M}=2$ should be enough.

Motivation-I

Theorem (Koksma-Hlawka, 1961)

Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be a function of bounded variation $\mathrm{V}(f)$ and $X \subseteq[0,1]^{d}$ be a finite set. Then

$$
\left|\int_{[0,1]^{d}} f(u) d u-\frac{1}{|X|} \sum_{x \in X} f(x)\right| \leq \mathrm{V}(f) \cdot \operatorname{Disc}(X)
$$

where

$$
\operatorname{Disc}(X):=\sup _{R=\prod_{i=1}^{d}\left[a_{i}, b_{i}\right]}\left|\frac{|X \cap R|}{|X|}-\mu(R)\right|
$$

Theorem (Schmidt, 1972)

For any finite X one has $\operatorname{Disc}(X) \gg \frac{\log |X|}{|X|}$.

Motivation-II

Monte-Carlo gives $\operatorname{Disc}(X) \sim \frac{1}{|X|^{1 / 2}}$.
Now take winding of our two-dimensional torus

$$
X=X(a, q)=\left\{\left(\frac{j}{q}, \frac{a j}{q}\right)\right\}_{j=1}^{q} \subseteq[0,1]^{2}
$$

Theorem (Zaremba, 1966)

Let $\frac{a}{q}=\left[c_{1}, \ldots, c_{s}\right]$ and $M=\max _{j \leq s} c_{j}$. Then

$$
\operatorname{Disc}(X(a, q)) \leq\left(\frac{4 M}{\log (M+1)}+\frac{4 M+1}{\log q}\right) \frac{\log q}{q}
$$

For the constant M this bound is essentially best possible.

Known bounds

Theorem (Korobov, 1963)

Let p be a prime number. Then there exists a s.t.

$$
\frac{a}{p}=\left[c_{1}, c_{2}, \ldots, c_{s}\right]
$$

has all $c_{j} \leq \mathcal{M}=O(\log p)$.

Theorem (Rukavishnikova, 2006)

The same holds for all q. Moreover,

$$
\frac{1}{\varphi(q)}\left|\left\{1 \leqslant a \leqslant q,(a, q)=1: \max _{1 \leqslant j \leqslant s(a)} c_{j}(a) \geqslant T\right\}\right| \ll \frac{\log q}{T}
$$

Niederreiter (1986): Zaremba's conjecture holds for $q=2^{n}$, $q=3^{n}$ with $\mathcal{M}=4$ and for $q=5^{n}$ with $\mathcal{M}=5$.

Zaremba's conjecture for a.e. q

Theorem (Bourgain-Kontorovich, 2011, 2014)

The number of $q \in\{1, \ldots, N\}$ such that Zaremba's conjecture holds with \mathcal{M} for this q is

$$
N-O\left(N^{1-c(\mathcal{M}) / \log \log N}\right), \quad c(\mathcal{M})>0
$$

Further if $\mathcal{M}=50$, then there is a positive proportion of such q.

Decreasing \mathcal{M} : Frolenkov-Kan, Kan, Huang, Magge-Oh-Winter.

Theorem (Kan, 2016)

If $\mathcal{M}=4$, then for all but $o(N)$ numbers $q \in\{1, \ldots, N\}$ Zaremba's conjecture takes place.

Hensley's conjecture

Theorem (Hensley, 1989-1992)

For any M

$$
\begin{aligned}
& w_{M}:=\mathcal{H D}\left(\left\{\alpha=\left[c_{1}, c_{2}, \ldots\right] \in[0,1]: \forall c_{j} \leq M\right\}\right)= \\
& =1-\frac{6}{\pi^{2} M}-\frac{72 \log M}{\pi^{4} M^{2}}+O\left(\frac{1}{M^{2}}\right), \quad M \rightarrow \infty
\end{aligned}
$$

$$
w_{2}=0.5312805062772051416244686 \ldots>\frac{1}{2}
$$

Thus $w_{M}=1-O(1 / M), M \rightarrow \infty$ (Khinchin).

$$
w_{M}=\mathcal{H D}\left(\left\{\alpha=\left[c_{1}, c_{2}, \ldots\right] \in[0,1]: \forall c_{j} \leq M\right\}\right)=\mathcal{H D}\left(\mathcal{F}_{M}\right),
$$

where \mathcal{F}_{M} corresponds to the alphabet $\mathcal{A}=\{1,2, \ldots, M\}$.

