Time fractional gradient flows: Theory and numerics

Abner J. Salgado

Department of Mathematics, University of Tennessee

BIRS Workshop 22w5043 Inverse Problems for Anomalous Diffusion Processes February 21 — 25, 2022

Joint work with Wenbo Li (UTK)

Partially supported by NSF grants DMS-1720213 and DMS-2111228

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

Motivation

- Fractional derivatives and integrals are powerful tools to describe memory and hereditary properties of materials.
- Fractional partial differential equations (FPDEs) are emerging as a new powerful tool for modeling many difficult complex systems, i.e., systems with overlapping microscopic and macroscopic scales or systems with long-range time memory and long-range spatial interactions.
- In "classical" diffusion

$$\partial_t u - \Delta u = 0$$

the mean squared displacement in time scales as $t \sim \langle x^2(t) \rangle$.

- In the superdiffusive case $t^{\alpha} \sim \langle x^2(t) \rangle$ with $\alpha > 1$.
- In the subdiffusive case $\alpha \in (0,1)$, thus giving rise to

$$D_t^{\alpha}u - \Delta u = 0,$$

where D_t^{α} is the so-called Caputo derivative.

• This is usually used to model memory effects.

(Fractional) heat equation

• The (time fractional) heat equation

$$D_t^{\alpha} u - \Delta u = f.$$

Define the energy

$$\Phi_2(w) = \frac{1}{2} \int_{\Omega} |\nabla w|^2 \, \mathrm{d}x,$$

its derivative (in the L^2 -sense) is

$$\langle D\Phi_2(w), \varphi \rangle = \int_{\Omega} \nabla w \nabla \varphi \, \mathrm{d}x = \langle -\Delta w, \varphi \rangle.$$

• The (time fractional) heat equation can be understood as

$$D_t^{\alpha} u + D\Phi_2(u) = f.$$

(Fractional) parabolic p-Laplace problem

• More generally, for p > 1, consider

$$D_t^{\alpha} u - \nabla \cdot (|\nabla u|^{p-2} \nabla u) = f.$$

Define

$$\Phi_p(w) = \frac{1}{p} \int_{\Omega} |\nabla w|^p \, \mathrm{d}x,$$

then

$$\langle D\Phi_p(w), \varphi \rangle = \int_{\Omega} |\nabla w|^{p-2} \nabla w \nabla \varphi \, \mathrm{d}x.$$

Our problem reads

$$D_t^{\alpha} u + D\Phi_p(u) = f.$$

(Fractional) ODE with obstacles I

 Consider the motion of a particle inside a well. If the particle does not touch the walls then it moves by "its usual" law of motion:

$$u(t) \in (-1,1) \implies D_t^{\alpha} u(t) = f(t).$$

 If it touches one of the walls it gets reflected. Say it touches the right one. If

$$D_t^{\alpha} u \leq 0$$

the wall does not do anything, as the particle will move to the left anyways. If that is not the case, since right before it touches we had

$$D_t^{\alpha} u = f = f^+ - f^-$$

the reflection means

$$D_t^{\alpha}u = -f^-.$$

(Fractional) ODE with obstacles II

In short

$$\begin{cases} D_t^\alpha u(t) = -f^-(t), & u(t) = 1, \\ D_t^\alpha u(t) = f(t), & u(t) \in (-1, 1), \\ D_t^\alpha u(t) = f^+(t), & u(t) = -1. \end{cases}$$

▶ Subdifferential

(Fractional) parabolic obstacle problems

Define

$$\mathcal{K} = \{ w \in \widetilde{H}^s(\Omega) : w \ge g \text{ a.e. } \Omega \},$$

for some sufficiently nice g.

Consider the problem given by the complementarity conditions

$$D_t^{\alpha}u + (-\Delta)^s u \ge f, \quad u \ge g, \quad (D_t^{\alpha}u + (-\Delta)^s u - f)(u - g) = 0.$$

This is equivalent to the evolution variational inequality

$$\int_{\Omega} D_t^{\alpha} u(u-w) \, \mathrm{d}x + \langle (-\Delta)^s u, u-w \rangle \le \int_{\Omega} f(u-w) \, \mathrm{d}x, \quad \forall w \in \mathcal{K}.$$

Problem statement

- ullet Ambient space: Let ${\mathcal H}$ be a (separable) Hilbert space.
- Energy: $\Phi: \mathcal{H} \to \mathbb{R} \cup \{+\infty\}$ convex and l.s.c.
- Initial condition: $u_0 \in \mathcal{H}$.
- Right hand side: $f:[0,T]\to\mathcal{H}$.

We need to find $u:[0,T]\to \mathcal{H}$ such that

$$\begin{cases} D_t^{\alpha} u(t) + \partial \Phi(u(t)) \ni f(t), & t \in (0, T], \\ u(0) = u_0. \end{cases}$$

- Here D_t^{α} denotes the Caputo derivative, and $\partial \Phi(w)$ is the subdifferential of Φ at point w.
- $D_t^{\alpha} = \partial_t$ for $\alpha = 1$ and we get a classical gradient flow.
- If f=0 this can be understood as steepest descent to find the minimum of Φ .

