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Motivation

e Fractional derivatives and integrals are powerful tools to describe
memory and hereditary properties of materials.

e Fractional partial differential equations (FPDEs) are emerging as a
new powerful tool for modeling many difficult complex systems, i.e.,
systems with overlapping microscopic and macroscopic scales or
systems with long-range time memory and long-range spatial
interactions.

e In “classical” diffusion
Ou—Au=0
the mean squared displacement in time scales as t ~ (2%(t)).
e In the superdiffusive case t* ~ (z2(t)) with o > 1.

e In the subdiffusive case a € (0, 1), thus giving rise to
Dfu— Au =0,

where Dy is the so-called Caputo derivative.

e This is usually used to model memory effects.



(Fractional) heat equation

e The (time fractional) heat equation
Diu — Au = f.
e Define the energy

1
y(w) = 5/Q|Vw|201:c,

its derivative (in the L?-sense) is

(DPy(w), ) = /Q VwVedr = (—Aw, p).

e The (time fractional) heat equation can be understood as

Diu+ D®y(u) = f.



(Fractional) parabolic p-Laplace problem

e More generally, for p > 1, consider
Dy — V- (|VulP~2Vu) = f.

e Define )
B, (w) = 7/ IVl da,
PJa

then
(DPy(w), ¢) :/ |Vw|P~2VwVeda.
Q

e Our problem reads
Diu+ D®,(u) = f.



(Fractional) ODE with obstacles |

e Consider the motion of a particle inside a well. If the particle does
not touch the walls then it moves by “its usual” law of motion:

ut) € (~1,1) =  Dfu(t) = f(t).

e If it touches one of the walls it gets reflected. Say it touches the

right one. If
Dfu <0

the wall does not do anything, as the particle will move to the left
anyways. If that is not the case, since right before it touches we had

Diu=f=f"—f~

the reflection means
Dou = —f. or



(Fractional) ODE with obstacles I

e In short

» Subdifferential
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(Fractional) parabolic obstacle problems

e Define B
K={weH*(Q):w>ga.e. Q},

for some sufficiently nice g.
e Consider the problem given by the complementarity conditions

Diu+ (=A)Yuzf, u>g, (Diut(=A)u—f)(u-g)=0.

e This is equivalent to the evolution variational inequality

/Df‘u(u—w)dm—i—((—A)%,u—w)§/f(u—w)d:lc7 Yw € K.
Q Q



Problem statement

e Ambient space: Let H be a (separable) Hilbert space.
e Energy: @ : H — RU {+0o0} convex and |s.c.
e Initial condition: ug € H.
e Right hand side: f:[0,7] — H.
We need to find u : [0,7] — H such that

Diu(t) + 0®(u(t)) > f(t), te (0,17,
u(0) = up.

e Here Df* denotes the Caputo derivative, and 0®(w) is the
subdifferential of ® at point w.

e D =0, for « =1 and we get a classical gradient flow.

e If f =0 this can be understood as steepest descent to find the
minimum of ®.
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Energy solutions

§€0P(u) <=  Pu)—P(w) < (u—w)

e Let us consider the classical case. We set o =1 to get

W' (t) +00(u(t) > f(t), te(0,T],
u(0) = ug.

Definition (energy solution)
A function u € H'(0,T;#H) is an energy solution if u(0) = uy and

(W (t),u(t) —w) + ®(u(t)) — ®(w) < (f(t),u(t) —w), Yw e H.



Energy solutions: uniqueness

Theorem (uniqueness®)

Energy solutions are unique.

Proof.

If wq and ug are energy solutions,

(ul (8), uq (t) — w) + B(uq(t)) — S(w)

(uh (1), ug (t) — w) + ®(ug(t)) — ®(w)

adding, we get

<

(), up(t) — w),
(f(t), ua(t) — w),

1d 2
——llur (@) —uz(®)I7 < 0.
2 dt

Since uj (0) = ug(0) = uq we conclude.