Conjecture (Hensley, 1996)

Let $\mathcal{A} \subset \mathbb{N}$ be a finite alphabet and

$$
\mathcal{H D}\left(\mathcal{F}_{\mathcal{A}}\right)>1 / 2 .
$$

Then Zaremba's conjecture takes place: $\forall q \geq q_{0}$ there is a s.t.

$$
\frac{a}{q}=\left[c_{1}, c_{2}, \ldots, c_{s}\right], \quad c_{j} \in \mathcal{A} .
$$

Literally speaking, for general alphabet the Hensley's conjecture is wrong (Bourgain-Kontorovich, 2011).

Corollary (Hensley)

Let $t \in \mathbb{N}$. Consider the set $F_{M}(t)$:
$\left\{\frac{u}{v}=\left[c_{1}, c_{2}, \ldots, c_{s}\right]:(u, v)=1,1 \leq u<v \leq t, \forall c_{j} \leq M\right\}$
Then

$$
\left|F_{M}(t)\right| \sim t^{2 w_{M}} .
$$

We are interested in 1-parametric set (let $q=p$)
$\mathcal{Z}_{M}(p)=\left\{1 \leq a \leq p-1: \frac{a}{p}=\left[c_{1}, c_{2}, \ldots, c_{s}\right], \forall c_{j} \leq M\right\}$.
If we believe in the uniform distribution in v, then

Zaremba's conjecture, strong form

$\forall p: \quad\left|\mathcal{Z}_{M}(p)\right| \sim_{M} \frac{p^{2 w_{M}}}{p}=p^{2 w_{M}-1} \gg 1$, provided $w_{M}>\frac{1}{2}$.

Our results-l: upper bounds

Conjecture (Zaremba, again)

$$
\forall p: \quad\left|\mathcal{Z}_{M}(p)\right| \sim_{M} p^{2 w_{M}-1} .
$$

Theorem (Moshchevitin-Murphy-S., 2019)

For any prime p and $\varepsilon>0$ there is $M=M(\varepsilon)$ such that

$$
\left|\mathcal{Z}_{M}(p)\right| \lll M p^{2 w_{M}-1+\varepsilon\left(1-w_{M}\right)} .
$$

Theorem (Moshchevitin-Murphy-S., 2019)
For any prime p and $\varepsilon>0$ there is $M=M(\varepsilon)$ and $1 \leq a<p$ such that

$$
\frac{a}{p}=\left[c_{1}, \ldots, c_{s}\right], \quad c_{j} \leq M, \quad \forall j \notin\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right) \cdot s .
$$

N. Moshchevitin, B. Murphy, I. Shkredov

On Korobov bound concerning Zaremba's conjecture

Our results-II: modular Zaremba

Theorem (S., 2020)

Let $\epsilon \in(0,1]$. There exists $M=M(\epsilon)$ s.t. for any prime p there is

$$
q=O\left(p^{1+\epsilon}\right), \quad q \equiv 0 \quad(\bmod p)
$$

with $a,(a, q)=1$ s.t.

$$
\frac{a}{q}=\left[c_{1}, \ldots, c_{s}\right], \quad c_{j} \leq M .
$$

Thus, $\epsilon=0$ gives Zaremba's conjecture.
Increasing q we can choose $M=2$.
Previously (Moshchevitin-S., 2019): $1+\epsilon \rightarrow 30$.

Our results-II: modular Hensley's conjecture

Theorem (S., 2020)

Let $\mathcal{A} \subset \mathbb{N}$ be a finite alphabet s.t.

$$
\mathcal{H D}\left(\mathcal{F}_{\mathcal{A}}\right) \geq \frac{1}{2}+\delta, \quad \delta>0 .
$$

There is $C=C_{\mathcal{A}}(\delta)>0$ s.t. for any prime p there exists

$$
q=O_{\mathcal{A}}\left(p^{c}\right), \quad q \equiv 0 \quad(\bmod p)
$$

with $a,(a, q)=1$ s.t.

$$
\frac{a}{q}=\left[c_{1}, \ldots, c_{s}\right], \quad c_{j} \in \mathcal{A} .
$$

Thus the modular form of Hensley's conjecture takes place.