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

Energy solutions

$$\xi \in \partial \Phi(u) \quad \iff \quad \Phi(u) - \Phi(w) \le \langle \xi, u - w \rangle$$

• Let us consider the classical case. We set $\alpha = 1$ to get

$$\begin{cases} u'(t) + \partial \Phi(u(t)) \ni f(t), & t \in (0, T], \\ u(0) = u_0. \end{cases}$$

Definition (energy solution)

A function $u \in H^1(0,T;\mathcal{H})$ is an energy solution if $u(0) = u_0$ and

$$\langle u'(t), u(t) - w \rangle + \Phi(u(t)) - \Phi(w) \le \langle f(t), u(t) - w \rangle, \quad \forall w \in \mathcal{H}.$$

Energy solutions: uniqueness

Theorem (uniqueness)

Energy solutions are unique.

Proof.

If u_1 and u_2 are energy solutions,

$$\langle u_1'(t), u_1(t) - w \rangle + \Phi(u_1(t)) - \Phi(w) \le \langle f(t), u_1(t) - w \rangle, \qquad w \leftarrow u_2,$$

 $\langle u_2'(t), u_2(t) - w \rangle + \Phi(u_2(t)) - \Phi(w) \le \langle f(t), u_2(t) - w \rangle, \qquad w \leftarrow u_1,$

adding, we get

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u_1(t) - u_2(t)\|^2 \le 0.$$

Since $u_1(0) = u_2(0) = u_0$ we conclude.

Energy solutions: existence I

- To show existence of solutions we employ a minimizing movements scheme.
- Introduce a partition

$$\mathcal{P} = \{0 = t_0 < t_1 < \dots < t_N = T\}, \quad \tau_n = t_n - t_{n-1}, \quad \boldsymbol{\tau} = \max_{n=1}^N \tau_n.$$

• We introduce approximations $U_n \approx u(t_n)$ via: set $F_n = \int_{t_{n-1}}^{t_n} f \, \mathrm{d}t$, $U_0 = u_0$ and define

$$U_n = \operatorname*{argmin}_{w \in \mathcal{H}} \left[\frac{1}{2\tau_n} \| w - U_{n-1} \|^2 + \Phi(w) - \langle F_n, w \rangle \right].$$

- Since we are in a Hilbert space this problem has a unique solution.
- The minimization problem is equivalent to (implicit Euler)

$$\frac{1}{\tau_n} \left(U_n - U_{n-1} \right) + \partial \Phi(U_n) \ni F_n$$

Energy solutions: existence II

• The function \bar{U} is piecewise constant

$$\bar{U}(t) = U_n, \quad t \in (t_{n-1}, t_n].$$

ullet The function \widehat{U} is piecewise linear

$$\widehat{U}(t) = \frac{t_n - t}{\tau_n} U_{n-1} + \frac{t - t_{n-1}}{\tau_n} U_n, \quad t \in (t_{n-1}, t_n].$$

and its time derivative satisfies

$$\widehat{U}'(t) = \tau_n^{-1} (U_n - U_{n-1}).$$

Energy solutions: existence III

• The minimizing movements scheme can then be written as

$$\left\langle \widehat{U}'(t), \bar{U}(t) - w \right\rangle + \Phi(\bar{U}(t)) - \Phi(w) \leq \left\langle \bar{F}(t), \bar{U}(t) - w \right\rangle, \quad \forall w \in \mathcal{H}.$$

• Setting $w = U_{n-1}$ we get

$$\tau_n \|\widehat{U}'\|^2 + \Phi(U_n) - \Phi(U_{n-1}) \le \tau_n \|F_n\| \|\widehat{U}'\|,$$

which, provided $f \in L^2(0,T;\mathcal{H})$ and $\Phi(U_0) < +\infty$, gives

$$\widehat{U}' \in L^2(0,T;\mathcal{H})$$

uniformly in \mathcal{P} .

• The previous estimate "is enough" to pass to the limit au o 0 by compactness.

Theorem (existence)

If $f \in L^2(0,T;\mathcal{H})$ and $\Phi(u_0) < \infty$ the classical gradient flow has an energy solution.

Classical gradient flows: the heart of the matter

To develop this theory we required:

• Uniqueness: The inequality

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u_1 - u_2\|^2 \le \langle (u_1 - u_2)', u_1 - u_2 \rangle.$$

- \bullet Existence: A minimizing movements scheme to obtain $\{U_n\}_{n=0}^N.$
- \bullet Existence: A suitable interpolation \widehat{U} such that its derivative \widehat{U}' is piecewise constant.

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

The Caputo derivative

• For sufficiently smooth functions

$$D_t^{\alpha} w(t) = I^{1-\alpha}[w'](t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} w'(s) \, \mathrm{d}s.$$

- Question: Can we define the Caputo derivative for rougher functions?
- Yes! There are several approaches. We define it as follows:

$$D_t^{\alpha} w(t) = \frac{\mathrm{d}}{\mathrm{d}t} I^{1-\alpha} [w(t) - w(0)\theta(t)]$$
$$= \frac{1}{\Gamma(1-\alpha)} \frac{\mathrm{d}}{\mathrm{d}t} \int_0^t (t-s)^{-\alpha} [w(t) - w(0)\theta(t)] \, \mathrm{d}s$$

where θ is the Heaviside function.