8 1ézis 1073

w4 ug,

w o uq,



Energy solutions: existence |

To show existence of solutions we employ a minimizing movements

scheme®.

Introduce a partition

N
P={0=to<t1<...<tn=T}, 7n=tn—tp_1, T =maxT,.

n=1

We introduce approximations U,, ~ u(t,) via: set F, = f:"fl fdt,
Uy = ug and define

1
U, = argmin | — ||w — U, _1|*> + ®(w) — (F,,, w)
wer [ 2Tn

Since we are in a Hilbert space this problem has a unique solution.

The minimization problem is equivalent to (implicit Euler)

1
— (U, —Upn_1) +00(U,) 3 F,

Tn

e Giorgi



Energy solutions: existence Il

4

e The function U is piecewise constant
Ult)=Un, t€ (tn1,tn)

e The function U is piecewise linear

U(t) = Un-1+ —lUn, t e (tn_l,tn].

n Tn

and its time derivative satisfies
U'(t)=7,"(Up—Un_1).




Energy solutions: existence Il|

e The minimizing movements scheme can then be written as

[

<ﬁ'(t), Tt) — w>+(I>(U(t))—<I>(w) < (F(t),0(t) —w), YweH.

e Setting w = U,,_1 we get
Tl U'1° + ®(Un) = (Un-1) < mall Full107]]
which, provided f € L?(0,7;H) and ®(Uy) < +o00, gives
U' € L*(0,T;H)

uniformly in P.

e The previous estimate “is enough” to pass to the limit 7 — 0 by
compactness.
Theorem (existence?)

If f € L?(0,T;H) and ®(ug) < oo the classical gradient flow has an
energy solution.

FRothe 1930; Crandall, Ligett 1971; Brézis 1973; ...



Classical gradient flows: the heart of the matter

To develop this theory we required:

e Uniqueness: The inequality
—[lur — ua|]® < ((u1 — u2)’,u1 — u2).

e Existence: A minimizing movements scheme to obtain {U, })_.

e Existence: A suitable interpolation U such that its derivative U’ is
piecewise constant.
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'he Caputo derivative
e For sufficiently smooth functions
1 t
o\,
F(l—a)/o(t 8)"%w'(s) ds.

e Question: Can we define the Caputo derivative for rougher
functions?

Dpw(t) = I'"*[w'](t) =

e Yes! There are several approachesg. We define it as follows®:

Difw(t) = < 1" u(t) — w(0)0(0)

= mla)jt/o (t— )" “[w(t) — w(0)0(t)] ds

where 0 is the Heaviside function.

o Ifwe L} ([0 fo |lw(s) —w(0)||ds — 0, and
Dyw e Lloc([O oo)) then

1t
w(t) = w(0) + I“[Dfw](t) = w(0) / (t —s)* ' Dfw(s) ds.
0

Ia) .

& Marchaud 1927; Feng, Sutton 2020; ...
& and Liu, 2018, 2019



The Caputo derivative

e Key inequality: For ¥ : H — R convex, we have
Dy¥(w) < (0¥ (w), Difw).
e This is the needed analogue of

1d 9 ,
- <
Sl < (),

when ¥(w) = 1 |w]?.



Energy solutions
£€0P(u) <= Ou)—P(w) < (§u—w)

Dfu(t) + 0®(u(t)) > f(t), te (0,17,
u(0) = up.

Definition (energy solution)
A function u € L?(0,T;H) such that Dfu € L?(0,T;H) is an energy
solution if

t
][ u(s) — o2 ds — 0
0
and

(Du(t), u(t) — w) + B(u(t)) — D(w) < (F(),ult) —w), VweH.



Energy solutions: uniqueness

Theorem (uniqueness)
Energy solutions are unique.

Proof.