New results

Theorem (Moshchevitin-Murphy-S., 2022+)

Let q be a positive integer with sufficiently large prime factors. Then there is a positive integer $a,(a, q)=1$ and

$$
\begin{equation*}
M=O\left(\frac{\log q}{\log \log q}\right) \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{a}{q}=\left[c_{1}, \ldots, c_{s}\right], \quad c_{j} \leq M, \quad \forall j \in[s] \tag{2}
\end{equation*}
$$

Also, if q is a sufficiently large square-free number, then (1), (2) take place.

Thus we have improved Korobov's bound by $\log \log q$.

Ideas of the proof

Lemma (classical)

Let $(a, q)=1$ and $a / q=\left[c_{1}, \ldots, c_{s}\right]$. Consider the equation

$$
\begin{equation*}
a x \equiv y \quad(\bmod q), \quad 1 \leq x<q, \quad 1 \leq|y|<q \tag{3}
\end{equation*}
$$

- If for all solutions (x, y) of the equation above one has $x|y| \geq q / M$, then $c_{j} \leq M, j \in[s]$.
- On the other hand, if for all $j \in[s]$ the following holds $c_{j} \leq M$, then all solutions (x, y) of (3) satisfy $x|y| \geq q / 4 M$.

Symmetry $x \rightarrow x^{-1}(\bmod q):$

$$
\begin{array}{ll}
\frac{a^{-1}}{q}=\left[c_{s}, c_{s-1} \ldots, c_{1}\right] & \text { if } s \text { is even } \\
\frac{a^{-1}}{q}=\left[1, c_{s}-1, c_{s-1} \ldots, c_{1}\right] & \text { if } s \text { is odd }
\end{array}
$$

Recall (let $t \leq \sqrt{q}$ be a parameter)
$F_{M}(t)=\left\{\frac{u}{v}=\left[c_{1}, c_{2}, \ldots, c_{s}\right]: 1 \leq u<v \leq t, \forall c_{j} \leq M\right\}$,
and
$\mathcal{Z}_{M}(t)=\left\{a: \frac{a}{q}=\left[c_{1}, c_{2}, \ldots, c_{s}\right], \forall c_{j} \leq M, K\left(c_{1}, \ldots, c_{j}\right)<t\right\}$.
Also, let
$\partial F_{M}(t)=\left\{\frac{u}{v}=\left[c_{1}, c_{2}, \ldots, c_{s}\right] \in F_{M}(t): K\left(c_{1}, \ldots, c_{s}, 1\right) \geq t\right\}$.
Lemma (Moshchevitin, 2007)
Let $t \leq \sqrt{q}$ and $T=\left|\partial F_{M}(t)\right|$. Then

$$
\mathcal{Z}_{M}(t)=B_{1} \bigsqcup \cdots \bigsqcup B_{T}, \quad c_{1} t^{2 w_{M}} \leq T \leq c_{2} t^{2 w_{M}},
$$

where B_{j} are some disjoint intervals and for all $j \in[T]$ the following holds $\left[q / t^{2}\right] \leq\left|B_{j}\right|$.

Main lemma: prime case

Main lemma

Let p be a prime number, and $A, B \subseteq \mathbb{F}_{p}$ be sets. Then $\exists \kappa>0$ such that

$$
|\{(a+c)(b+c)=1: a \in A, b \in B, c \in 2 \cdot[N]\}|-\frac{N|A||B|}{p}
$$

$$
\ll \sqrt{|A||B|} N^{1-\kappa}
$$

Previously, Kloosterman sums were used and it gives the error term depending on p.

In our regime $N \sim(\log p)^{C}$ and such bounds are irrelevant.