• If $w\in L^1_{loc}([0,\infty))$, $\int_0^t\|w(s)-w(0)\|\,\mathrm{d} s\to 0$, and $D_t^\alpha w\in L^1_{loc}([0,\infty))$ then

$$w(t) = w(0) + I^{\alpha}[D_t^{\alpha}w](t) = w(0) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} D_t^{\alpha}w(s) ds.$$

The Caputo derivative

ullet Key inequality: For $\Psi:\mathcal{H}\to\mathbb{R}$ convex, we have

$$D_t^\alpha \Psi(w) \leq \langle \partial \Psi(w), D_t^\alpha w \rangle.$$

This is the needed analogue of

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|w\|^2 \le \langle w, w' \rangle \,,$$

when
$$\Psi(w) = \frac{1}{2} ||w||^2$$
.

Energy solutions

$$\xi \in \partial \Phi(u) \iff \Phi(u) - \Phi(w) \le \langle \xi, u - w \rangle$$

$$\begin{cases} D_t^{\alpha} u(t) + \partial \Phi(u(t)) \ni f(t), & t \in (0, T], \\ u(0) = u_0. \end{cases}$$

Definition (energy solution)

A function $u\in L^2(0,T;\mathcal{H})$ such that $D^\alpha_t u\in L^2(0,T;\mathcal{H})$ is an energy solution if

$$\int_0^t \|u(s) - u_0\|^2 \, \mathrm{d}s \to 0$$

and

$$\langle D_t^{\alpha} u(t), u(t) - w \rangle + \Phi(u(t)) - \Phi(w) \le \langle f(t), u(t) - w \rangle, \quad \forall w \in \mathcal{H}.$$

Energy solutions: uniqueness

Theorem (uniqueness)

Energy solutions are unique.

Proof.

Recall the key inequality

$$D_t^{\alpha}\Psi(w) \leq \langle \partial \Psi(w), D_t^{\alpha}w \rangle$$

and repeat the idea for the classical case: If u_1 and u_2 are energy solutions,

$$\langle D_t^{\alpha} u_1(t), u_1(t) - w \rangle + \Phi(u_1(t)) - \Phi(w) \le \langle f(t), u_1(t) - w \rangle, \qquad w \leftarrow u_2,$$

 $\langle D_{\star}^{\alpha} u_2(t), u_2(t) - w \rangle + \Phi(u_2(t)) - \Phi(w) \le \langle f(t), u_2(t) - w \rangle, \qquad w \leftarrow u_1,$

adding, we get

$$\langle D_t^\alpha(u_1(t)-u_2(t)),u_1(t)-u_2(t)\rangle\leq 0.$$

We set $\Psi(w) = \frac{1}{2} \, \|w\|^2$ in the key inequality. Since $u_1(0) = u_2(0) = u_0$

$$\Psi(u_1-u_2)(t) = \underbrace{\Psi(u_1-u_2)(0)}_{} + \underbrace{\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} D_t^{\alpha} \Psi(u_1-u_2)(s) \, \mathrm{d}s}_{} \leq 0.$$

Energy solutions: existence I

- To define a fractional minimizing movements we need to find a discretization of the Caputo derivative.
- Starting from

$$w(t) = w(0) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} D_t^{\alpha} w(s) ds.$$

If $\mathcal P$ is a partition of [0,T] and $D_t^\alpha w(s)$ is piecewise constant over this partition we obtain

$$\mathbf{W} = W_0 \mathbf{1} + \mathbf{K}_{\mathcal{P}} \mathbf{V}_{\alpha},$$

where
$$\mathbf{V}_{\alpha}=\{D_t^{\alpha}w(t_n)\}_{n=1}^N\in\mathcal{H}^N$$
, $W_0=w(0)$ and $\mathbf{W}=\{w(t_n)\}_{n=1}^N$.

Energy solutions: existence II

- The matrix $\mathbf{K}_{\mathcal{P}}$ is lower triangular and nonsingular.
- We define the discrete Caputo derivative by inverting this matrix

$$D_{\mathcal{P}}^{\alpha}\mathbf{W} = \mathbf{V}_{\alpha} = \mathbf{K}_{\mathcal{P}}^{-1} (\mathbf{W} - W_0 \mathbf{1}) \in \mathcal{H}^N$$

• If ${\mathcal P}$ is uniform, the matrix ${\mathbf K}_{{\mathcal P}}$ is Toeplitz. Matrix multiplication can be understood as convolution

$$\mathbf{W} = W_0 \mathbf{1} + \mathbf{K}_{\mathcal{P}} \star \mathbf{V}_{\alpha},$$

and this discretization is usually called a deconvolution scheme

$$\mathbf{V}_{\alpha} = \mathbf{K}_{\mathcal{P}}^{-1} \star (\mathbf{W} - W_0 \mathbf{1})$$

We will **NOT** assume that \mathcal{P} is uniform!