Recall the key inequality « o
D& w(w) < (9% (w), D w)

and repeat the idea for the classical case:
If wy and wo are energy solutions,

(Dfug (), up () — w) + @(up (1) — ®(w) < (f(1), ur(t) — w), w < ug,
(Dffug (1), ug(t) — w) + @(uz(t) — ®(w) < (f(1), ua(t) — w), w4 ug,

adding, we get
(D (uy (1) — un (1)), ug(t) — up(t)) < 0.

We set W (w) = 4 [|w]|2 in the key inequality. Since w1 (0) = ug(0) = ug

0 1 _
@(uy — un)(t) =W ) /0 (t — )% 1D W (uy — ug)(s)ds < 0.



Energy solutions: existence |

e To define a fractional minimizing movements we need to find a
discretization of the Caputo derivative.

e Starting from

w(t) = w(0) + ﬁ/o (t —s)* ' Dfw(s) ds.

If P is a partition of [0,7] and D§w(s) is piecewise constant over
this partition we obtain

W =Wyl +KpV,,

where V,, = {D¢w(t,)}N_; € HN, Wy = w(0) and
W = {w(ta) 115



Energy solutions: existence Il

e The matrix Kp is lower triangular and nonsingular.

e We define the discrete Caputo derivative by inverting this matrix
DSW =V, = K;' (W - Wyl) € HY

e If P is uniform, the matrix Kp is Toeplitz. Matrix multiplication
can be understood as convolution

W =Wyl + KpxV,,
and this discretization is usually called a deconvolution scheme
V. =Kp'« (W —Wl)

We will NOT assume that P is uniform!



Energy solutions: existence Il|

Theorem (properties of Kp)
For any partition, alln € {1,...,N}, and all i € {0,...,n— 1},
-1 -1 -1 -1
Ky, >0, Kpl, <0, Kpl, <Kzl ..

-1 _ n ~1
where Koo = =31 Kp ;-

Corollary (discrete key inequality)
For any convex ¥ and W € HY set U(W) = {U(W,,)})_,. Then,

(DPU(W)), < (DU(W),.. (DEW),).
Proof.

n—1 n—1
(pprewW)) = 3 Kyl (F(W;) — ¥ (Wn)) < <5\P<wn>, > K Wi - wn>>
i=0 i=0

= (0% (W), (DBEW)n).



Energy solutions: existence IV

e We can now define a fractional minimizing movements scheme via:
1 n—1
Uy = argmin | - > (KB )llw = Ui|? + @(w) — (Fo, w)
weH i—0
e This is equivalent to

(DSU),, + 0B(U,,) > F,.

e Question: What is the analogue of (the piecewise linear) U?



Energy solutions: existence V

0.2

0.1+

-0.1¢t

-0.2L ‘ ‘ ;
to t to t3 ty ts

o Define {¢;}, as functions with (D%;); = d; ;. Then
Ut) = Z Uipi(t).
i=0
e The minimizing movements becomes

<D?(7(t), Ut) — w>+<1>((7(t))—<1>(w) < (F,U(t) - w),

Yw € H.



Energy solutions: existence VI

e Judicious choices of w and some algebra yield

t
D010 ) S @0 + sup [ (=52 P ds < .
tef0,7]Jo

e As expected, we must require ®(ug) < oo. What about the other
quantity?

Proposition (continuity)
For any partition P

sup / (t— )" | F(s)|2ds S sup / (t— )2 ()2 ds.

te[0,7]J0 te[0, 7] J0

Proof.

For a € (0, 1), the weight w(s) = |s|*~1 € Ay,



Energy solutions: existence VII

e We have enough estimates to pass to the limit.

Theorem (existence)
Assume that ®(ug) < oo and

t
sup / (t— ) 1 £(s)]ds < oo,
t€[0,7]J0

then the fractional gradient flow problem has an energy solution which,
moreover, satisfies u € C%/2([0,T]; H).

e Recall that in the classical gradient flow (a = 1) an energy solution
satisfies u € HY(0,T;H) — C%'/2([0,T]; H).