Theorem (S., 2022+)

Let $N \geq 1$ be a sufficiently large integer, $N \leq p^{c \delta}$ for an absolute constant $c>0, A, B \subseteq \mathbb{F}_{p}$ be sets, and $g \in \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ be a non-linear map.
Suppose that S is a set, $S \subseteq[N] \times[N],|S| \geq N^{1+\delta}$.
Then $\exists \kappa=\kappa(\delta)>0$ such that

$$
\begin{aligned}
\mid\{g(\alpha+a)=\beta+b & :(\alpha, \beta) \in S, a \in A, b \in B\} \left\lvert\,-\frac{|S||A||B|}{p}\right. \\
& \ll g \sqrt{|A||B||S|^{1-\kappa}} .
\end{aligned}
$$

Exm. Taking $g x=-1 / x$, we obtain the previous equation.

Lemmas imply the main result

We take $t=q^{1 / 2-\varepsilon}, \varepsilon>0$ is a parameter.
By Moshchevitin's lemma $\mathcal{Z}_{M}(t)=B_{1} \bigsqcup \cdots \bigsqcup B_{T}, T \sim t^{2 w_{M}}$ and hence

$$
\mathcal{Z}_{M}(t) \approx I+S, \quad|I|=N
$$

By $x \rightarrow x^{-1}$ symmetry we need to solve the equation

$$
z_{1} z_{2} \equiv 1 \quad(\bmod q), \quad z_{1}, z_{2} \in \mathcal{Z}_{M}(t)
$$

and this is a consequence of

$$
\begin{gathered}
|\{(a+2 i)(b+2 i)=1: a, b \in S, i \in[N]\}| \\
\geq \frac{N|S|^{2}}{q}-C|S| N^{1-\kappa}>0
\end{gathered}
$$

The last inequality takes place if

$$
\varepsilon \gg \frac{1}{M}
$$

Thus we have

$$
a x \equiv y \quad(\bmod q)
$$

for all

$$
x|y| \geq \frac{q}{4 M} \quad \text { for } \quad x \in[t] \quad \text { and } \quad x \in\left[\frac{q}{4 M t}, q\right)
$$

Choosing $t=\frac{q}{4 M t}$ or, equivalently, $t=\sqrt{q / 4 M}=q^{1 / 2-\varepsilon}$, we get (recall that $\varepsilon \sim 1 / M$)

$$
M \log M \gg \log q
$$

as required.

CF and $\mathrm{SL}_{2}, \mathrm{I}$

Having $\frac{p_{s}}{q_{s}}=\left[c_{1}, \ldots, c_{s}\right], \frac{p_{s-1}}{q_{s-1}}=\left[c_{1}, \ldots, c_{s-1}\right]$

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & c_{1}
\end{array}\right) \ldots\left(\begin{array}{cc}
0 & 1 \\
1 & c_{s}
\end{array}\right)=\left(\begin{array}{cc}
p_{s-1} & p_{s} \\
q_{s-1} & q_{s}
\end{array}\right) \in \pm \mathcal{C} \subset \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)
$$

under the restrictions

$$
c_{j} \leq M \quad \text { and } \quad q_{s}<t
$$

By Hensley's lemma $t<p$

$$
|\mathcal{C}| \sim t^{2 w_{M}}=t^{2-O(1 / M)}
$$

To compare: $\left|\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right|=p^{3}-p$, so \mathcal{C} is small.

CF and SL_{2}, II

We have
$(a+c)(b+c) \equiv 1 \quad(\bmod p), \quad a \in A, b \in B, c \in 2 \cdot[N]$.
The last equation is equivalent to

$$
a=g_{j} b, \quad a \in A, b \in B, j \in[N]
$$

where

$$
g_{j}=\left(\begin{array}{cc}
-2 j & 1-4 j^{2} \tag{4}\\
1 & 2 j
\end{array}\right), \quad j \in[N]
$$

with $\operatorname{det}\left(g_{j}\right)=-1$.
Our task is to study growth of the set

$$
G=-\left\{g_{j}\right\}_{j=1}^{N} \subset \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right) .
$$

Theorem (Helfgott, 2008)

Take $A \subset \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ such that A generates $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Then either $A A A=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ or

$$
|A A A| \geq|A|^{1+c}, \quad c>0 \quad \text { is an absolute } .
$$

Theorem (Bourgain-Gamburd, 2008)