Energy solutions: existence III

Theorem (properties of $\mathbf{K}_{\mathcal{P}}$)

For any partition, all $n \in \{1, ..., N\}$, and all $i \in \{0, ..., n-1\}$,

$$\mathbf{K}_{\mathcal{P},nn}^{-1} > 0, \quad \mathbf{K}_{\mathcal{P},ni}^{-1} < 0, \quad \mathbf{K}_{\mathcal{P},ni}^{-1} < \mathbf{K}_{\mathcal{P},(n+1)i}^{-1}$$

where
$$\mathbf{K}_{p,n0}^{-1} = -\sum_{i=1}^{n} \mathbf{K}_{p,ni}^{-1}$$
.

Corollary (discrete key inequality)

For any convex Ψ and $\mathbf{W} \in \mathcal{H}^N$ set $\Psi(\mathbf{W}) = {\Psi(W_n)}_{n=1}^N$. Then,

$$(D_{\mathcal{P}}^{\alpha}\Psi(\mathbf{W}))_{n} \leq \langle \partial \Psi(\mathbf{W})_{n}, (D_{\mathcal{P}}^{\alpha}\mathbf{W})_{n} \rangle.$$

Proof.

$$\begin{split} \left(D_{\mathcal{P}}^{\alpha}\Psi(\mathbf{W})\right)_{n} &= \sum_{i=0}^{n-1} \mathbf{K}_{\mathcal{P},ni}^{-1} \left(\Psi(W_{i}) - \Psi(W_{n})\right) \leq \left\langle \partial \Psi(W_{n}), \sum_{i=0}^{n-1} \mathbf{K}_{\mathcal{P},ni}^{-1} (W_{i} - W_{n}) \right\rangle \\ &= \left\langle \partial \Psi(\mathbf{W})_{n}, (D_{\mathcal{P}}^{\alpha}\mathbf{W})_{n} \right\rangle. \end{split}$$

Energy solutions: existence IV

• We can now define a fractional minimizing movements scheme via:

$$U_n = \operatorname*{argmin}_{w \in \mathcal{H}} \left[\frac{1}{2} \sum_{i=0}^{n-1} (-\mathbf{K}_{\mathcal{P},ni}^{-1}) \|w - U_i\|^2 + \Phi(w) - \langle F_n, w \rangle \right].$$

This is equivalent to

$$(D_{\mathcal{P}}^{\alpha}\mathbf{U})_n + \partial\Phi(U_n) \ni F_n.$$

• Question: What is the analogue of (the piecewise linear) \widehat{U} ?

Energy solutions: existence V

• Define $\{\varphi_i\}_{i=1}^N$ as functions with $(D_{\mathcal{P}}^{\alpha}\varphi_i)_j=\delta_{i,j}$. Then

$$\widehat{U}(t) = \sum_{i=1}^{n} U_i \varphi_i(t).$$

• The minimizing movements becomes

$$\left\langle D_t^{\alpha} \widehat{U}(t), \bar{U}(t) - w \right\rangle + \Phi(\bar{U}(t)) - \Phi(w) \le \left\langle \bar{F}, \bar{U}(t) - w \right\rangle, \quad \forall w \in \mathcal{H}.$$

Energy solutions: existence VI

ullet Judicious choices of w and some algebra yield

$$||D_t^{\alpha} \widehat{U}||_{L^2(0,T;\mathcal{H})}^2 \lesssim \Phi(U_0) + \sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} ||\bar{F}(s)||^2 \, \mathrm{d}s < \infty.$$

• As expected, we must require $\Phi(u_0) < \infty$. What about the other quantity?

Proposition (continuity)

For any partition ${\mathcal P}$

$$\sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} \|\bar{F}(s)\|^2 \, \mathrm{d}s \lesssim \sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} \|f(s)\|^2 \, \mathrm{d}s.$$

Proof.

Energy solutions: existence VII

• We have enough estimates to pass to the limit.

Theorem (existence)

Assume that $\Phi(u_0) < \infty$ and

$$\sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} ||f(s)||^2 \, \mathrm{d} s < \infty,$$

then the fractional gradient flow problem has an energy solution which, moreover, satisfies $u \in C^{0,\alpha/2}([0,T];\mathcal{H})$.

• Recall that in the classical gradient flow ($\alpha=1$) an energy solution satisfies $u \in H^1(0,T;\mathcal{H}) \hookrightarrow C^{0,1/2}([0,T];\mathcal{H})$.

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

A posteriori error estimate l

Recall that the discrete solution is obtained via

$$\frac{1}{\tau_n} \left(U_n - U_{n-1} \right) + \partial \Phi(U_n) \ni F_n,$$

which is equivalent to

$$\left\langle \frac{1}{\tau_n} \left(U_n - U_{n-1} \right), U_n - w \right\rangle + \Phi(U_n) - \Phi(w) \le \left\langle F_n, U_n - w \right\rangle, \quad \forall w \in \mathcal{H}.$$

• Set $w = U_{n-1}$ and define the quantity

$$\mathcal{E}_{n} = \left\langle F_{n} - \frac{1}{\tau_{n}} (U_{n} - U_{n-1}), \frac{1}{\tau_{n}} (U_{n} - U_{n-1}) \right\rangle - \frac{\Phi(U_{n}) - \Phi(U_{n-1})}{\tau_{n}}$$
> 0