&1 ass 2021
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A posteriori error estimate 1€

e Recall that the discrete solution is obtained via
% (Un = Un_1) + 0B(Uy) 5 F,
which is equivalent to
<71 (Un — Un 1), U — w>+<I>(Un)—<I>(w) < (Fo,Un—w), Ve
e Set w = U, _1 and define the quantity
(U,) — ®(U,-1)

Tn

En = <Fn L (Un —Un-1), kS (Un — Un1)> -

Tn Tn

>0

& Nochetto, Savaré, Verdi 2000



A posteriori error estimate |l

e Recall that

<U”(t)7 Ut) - w>+q>(0(t))—<1>(w) < (F(t),0(t) —w), YweH.

e Using that @ is convex and that ﬁ(t) is a convex combination of U,
and U,,_1 we get

e Combining with the continuous problem we get the a posteriori error
estimate

N 1/2
lu—Ullpeeo,rm) S IIf — F||L2(O,T;H) + (Z Ti&) .

n=1



A priori error estimate®

e A simple calculation reveals that

Z nén S ©(Uo) + ||F||2L2(0,T;H)

e So that provided ®(ug) < oo we get the a priori estimate

lu—Ull g0 S T2

e This is optimal with respect to the regularity u € C%/2([0, T]; H).

& Nochetto, Savaré, Verdi 2000



Error analysis: the heart of the matter

e A positive quantity &, that depends only on the computed
approximations.

e The function U solves a perturbed gradient flow, where &, is the
perturbation.

e The fact that our interpolant U is a convex combination of the
computed approximations.
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A posteriori error analysis |

e Recall that our minimizing movements scheme reads
(D3U), + 02(U,) > F,,

and that this can be rewritten as

e We define
Ealt) = (DFUW) — F(),0() = U(1)) + (0 (1) - 2(T ()= 0,

which depends only on the discrete solutions, and is thus
computable.



A posteriori error analysis |l

or



A posteriori error analysis Ill

e The functions {¢;} used to define U are all nonnegative, and
dipi=1

e The value of the interpolant [?(t) is a convex combination of
{Ui}y with t € (tp—1,t].

e The interpolant U satisfies, for every w € H,
(DeU(®),0(t) — w)+@(T (1)~ @(w) < (F(2),0(1) - w)+Eu (1),

where, again, the quantity &, is a perturbation.



A posteriori error analysis IV

Theorem (a posteriori error estimate®)

Assume that ®(ug) < co. For every P we have

t
lu— Ol w0y S sup / (t— 5)*Y|f — F|l(s)ds
tefo,71Jo

t
+ < sup / (t —s5)* L& (s) ds)
te[0,T] J0o
Proof.

Combine the inequalities that u and U satisfy to get

1/2

<D?(u—l7),u—l7>§ <f—1~:‘,u—0>+£a(t),

Use the discrete key inequality.

&1 ass 2021



A priori error analysis |

e Recall
Ealt) = (DPTW) ~ F(©),U(t) ~ T ) + (U (1) — S(U(1)).

e Since there is a bound for DU, and U(t,) = U(t,) = U,

t
sup /(t—s)o‘_1||U—U|\2(s)ds§7'2a
170

tel0,T

e Since U(t) is a convex combination of {Ui iy with ¢ € (tp—1,14)
(U (1)) - <> oW o(0(1)),
which implies

sup /t(t — 97 (2(0(s) - 2(0(s)) ds S 7

te[0,T] J0



A priori error analysis |l

Theorem (a priori error estimate®)
Assume that ®(ug) < co and that

sup / (t = )" Y (s)]12 ds < .

t€[0,T)
Then, for every P, we have
lu = Ul .1 S 77

e Recall that energy solutions satisfy u € C%*/2([0,T]; H) so this is
optimal.