Let $A \subset \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ and $K \geq 1$. Suppose that for any proper subgroup $H \leq \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ and $\omega \in \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ one has

$$
|A \cap \omega H| \leq|A| / K
$$

Then for any $s \in \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$

$$
\left|\left\{s=a_{1} \ldots a_{2^{k}} \quad: \quad a_{j} \in A\right\}\right|=\frac{|A|^{2^{k}}}{\left|\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right|}+O\left(\frac{|A|^{2^{k}}}{K^{c k}}\right)
$$

Main lemma: general case

Theorem (Bourgain-Gamburd-Sarnak, 2010)

Let q be a square-free number, $q=\prod_{p \in \mathcal{P}} p$. Also, let $A \subset \mathrm{SL}_{2}(\mathbb{Z} / q \mathbb{Z})$ be a set, $\kappa_{0}, \kappa_{1}>0$ be constants such that $q^{\kappa_{0}}<|A|<q^{3-\kappa_{0}}$, further

$$
\left|\pi_{q_{1}}(A)\right|>q_{1}^{k_{1}}, \quad \forall q_{1} \mid q, \quad q_{1}>q^{k_{0} / 40}
$$

and for all $t \in \mathbb{Z} / q \mathbb{Z}$, for any $b \in \operatorname{Mat}_{2}(q), \pi_{p}(b) \neq 0, p \in \mathcal{P}$ we have

$$
\left|\left\{x \in A: \operatorname{gcd}(q, \operatorname{Tr}(b x)-t)>q^{k_{2}}\right\}\right|=o(|A|),
$$

where $\kappa_{2}=\kappa_{2}\left(\kappa_{0}, \kappa_{1}\right)>0$. Then

$$
\left|A^{3}\right|>q^{k\left(\kappa_{0}, \kappa_{1}\right)}|A| .
$$

Expansion for general q

Theorem (Bourgain-Varjú, 2012)

Let $S \subset \mathrm{SL}_{d}(\mathbb{Z})$ be a finite and symmetric set. Assume that S generates a subgroup $G<\mathrm{SL}_{d}(\mathbb{Z})$ which is Zariski dense in SL_{d}.
Then $\operatorname{Cay}\left(\pi_{q}(G), \pi_{q}(A)\right)$ form a family of expanders, when S is fixed and q runs through the integers. Moreover, there is an integer q_{0} such that $\pi_{q}(G)=\mathrm{SL}_{d}(\mathbb{Z} / q \mathbb{Z})$ if q is coprime to q_{0}.

The proof uses a deep result from of
Bourgain-Furman-Lindenstrauss-Mozes, 2011 which is irrelevant in our regime (roughly speaking, they consider just fixed N, plus the dependence on N is bad although computable). In our case $d=2$.

Theorem (Helfgott, 2008, again)

Take $A \subset \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ such that A generates $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. Then either $A A A=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ or

$$
|A A A| \geq|A|^{1+c}, \quad c>0 \quad \text { is an absolute } .
$$

Theorem (Kowalski, 2013)

Suppose that A is sufficiently large. Then one can take $c=\frac{1}{1526}$.

Theorem (Rudnev-S., 2018)

One can take $c=\frac{1}{20}$. Moreover, put $d=\log _{\frac{3}{2}} 8 \approx 5.13$. Then the Cayley graph $\operatorname{Cay}(A)$ relative to A, has diameter

$$
O\left(\frac{\log \left|\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right|}{\log |A|}\right)^{d}
$$

Main lemma, general case

Using a more direct and more simple purely $\mathrm{SL}_{2}-$ method of Rudnev-S., 2018, we obtain

Main lemma, again

Let q be a positive integer with sufficiently large prime factors, and $A, B \subseteq \mathbb{Z} / q \mathbb{Z}$ be sets. Then $\exists \kappa>0$ such that
$|\{(a+c)(b+c)=1: a \in A, b \in B, c \in 2 \cdot[N]\}|-\frac{N|A||B|}{q}$

$$
\ll \sqrt{|A||B|} N^{1-\kappa}
$$

Also, if q is a sufficiently large square-free number, then the same takes place.

Thank you for your attention!