A posteriori error estimate II

Recall that

$$\left\langle \widehat{U}'(t), \bar{U}(t) - w \right\rangle + \Phi(\bar{U}(t)) - \Phi(w) \leq \left\langle \bar{F}(t), \bar{U}(t) - w \right\rangle, \quad \forall w \in \mathcal{H}.$$

• Using that Φ is convex and that $\widehat{U}(t)$ is a convex combination of U_n and U_{n-1} we get

$$\left\langle \widehat{U}'(t), \widehat{U}(t) - w \right\rangle + \Phi(\widehat{U}(t)) - \Phi(w) \leq \left\langle \bar{F}(t), \widehat{U}(t) - w \right\rangle + (t_n - t)\bar{\mathcal{E}}.$$

 Combining with the continuous problem we get the a posteriori error estimate

$$||u - \widehat{U}||_{L^{\infty}(0,T;\mathcal{H})} \lesssim ||f - \overline{F}||_{L^{2}(0,T;\mathcal{H})} + \left(\sum_{n=1}^{N} \tau_{n}^{2} \mathcal{E}_{n}\right)^{1/2}.$$

A priori error estimate

• A simple calculation reveals that

$$\sum_{n=1}^{N} \tau_n \mathcal{E}_n \lesssim \Phi(U_0) + \|\bar{F}\|_{L^2(0,T;\mathcal{H})}^2$$

• So that provided $\Phi(u_0) < \infty$ we get the a priori estimate

$$||u-\widehat{U}||_{L^{\infty}(0,T;\mathcal{H})} \lesssim \boldsymbol{\tau}^{1/2}.$$

• This is optimal with respect to the regularity $u \in C^{0,1/2}([0,T];\mathcal{H})$.

Error analysis: the heart of the matter

- A positive quantity \mathcal{E}_n that depends only on the computed approximations.
- The function \widehat{U} solves a perturbed gradient flow, where \mathcal{E}_n is the perturbation.
- \bullet The fact that our interpolant \widehat{U} is a convex combination of the computed approximations.

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

A posteriori error analysis I

Recall that our minimizing movements scheme reads

$$(D_{\mathcal{P}}^{\alpha}\mathbf{U})_n + \partial\Phi(U_n) \ni F_n,$$

and that this can be rewritten as

$$\langle D_t^{\alpha} \widehat{U}(t), \overline{U}(t) - w \rangle + \Phi(\overline{U}(t)) - \Phi(w) \le \langle \overline{F}(t), \overline{U}(t) - w \rangle, \quad \forall w \in \mathcal{H}.$$

We define

$$\mathcal{E}_{\alpha}(t) = \left\langle D_t^{\alpha} \widehat{U}(t) - \bar{F}(t), \widehat{U}(t) - \bar{U}(t) \right\rangle + \Phi(\widehat{U}(t)) - \Phi(\bar{U}(t)) \ge 0,$$

which depends only on the discrete solutions, and is thus computable.

A posteriori error analysis II

A posteriori error analysis III

- The functions $\{\varphi_i\}$ used to define \widehat{U} are all nonnegative, and $\sum_i \varphi_i = 1$.
- The value of the interpolant $\widehat{U}(t)$ is a convex combination of $\{U_i\}_{i=0}^n$ with $t\in(t_{n-1},t_n].$
- The interpolant \widehat{U} satisfies, for every $w \in \mathcal{H}$,

$$\left\langle D_t^{\alpha} \widehat{U}(t), \widehat{U}(t) - w \right\rangle + \Phi(\widehat{U}(t)) - \Phi(w) \leq \left\langle \bar{F}(t), \widehat{U}(t) - w \right\rangle + \mathcal{E}_{\alpha}(t),$$

where, again, the quantity \mathcal{E}_{α} is a perturbation.

A posteriori error analysis IV

Theorem (a posteriori error estimate)

Assume that $\Phi(u_0) < \infty$. For every \mathcal{P} we have

$$||u - \widehat{U}||_{L^{\infty}(0,T;\mathcal{H})} \lesssim \sup_{t \in [0,T]} \int_{0}^{t} (t-s)^{\alpha-1} ||f - \overline{F}||(s) \, ds$$
$$+ \left(\sup_{t \in [0,T]} \int_{0}^{t} (t-s)^{\alpha-1} \mathcal{E}_{\alpha}(s) \, ds \right)^{1/2}.$$

Proof.

Combine the inequalities that u and \widehat{U} satisfy to get

$$\left\langle D_t^{\alpha}(u-\hat{U}), u-\hat{U} \right\rangle \leq \left\langle f-\bar{F}, u-\hat{U} \right\rangle + \mathcal{E}_{\alpha}(t).$$

Use the discrete key inequality.