&1 ass 2021
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A linear example |

e Consider, on Q = (0,1),
Diu — Au =0, u(z, 0) = up(z),

supplemented with homogeneous Dirichlet boundary conditions. The
exact solution is

u(t):];Juo7kEa(f)\kt“)gak(x), Uo p = /Q uo ()i (x) da,

where E,, is the Mittag-Leffler function, and {(\x, ¢r)}72, are the
eigenpairs of the Dirichlet Laplacian.

e Set T' = 1. Spectral discretization in space with m = 100 modes,
and uniform P.

e We measure

end = ||u(T) — Un|lL2(0), €ing = max [|u(tn) = Unl[L2(0)-



A linear example I

e Set
—1.545
ok = Kk , o<1,
so that u € D(®) = HL(Q), but uo ¢ D(9D) = H2(Q) 1 HL(Q).
a = 0.3 a = 0.7

T Cing rate Cend rate T eint rate Cend rate
5.00e-02 1.09e-02 — 1.71e-03 —_ 5.00e-02 2.72e-02 — 5.97e-03 —_
2.50e-02 9.74e-03 0.166 9.03e-04 0.921 2.50e-02 2.13e-02 0.350 3.03e-03 0.979
1.25e-02 8.72e-03 0.159 4.70e-04 0.940 1.25e-02 1.67e-02 0.350 1.53e-03 0.988
6.25e-03 7.84e-03 0.153 2.43e-04 0.954 6.25e-03 1.31e-02 0.350 7.68e-04 0.993
3.13e-03 7.07e-03 0.150 1.25e-04 0.964 3.13e-03 1.03e-02 0.350 3.85e-04 0.996
1.56e-03 6.37e-03 0.149 6.35e-05 0.971 1.56e-03 8.08e-03 0.350 1.93e-04 0.997
7.81e-04 5.75e-03 0.149 3.23e-05 0.977 7.81e-04 6.34e-03 0.350 9.65e-05 0.998
3.91e-04 5.18e-03 0.150 1.63e-05 0.982 3.91e-04 4.98e-03 0.350 4.83e-05 0.999
1.95e-04 4.67e-03 0.150 8.25e-06 0.985 1.95e-04 3.90e-03 0.350 2.41e-05 0.999
9.77e-05 4.21e-03 0.150 4.16e-06 0.988 9.77e-05 3.06e-03 0.351 1.21e-05 1.000

e Convergence rate of O(7%/2), as predicted by our theory.



A linear example Il

e Set

so that up € D(0®) = H%(Q) N H}(Q).

uo,

_ 1.—2.549
k — k )

<1,

o =0.3 = 0.7

T €inf rate €end rate T €inf rate €end rate
5.00e-02 8.44e-03 — 1.64e-03 5.00e-02 1.05e-02 — 5.81e-03 —
2.50e-02 6.88e-03 0.296 8.66e-04 0.919 2.50e-02 6.48e-03 0.702 2.95e-03 0.977
1.25e-02 5.57e-03 0.305 4.52e-04 0.939 1.25e-02 3.99e-03 0.701 1.49e-03 0.987
6.25e-03 4.50e-03 0.308 2.33e-04 0.953 6.25e-03 2.45e-03 0.700 7.49e-04 0.992
3.13e-03 3.63e-03 0.307 1.20e-04 0.963 3.13e-03 1.51e-03 0.700 3.76e-04 0.995
1.56e-03 2.94e-03 0.305 6.11e-05 0.971 1.56e-03 9.30e-04 0.700 1.88e-04 0.997
7.81e-04 2.38e-03 0.303 3.10e-05 0.977 7.81e-04 5.73e-04 0.700 9.42e-05 0.998
3.91e-04 1.93e-03 0.302 1.57e-05 0.981 3.91e-04 3.52e-04 0.700 4.71e-05 0.999
1.95e-04 1.57e-03 0.301 7.94e-06 0.985 1.95e-04 2.17e-04 0.700 2.36e-05 0.999
9.77e-05 1.27e-03 0.301 4.00e-06 0.988 9.77e-05 1.34e-04 0.700 1.18e-05 1.000

e Convergence rate of O(7*). We have a theory that includes this

case!