A priori error analysis I

Recall

$$\mathcal{E}_{\alpha}(t) = \left\langle D_{t}^{\alpha} \widehat{U}(t) - \bar{F}(t), \widehat{U}(t) - \bar{U} \right\rangle + \Phi(\widehat{U}(t)) - \Phi(\bar{U}(t)).$$

• Since there is a bound for $D_t^{\alpha}\widehat{U}$, and $\widehat{U}(t_n)=\bar{U}(t_n)=U_n$

$$\sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} \|\widehat{U} - \overline{U}\|^2(s) \, \mathrm{d}s \lesssim \tau^{2\alpha}.$$

• Since $\widehat{U}(t)$ is a convex combination of $\{U_i\}_{i=0}^n$ with $t\in(t_{n-1},t_n]$

$$\Phi(\widehat{U}(t)) - \Phi(\bar{U}(t)) \le \sum_{i=1}^{n} \Phi(U_i)\varphi_i(t) - \Phi(\bar{U}(t)),$$

which implies

$$\sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} \left(\Phi(\widehat{U}(s)) - \Phi(\overline{U}(s)) \right) ds \lesssim \tau^{\alpha}.$$

A priori error analysis II

Theorem (a priori error estimate)

Assume that $\Phi(u_0) < \infty$ and that

$$\sup_{t \in [0,T]} \int_0^t (t-s)^{\alpha-1} ||f(s)||^2 \, \mathrm{d} s < \infty.$$

Then, for every P, we have

$$||u-\widehat{U}||_{L^{\infty}(0,T;\mathcal{H})} \lesssim \boldsymbol{\tau}^{\alpha/2}.$$

• Recall that energy solutions satisfy $u \in C^{0,\alpha/2}([0,T];\mathcal{H})$ so this is optimal.

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

A linear example I

• Consider, on $\Omega = (0,1)$,

$$D_t^{\alpha} u - \Delta u = 0, \qquad u(x,0) = u_0(x),$$

supplemented with homogeneous Dirichlet boundary conditions. The exact solution is

$$u(t) = \sum_{k=0}^{\infty} u_{0,k} E_{\alpha}(-\lambda_k t^{\alpha}) \varphi_k(x), \qquad u_{0,k} = \int_{\Omega} u_0(x) \varphi_k(x) dx,$$

where E_{α} is the Mittag–Leffler function, and $\{(\lambda_k, \varphi_k)\}_{k=1}^{\infty}$ are the eigenpairs of the Dirichlet Laplacian.

- Set T=1. Spectral discretization in space with m=100 modes, and uniform $\mathcal{P}.$
- We measure

$$e_{end} = \|u(T) - U_N\|_{L^2(\Omega)}, \qquad e_{inf} = \max_n \|u(t_n) - U_n\|_{L^2(\Omega)}.$$

A linear example II

Set

$$u_{0,k}=k^{-1.5+\delta}, \qquad \delta\ll 1,$$
 so that $u_0\in D(\Phi)=H^1_0(\Omega)$, but $u_0\notin D(\partial\Phi)=H^2(\Omega)\cap H^1_0(\Omega)$.

τ	$e_{\rm inf}$	rate	e_{end}	rate
5.00e-02	1.09e-02	_	1.71e-03	_
2.50e-02	9.74e-03	0.166	9.03e-04	0.921
1.25e-02	8.72e-03	0.159	4.70e-04	0.940
6.25e-03	7.84e-03	0.153	2.43e-04	0.954
3.13e-03	7.07e-03	0.150	1.25e-04	0.964
1.56e-03	6.37e-03	0.149	6.35e-05	0.971
7.81e-04	5.75e-03	0.149	3.23e-05	0.977
3.91e-04	5.18e-03	0.150	1.63e-05	0.982
1.95e-04	4.67e-03	0.150	8.25e-06	0.985
9.77e-05	4.21e-03	0.150	4.16e-06	0.988

 $\alpha = 0.3$

	$\alpha = 0.7$						
1	τ	e_{\inf}	rate	e_{end}	rate		
1	5.00e-02	2.72e-02	_	5.97e-03	_		
	2.50e-02	2.13e-02	0.350	3.03e-03	0.979		
	1.25e-02	1.67e-02	0.350	1.53e-03	0.988		
	6.25e-03	1.31e-02	0.350	7.68e-04	0.993		
	3.13e-03	1.03e-02	0.350	3.85e-04	0.996		
	1.56e-03	8.08e-03	0.350	1.93e-04	0.997		
	7.81e-04	6.34e-03	0.350	9.65e-05	0.998		
	3.91e-04	4.98e-03	0.350	4.83e-05	0.999		
	1.95e-04	3.90e-03	0.350	2.41e-05	0.999		
	9.77e-05	3.06e-03	0.351	1.21e-05	1.000		

• Convergence rate of $\mathcal{O}(au^{lpha/2})$, as predicted by our theory.

A linear example III

Set

$$u_{0,k} = k^{-2.5+\delta}, \qquad \delta \ll 1,$$

so that $u_0 \in D(\partial \Phi) = H^2(\Omega) \cap H^1_0(\Omega)$.

τ	e_{\inf}	rate	e_{end}	rate
5.00e-02	8.44e-03	_	1.64e-03	_
2.50e-02	6.88e-03	0.296	8.66e-04	0.919
1.25e-02	5.57e-03	0.305	4.52e-04	0.939
6.25e-03	4.50e-03	0.308	2.33e-04	0.953
3.13e-03	3.63e-03	0.307	1.20e-04	0.963
1.56e-03	2.94e-03	0.305	6.11e-05	0.971
7.81e-04	2.38e-03	0.303	3.10e-05	0.977
3.91e-04	1.93e-03	0.302	1.57e-05	0.981
1.95e-04	1.57e-03	0.301	7.94e-06	0.985
9.77e-05	1.27e-03	0.301	4.00e-06	0.988

 $\alpha = 0.3$

$\alpha = 0.7$					
τ	e_{inf}	rate	e_{end}	rate	
5.00e-02	1.05e-02	_	5.81e-03	_	
2.50e-02	6.48e-03	0.702	2.95e-03	0.977	
1.25e-02	3.99e-03	0.701	1.49e-03	0.987	
6.25e-03	2.45e-03	0.700	7.49e-04	0.992	
3.13e-03	1.51e-03	0.700	3.76e-04	0.995	
1.56e-03	9.30e-04	0.700	1.88e-04	0.997	
7.81e-04	5.73e-04	0.700	9.42e-05	0.998	
3.91e-04	3.52e-04	0.700	4.71e-05	0.999	
1.95e-04	2.17e-04	0.700	2.36e-05	0.999	
9.77e-05	1.34e-04	0.700	1.18e-05	1.000	

• Convergence rate of $\mathcal{O}(\tau^{\alpha})$. We have a theory that includes this case!

A (fractional) parabolic obstacle problem I

• Consider, in $\Omega = (0,1)$,

$$D_t^{\alpha} u + (-\Delta)^s u \ge f, \quad u \ge g, \quad (D_t^{\alpha} u + (-\Delta)^s u - f)(u - g) = 0.$$

supplemented with periodic boundary conditions.

We set

$$g(x) = (1 - 4|x - \frac{1}{2}|)_+, \quad u_0(x) = \sin(\pi x), \quad f(x, t) = -\frac{1}{2}$$

A (fractional) parabolic obstacle problem II

- Collocation method with M=64 nodes, $\tau=2e-6$.
- Snapshots of discrete solutions of the time fractional parabolic obstacle problem for $\alpha=0.1,0.9,\ s=0.1,0.9.$

The (fractional) Allen-Cahn equation I

• Consider, in $\Omega = (0,1)^2$,

$$D_c^{\alpha} u + (-\Delta)^s u + g(u) = f, \qquad u(x,0) = u_0(x),$$

supplemented by periodic boundary conditions.

Here

$$g(r) = G'(r), \qquad G(r) = \begin{cases} (r-1)^2, & r > 1, \\ \frac{1}{4} (1-r^2)^2, & |r| \le 1, \\ (r+1)^2, & r < -1. \end{cases}$$

 The energy is NOT convex, but a Lipschitz perturbation of a convex one. We have a theory for this case.

The (fractional) Allen-Cahn equation II

Set

$$u_0(x) = \tanh\left(\frac{1}{\sqrt{2}\varepsilon_0}(2r - \frac{5}{16} - \frac{\cos(\theta)}{16})\right),$$

where (r,θ) are polar coordinates centered at $(\frac{1}{2},\frac{1}{2})$.

Collocation method with M=64 nodes and $\tau=2e-6$.

The (fractional) Allen-Cahn equation III

$\alpha = 0.3$						
τ	e_{inf}	rate	e_{end}	rate		
2.50e-03	9.11e-04	-	3.11e-04	-		
1.25e-03	7.29e-04	0.321	1.72e-04	0.859		
6.25e-04	5.81e-04	0.328	9.23e-05	0.894		
3.13e-04	4.60e-04	0.336	4.88e-05	0.919		
1.56e-04	3.65e-04	0.336	2.55e-05	0.938		
7.81e-05	2.92e-04	0.320	1.32e-05	0.951		
3.91e-05	2.39e-04	0.287	6.77e-06	0.961		
1.95e-05	2.02e-04	0.244	3.46e-06	0.969		
9.77e-06	1.76e-04	0.203	1.76e-06	0.975		

$\alpha = 0.7$						
τ	e_{inf}	rate	e_{end}	rate		
2.50e-03	7.24e-04	-	3.84e-04	-		
1.25e-03	5.42e-04	0.416	1.97e-04	0.961		
6.25e-04	4.04e-04	0.426	1.00e-04	0.977		
3.13e-04	3.04e-04	0.411	5.06e-05	0.987		
1.56e-04	2.33e-04	0.386	2.54e-05	0.992		
7.81e-05	1.82e-04	0.355	1.28e-05	0.995		
3.91e-05	1.45e-04	0.326	6.39e-06	0.997		
1.95e-05	1.16e-04	0.322	3.20e-06	0.998		
9.77e-06	9.01e-05	0.365	1.60e-06	0.999		

• The rates for e_{inf} are close to $\mathcal{O}(au^{lpha/2})$ predicted in our theory.