A (fractional) parabolic obstacle problem |

e Consider, in Q@ = (0,1),
Dfu+ (—AY’u>f, u>g, (Dfu+(—A)°u— f)u—g)=0.
supplemented with periodic boundary conditions.
e We set
g(l‘) = (1 - 4|LL‘ - %|)+’ UO(‘T) = Sin(ﬂx)a f(xvt)

1

-+ N




A (fractional) parabolic obstacle problem Il
e Collocation method with M = 64 nodes, 7 = 2e — 6.

e Snapshots of discrete solutions of the time fractional parabolic
obstacle problem for & = 0.1,0.9, s = 0.1,0.9.

up(t) for a =0.1,5s = 0.1 up(t) for a = 0.9,s = 0.1
1 1
p——y —i=1
—t=10 —t=10
0.8 = 100 0.8 =100
0.6 0.6
0.4 0.4
02 / \ 0.2 /
0 0 R —
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
up(t) for a =0.1,5s = 0.9 up(t) for a =0.9,5s = 0.9
1 1
/\ —t=1
—t=10 0.98

t = 100

0.95
0.96
0.9 0.94
0.92

0.85

0.9

0.8 0.88
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1



The (fractional) Allen-Cahn equation |

e Consider, in Q = (0,1)?,
Dgu+ (=A)u+tgu) =f,  u(z,0) = uo(x),

supplemented by periodic boundary conditions.
e Here

gr)=G'(r),  G(r)=

e The energy is NOT convex, but a Lipschitz perturbation of a convex
one. We have a theory for this case.



The (fractional) Allen-Cahn equation |l

e Set
R

where (7, 60) are polar coordinates centered at (3, %).
e Collocation method with M = 64 nodes and 7 = 2e — 6.

wy, at t=1for a=0.1,5=0.1 wy, at t =10 for a = 0.1, s = 0.1 'uy,att=100fura=ﬂ.1,s=l].l
1 1 1 1 1
08 08
05 05 05
06 06
0 0 o
04 04
05 05 05
02 02

o
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

| wy at t=1fora=09,s=0.1 ‘uy,s,tt:wfora:[w‘s:ﬂ.l s ‘uhatt:100fora:0.9,s:0.l

1
08 08
05 05 05
06 06
0 0 o
04 04
05 02 05 05

0 02 04 06 08 1 0o 02 ) 0 02 04 06 08 1
'u;,att:1fur(r:l].l,s:0.9 u;,ntt 10 for a = 0.1,5 = 0.9 ‘uhatf:wﬂforo:U.l,J:U.Q

0s 0s o8

06
o 0

04
05 05

02




The (fractional) Allen-Cahn equation IlI

a = 0.3 a =0.7

T €inf rate €end rate T €inf rate €end rate
2.50e-03 9.11e-04 - 3.11e-04 - 2.50e-03 7.24e-04 - 3.84e-04 -
1.25e-03 7.29e-04 0.321 1.72¢-04 0.859 1.25e-03 5.42e-04 0.416 1.97e-04 0.961
6.25e-04 5.81e-04 0.328 9.23e-05 0.894 6.25e-04 4.04e-04 0.426 1.00e-04 0.977
3.13e-04 4.60e-04 0.336 4.88e-05 0.919 3.13e-04 3.04e-04 0.411 5.06e-05 0.987
1.56e-04 3.65e-04 0.336 2.55e-05 0.938 1.56e-04 2.33e-04 0.386 2.54e-05 0.992
7.81e-05 2.92e-04 0.320 1.32e-05 0.951 7.81e-05 1.82e-04 0.355 1.28e-05 0.995
3.91e-05 2.3%e-04 0.287 6.77e-06 0.961 3.91e-05 1.45e-04 0.326 6.39e-06 0.997
1.95e-05 2.02e-04 0.244 3.46e-06 0.969 1.95e-05 1.16e-04 0.322 3.20e-06 0.998
9.77e-06 1.76e-04 0.203 1.76e-06 0.975 9.77e-06 9.01e-05 0.365 1.60e-06 0.999

e The rates for e;, ¢ are close to O(TQ/Q) predicted in our theory.




Time adaptivity |

e Consider the linear example with o = 0.5, and ug € HE(Q) \ H?(1Q).
Given € > 0, choose the time steps 7, to equidistribute the error:

EL (1) < g2
ecnax, Ealt) S

then we can guarantee that
lu = UllL=.1:22(0)) S €

e Choose ¢ = 1le — 2.

e The adaptive solver requires N = #P — 1 = 455 time intervals with
minimal timestep Tiin ~ 2.3e¢ — 12 and maximal timestep
Tmax =~ 6.3e — 2.

e In comparison, for a similar tolerance we must set 7,, = 2.44e — 5 so
that N = 40960.

There is a “clear’ advantage in choosing the time step adaptively!



Time adaptivity Il

10°

(1)
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e The step size 7, is very small at the beginning — the singularity of
the solution at ¢t = 0.
e For t > 0 the solution is smooth, so we can take larger time steps.



Outline

Conclusions and future work

or



Conclusions |

A discretization of the Caputo derivative that possesses suitable
properties.

Existence and uniqueness of energy solutions to fractional gradient
flows.

A posteriori error analysis.

A priori error estimates without additional regularity assumptions.
The estimates seem optimal given the available regularity.



Conclusions |l

Not discussed but we also have:

Extension to the case of ® being A—convex, or we have a Lipschitz
perturbations of a convex function: Fractional reaction diffusion,
Fractional Allen-Cahn, ...

Improved convergence rates for some special cases: linear equations,
smooth energies, ...

Asymptotic behavior of the solution. If f =0 and ® is uniformly
convex with parameter p > 0, then

P(u(t)) — Pmin < ((u0) — Prin) Eo(—2put%)

l[u(t) = uminll3¢ < o = Uminll2Ea (—pt®).
Asymptotic behavior of the solution. If f =0 and ® is merely
convex, then

D(u(t)) — Puin S /2
d(U,) — /2,

min S n



Future work

Some of the experiments show a rate of O(7%)? Why? We have
partial answers.

Replace 9® by a maximal monotone operator.

Evolution in Banach spaces.

Space discretization.



THANK YOU!



(Fractional) ODE with obstacles Il

Define

~Jo, w e [-1,1],
lw) = {—I—oo, w ¢ [-1,1].

Then this problem can be succintly written as
Dfu+0%(u) 3 ,

where 0®(w) denotes the subdifferential.




(Fractional) parabolic obstacle problems Il

e Define
0, w € K,

1
o (w) = §|w‘%s(Rd) i {+oo w ¢ K.

e The evolution variational inequality
/ Diu(u—w)dz + ((—A)°u,u —w) < / flu—w)dz, YweKk.
Q Q

can be written as
Difu+ 09°(u) > f.



The subdifferential of a convex function

e A convex function @ is not necessarily differentiable.
e However, by convexity, it can be touched from below by planes.

e The subdifferential 0®(w) is the collection of slopes of the planes
that touch from below at w

e dd(w) <= P(w)—P(w)<{(w—).



(Fractional) TV flow

e Why p > 17 Consider the equation

YVu
Doy — v [ 22 = 7.
iU V(M) !

e Define
P (w) = [Dw|(%),

where for w € BV (Q) we denote by |Dw]| its total variation (a
Radon measure). This functional is not differentiable.

e The previous equation must be understood as follows: Find u and z
such that

/Df‘uwdx+/z~Dw:/fwdx, Yw € BV (Q) N LA(Q),
Q Q Q

and
/(q—z)-DuﬁO, Vq e ...
Q
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