Time adaptivity I

- Consider the linear example with $\alpha = 0.5$, and $u_0 \in H_0^1(\Omega) \setminus H^2(\Omega)$.
- Given $\varepsilon > 0$, choose the time steps τ_n to equidistribute the error:

$$\max_{t \in (t_{n-1}, t_n]} \mathcal{E}_{\alpha}(t) \lesssim \varepsilon^2,$$

then we can guarantee that

$$||u - \widehat{U}||_{L^{\infty}(0,T;L^{2}(\Omega))} \lesssim \varepsilon.$$

- Choose $\varepsilon = 1e 2$.
- The adaptive solver requires $N=\#\mathcal{P}-1=455$ time intervals with minimal timestep $\tau_{\min}\approx 2.3e-12$ and maximal timestep $\tau_{\max}\approx 6.3e-2$.
- In comparison, for a similar tolerance we must set $\tau_n=2.44e-5$ so that N=40960.

There is a "clear" advantage in choosing the time step adaptively!

Time adaptivity II

- The step size τ_n is very small at the beginning \to the singularity of the solution at t=0.
- $\bullet\,$ For t>0 the solution is smooth, so we can take larger time steps.

Outline

Introduction

Classical gradient flows: theory

Fractional gradient flows: theory

Classical gradient flows: numerics

Fractional gradient flows: numerics

Numerical illustrations

Conclusions and future work

Conclusions I

- A discretization of the Caputo derivative that possesses suitable properties.
- Existence and uniqueness of energy solutions to fractional gradient flows.
- A posteriori error analysis.
- A priori error estimates without additional regularity assumptions.
 The estimates seem optimal given the available regularity.

Conclusions II

Not discussed but we also have:

- Extension to the case of Φ being λ -convex, or we have a Lipschitz perturbations of a convex function: Fractional reaction diffusion, Fractional Allen-Cahn, ...
- Improved convergence rates for some special cases: linear equations, smooth energies, . . .
- Asymptotic behavior of the solution. If f=0 and Φ is uniformly convex with parameter $\mu>0$, then

$$\Phi(u(t)) - \Phi_{\min} \le (\Phi(u_0) - \Phi_{\min}) E_{\alpha}(-2\mu t^{\alpha})$$

$$||u(t) - u_{\min}||_{\mathcal{H}} \le ||u_0 - u_{\min}||_{\mathcal{H}} E_{\alpha}(-\mu t^{\alpha}).$$

• Asymptotic behavior of the solution. If f=0 and Φ is merely convex, then

$$\Phi(u(t)) - \Phi_{\min} \lesssim t^{-\alpha/2}$$

$$\Phi(U_n) - \Phi_{\min} \lesssim t_n^{-\alpha/2}.$$

Future work

- Some of the experiments show a rate of $\mathcal{O}(\tau^{\alpha})$? Why? We have partial answers.
- Replace $\partial\Phi$ by a maximal monotone operator.
- Evolution in Banach spaces.
- Space discretization.

THANK YOU!

(Fractional) ODE with obstacles III

Define

$$\Phi(w) = \begin{cases} 0, & w \in [-1, 1], \\ +\infty, & w \notin [-1, 1]. \end{cases}$$

Then this problem can be succintly written as

$$D_t^\alpha u + \partial \Phi(u) \ni f,$$

where $\partial \Phi(w)$ denotes the subdifferential.

(Fractional) parabolic obstacle problems II

Define

$$\Phi^{s}(w) = \frac{1}{2} |w|_{H^{s}(\mathbb{R}^{d})}^{2} + \begin{cases} 0, & w \in \mathcal{K}, \\ +\infty, & w \notin \mathcal{K}. \end{cases}$$

The evolution variational inequality

$$\int_{\Omega} D_t^{\alpha} u(u-w) \, \mathrm{d}x + \langle (-\Delta)^s u, u-w \rangle \le \int_{\Omega} f(u-w) \, \mathrm{d}x, \quad \forall w \in \mathcal{K}.$$

can be written as

$$D_t^{\alpha} u + \partial \Phi^s(u) \ni f.$$

The subdifferential of a convex function

- A convex function Φ is not necessarily differentiable.
- However, by convexity, it can be touched from below by planes.
- The subdifferential $\partial\Phi(w)$ is the collection of slopes of the planes that touch from below at w

$$\xi \in \partial \Phi(w) \iff \Phi(w) - \Phi(v) \le \langle \xi, w - v \rangle.$$

(Fractional) TV flow

• Why p > 1? Consider the equation

$$D_t^{\alpha} u - \nabla \cdot \left(\frac{\nabla u}{|\nabla u|} \right) = f.$$

Define

$$\Phi_1(w) = |Dw|(\Omega),$$

where for $w \in BV(\Omega)$ we denote by |Dw| its total variation (a Radon measure). This functional is **not** differentiable.

 \bullet The previous equation must be understood as follows: Find u and ${\bf z}$ such that

$$\int_{\Omega} D_t^{\alpha} uw \, \mathrm{d}x + \int_{\Omega} \mathbf{z} \cdot Dw = \int_{\Omega} fw \, \mathrm{d}x, \quad \forall w \in BV(\Omega) \cap L^2(\Omega),$$

and

$$\int_{\Omega} (\mathbf{q} - \mathbf{z}) \cdot Du \le 0, \quad \forall \mathbf{q} \in \dots$$

